ROHM UMF32N

Power management (dual transistors)
EMF32 / UMF32N
DTA143T and 2SK3019 are housed independently in a EMT6 package.
0.22
(4)
(3)
(5)
(2)
(6)
(1)
1.2
1.6
0.5
0.13
Features
1) Power switching circuit in a single package.
2) Mounting cost and area can be cut in half.
ROHM : EMT6
Structure
Silicon epitaxial planar transistor
Each lead has
same dimensions
2.0
0.65
(1)
1.25
(1)
1.3
(3)
(2)
(4)
(6)
(5)
0.2
(2)
0.65
Abbreviated symbol : F32
Inner circuits
(3)
0.5 0.5
1.0
1.6
Dimensions (Unit : mm)
Application
Power management circuit
1pin mark
Tr1
Tr2
0.1Min.
ROHM : UMT6
(4)
(5)
0.9
0.7
0.15
2.1
Each lead has
same dimensions
(6)
Abbreviated symbol : F32
Packaging specifications
Type
Package
Marking
Code
Basic ordering unit (pieces)
EMF32
EMT6
F32
T2R
8000
UMF32N
UMT6
F32
TR
3000
www.rohm.com
c 2010 ROHM Co., Ltd. All rights reserved.
○
1/4
2010.09 - Rev.A
EMF32 / UMF32N
Data Sheet
Absolute maximum ratings (Ta=25C)
Tr1
Limits
Parameter
Symbol
−50
VCBO
Collector-base voltage
−50
VCEO
Collector-emitter voltage
−5
VEBO
Emitter-base voltage
−100
IC
Collector current
150(TOTAL)
PC
Power dissipation
Tj
150
Junction temperature
Tstg
−55 to +150
Range of storage temperature
Unit
V
V
V
mA
mW
°C
°C
∗1
∗1 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
Tr2
Symbol
Limits
Parameter
VDSS
30
Drain-source voltage
VGSS
±20
Gate-source voltage
ID
100
Continuous
Drain current
200
IDP
Pulsed
IDR
100
Continuous
Reverse drain
current
IDRP
200
Pulsed
Total power dissipation
PD
150(TOTAL)
Tch
150
Channel temperature
Tstg
−55 to +150
Range of storage temperature
Unit
V
V
mA
mA
mA
mA
mW
°C
°C
∗1
∗1
∗2
∗1 PW≤10ms Duty cycle≤50%
∗2 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
Electrical characteristics (Ta=25C)
Tr1
Symbol
Min.
Typ.
Max.
Unit
Collector-base breakdown voltage
BVCBO
−50
−
−
V
IC= −50μA
Collector-emitter breakdown voltage
BVCEO
−50
−
−
V
IC= −1mA
Emitter-base breakdown voltage
BVEBO
−5
−
−
V
IE= −50μA
Collector cutoff current
ICBO
−
−
−0.5
μA
VCB= −50V
Emitter cutoff current
IEBO
−
−
−0.5
μA
VEB= −4V
Parameter
Conditions
VCE(sat)
−
−
−0.3
V
IC/IB= −5mA/ −0.25mA
DC current transfer ratio
hFE
100
250
600
−
IC= −1mA, VCE= −5V
Input resistance
R1
3.29
4.7
6.11
kΩ
Transition frequency
fT
−
250
−
MHz
Collector-emitter saturation voltage
−
VCE= −10V, IE=5mA, f=100MHz
∗
∗ Transition frequency of the device
Tr2
Parameter
Gate-source leakage
Drain-source breakdown voltage
Zero gate voltage drain current
Gate-threshold voltage
Static drain-source
on-state resistance
Forward transfer admittance
Input capacitance
Output capacitance
Reverce transfer capacitance
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Symbol
IGSS
V(BR)DSS
IDSS
VGS(th)
RDS(on)
|Yfs|
Ciss
Coss
Crss
td(on)
tr
td(off)
tf
www.rohm.com
c 2010 ROHM Co., Ltd. All rights reserved.
○
Min.
−
30
−
0.8
−
−
20
−
−
−
−
−
−
−
Typ.
−
−
−
−
5
7
−
13
9
4
15
35
80
80
Max.
