Dual Enhancement Mode Field Effect Transistor (N Channel) CEH2608 PRELIMINARY FEATURES 20V, 3.8A, RDS(ON) = 50mΩ @VGS = 4.5V. RDS(ON) = 70mΩ @VGS = 2.5V. RDS(ON) = 100mΩ @VGS = 1.8V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D2(4) D1(6) Lead-free plating ; RoHS compliant. Surface mount Package. 6 5 4 G1(1) 1 2 G2(3) 3 S1(5) S2(2) TSOP-6 ABSOLUTE MAXIMUM RATINGS TA = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS 20 Units V Gate-Source Voltage VGS ±12 V ID 3.8 A IDM 15.2 A PD 1.14 W TJ,Tstg -55 to 150 C Symbol Limit Units RθJA 110 C/W Parameter Drain Current-Continuous Drain Current-Pulsed a Maximum Power Dissipation Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Ambient b This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 1. 2012.May http://www.cetsemi.com CEH2608 N-Channel Electrical Characteristics Parameter TA = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 20 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 20V, VGS = 0V 1 µA IGSSF VGS = 12V, VDS = 0V 100 nA IGSSR VGS = -12V, VDS = 0V -100 nA Off Characteristics V On Characteristics c Gate Threshold Voltage VGS(th) Static Drain-Source RDS(on) On-Resistance Dynamic Characteristics VGS = VDS, ID = 250µA 1.2 V VGS = 4.5V, ID = 3.8A 0.4 30 50 mΩ VGS = 2.5V, ID = 3.0A 40 70 mΩ VGS = 1.8V, ID = 2.0A 60 100 mΩ d Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Switching Characteristics VDS = 10V, VGS = 0V, f = 1.0 MHz 330 pF 90 pF 60 pF d Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 10V, ID = 3.5A, VGS = 4.5V, RGEN = 6Ω 10 20 ns 6 12 ns 28 56 ns 30 Turn-Off Fall Time tf 15 Total Gate Charge Qg 5 nC Gate-Source Charge Qgs 1.0 nC Gate-Drain Charge Qgd 1.5 nC VDS = 10V, ID = 3.5A, VGS = 4.5V ns Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current b IS Drain-Source Diode Forward Voltage c VSD VGS = 0V, IS = 1A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Surface Mounted on FR4 Board, t < 10 sec. c.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. d.Guaranteed by design, not subject to production testing. 2 1 A 1.1 V CEH2608 N-CHANNEL 7.5 25 C VGS=4.5,3.5,2.5V 8 6 ID, Drain Current (A) ID, Drain Current (A) 10 VGS=2.0V 4 2 0 1 2 3 -55 C 1.0 2.0 3.0 4.0 5.0 6.0 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Ciss 300 200 Coss 100 Crss 0 5 10 15 20 25 1.8 1.6 ID=3.8 VGS=4.5V 1.4 1.2 1.0 0.8 0.6 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 0 VGS, Gate-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage TJ=125 C 1.5 VDS, Drain-to-Source Voltage (V) 400 1.2 3 0 0 500 1.3 4.5 VGS=1.5V 600 0 6 -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 4 5 V =10V DS ID=3.5A 4 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEH2608 3 2 1 0 0 1 2 3 4 5 10 2 10 1 RDS(ON)Limit 10ms 10 0 10 -1 10 -2 DC 100ms 1s TA=25 C TJ=150 C Single Pulse 10 -2 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms Figure 9. Switching Test Circuit r(t),Normalized Effective Transient Thermal Impedance 10 0 D=0.5 10 0.2 -1 0.1 0.05 10 PDM 0.02 0.01 -2 t1 1. RθJA (t)=r (t) * RθJA 2. RθJA=See Datasheet 3. TJM-TA = P* RθJA (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -3 10 -4 t2 10 -3 10 -2 10 -1 10 0 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 1 10 2 2