±1
−
1.0
1.5
8
13
−
−
−
−
−
−
−
−
2/4
Unit
μA
V
μA
V
Ω
Ω
ms
pF
pF
pF
ns
ns
ns
ns
Conditions
VGS=±20V, VDS=0V
ID=10μA, VGS=0V
VDS=30V, VGS=0V
VDS=3V, ID=100μA
ID=10mA, VGS=4V
ID=1mA, VGS=2.5V
VDS=3V, ID=10mA
VDS=5V, VGS=0V, f=1MHz
ID=10mA, VDD 5V,
VGS=5V, RL=500Ω,
RGS=10Ω
2010.09 - Rev.A
EMF32 / UMF32N
Data Sheet
1k
VCE=−5V
DC CURRENT GAIN : hFE
500
200
Ta=100°C
25°C
−40°C
100
50
20
10
5
2
1
−100μ −200μ −500μ −1m −2m
−5m −10m −20m −50m −100m
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Electrical characteristic curves
Tr1
−1
lC/lB=20
−500m
Ta=100°C
25°C
−40°C
−200m
−100m
−50m
−20m
−10m
−5m
−2m
−1m
−100μ −200μ −500μ −1m −2m −5m −10m −20m −50m−100m
COLLECTOR CURRENT : IC (A)
COLLECTOR CURRENT : IC (A)
Fig.2 Collector-emitter saturation
voltage vs. collector current
Fig.1 DC current gain vs. collector
current
200m
0.15
Ta=25°C
Pulsed
3.5V
0.1
2.5V
0.05
2V
1
2
50m
20m
10m
5m
2m
Ta=125°C
75°C
25°C
−25°C
1m
0.5m
0.2m
VGS=1.5V
0
0
VDS=3V
Pulsed
100m
3
4
0.1m
0
5
1
DRAIN-SOURCE VOLTAGE : VDS (V)
10
Ta=125°C
75°C
25°C
−25°C
5
2
1
0.005 0.01 0.02
0.05
0.1
0.2
0.5
20
0.5
0
−50 −25
5
2
1
0.5
0.001 0.002
Static drain-source on-state
resistance vs. drain current ( Ι )
www.rohm.com
c 2010 ROHM Co., Ltd. All rights reserved.
○
0.005 0.01 0.02
0.05
0.1
0.2
0.5
DRAIN CURRENT : ID (A)
Fig.7
Static drain-source on-state
resistance vs. drain current ( ΙΙ )
3/4
50
75
100
125 150
Fig.5 Gate threshold voltage vs.
channel temperature
VGS=2.5V
Pulsed
Ta=125°C
75°C
25°C
−25°C
25
0
CHANNEL TEMPERATURE : Tch (°C)
10
DRAIN CURRENT : ID (A)
Fig.6
1
4
50
VGS=4V
Pulsed
0.5
0.001 0.002
1.5
Fig.4 Typical transfer characteristics
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
20
VDS=3V
ID=0.1mA
Pulsed
GATE-SOURCE VOLTAGE : VGS (V)
Fig.3 Typical output characteristics
50
3
2
2
15
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
3V
DRAIN CURRENT : ID (A)
DRAIN CURRENT : ID (A)
4V
GATE THRESHOLD VOLTAGE : VGS(th) (V)
Tr2
Ta=25°C
Pulsed
10
5
ID=0.1A
ID=0.05A
0
0
5
10
15
20
GATE-SOURCE VOLTAGE : VGS (V)
Fig.8
Static drain-source on-state
resistance vs. gate-source
voltage
2010.09 - Rev.A
EMF32 / UMF32N
VDS=3V
Pulsed
0.2
ID=100mA
6
ID=50mA
5
4
3
2
Ta=−25°C
25°C
75°C
125°C
0.1
0.05
0.02
0.01
0.005
1
0.002
0
−50 −25
0.001
0.0001 0.0002
0
25
50
75
100 125
150
200m
0.005 0.01 0.02
0.05 0.1 0.2
50
Ta=25°C
Pulsed
100m
VGS=4V
10m
0V
5m
2m
1m
0.5m
20m
Ta=125°C
75°C
25°C
−25°C
10m
5m
2m
1m
0.5m
0.2m
0.5
0
Ciss
10
5
Coss
Crss
2
0.5
1.5
1
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.11 Reverse drain current vs.
source-drain voltage ( Ι )
1000
Ta=25°C
f=1MHZ
VGS=0V
20
50m
20m
50m
Fig.10 Forward transfer admittance vs.
drain current
CAPACITANCE : C (pF)
REVERSE DRAIN CURRENT : IDR (A)
Static drain-source on-state
resistance vs. channel temperature
VGS=0V
Pulsed
100m
DRAIN CURRENT : ID (A)
CHANNEL TEMPERATURE : Tch (°C)
Fig.9
200m
0.1m
0.0005 0.001 0.002
1
Ta=25°C
VDD=5V
VGS=5V
RG=10Ω
Pulsed
tf
500
SWITHING TIME : t (ns)
7
FORWARD TRANSFER
ADMITTANCE : |Yfs| (S)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
0.5
VGS=4V
Pulsed
8
REVERSE DRAIN CURRENT : IDR (A)
9
Data Sheet
td(off)
200
100
50
20
tr
td(on)
10
5
0.2m
0.1m
0
0.5
1
1.5
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.12 Reverse drain current vs.
source-drain voltage ( ΙΙ )
www.rohm.com
c 2010 ROHM Co., Ltd. All rights reserved.
○
0.5
0.1
0.2
0.5
1
2
5
10
20
50
2
0.1 0.2
0.5
1
2
5
10
20
50
100
DRAIN-SOURCE VOLTAGE : VDS (V)
DRAIN CURRENT : ID (mA)
Fig.13 Typical capacitance vs.
drain-source voltage
Fig.14 Switching characteristics
4/4
2010.09 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
R1010A