CEH2608

Dual Enhancement Mode Field Effect Transistor (N Channel)
CEH2608
PRELIMINARY
FEATURES
20V, 3.8A, RDS(ON) = 50mΩ @VGS = 4.5V.
RDS(ON) = 70mΩ @VGS = 2.5V.
RDS(ON) = 100mΩ @VGS = 1.8V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
D2(4)
D1(6)
Lead-free plating ; RoHS compliant.
Surface mount Package.
6
5
4
G1(1)
1
2
G2(3)
3
S1(5)
S2(2)
TSOP-6
ABSOLUTE MAXIMUM RATINGS
TA = 25 C unless otherwise noted
Symbol
Limit
Drain-Source Voltage
VDS
20
Units
V
Gate-Source Voltage
VGS
±12
V
ID
3.8
A
IDM
15.2
A
PD
1.14
W
TJ,Tstg
-55 to 150
C
Symbol
Limit
Units
RθJA
110
C/W
Parameter
Drain Current-Continuous
Drain Current-Pulsed
a
Maximum Power Dissipation
Operating and Store Temperature Range
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Ambient b
This is preliminary information on a new product in development now .
Details are subject to change without notice .
1
Rev 1. 2012.May
http://www.cetsemi.com
CEH2608
N-Channel Electrical Characteristics
Parameter
TA = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
20
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 20V, VGS = 0V
1
µA
IGSSF
VGS = 12V, VDS = 0V
100
nA
IGSSR
VGS = -12V, VDS = 0V
-100
nA
Off Characteristics
V
On Characteristics c
Gate Threshold Voltage
VGS(th)
Static Drain-Source
RDS(on)
On-Resistance
Dynamic Characteristics
VGS = VDS, ID = 250µA
1.2
V
VGS = 4.5V, ID = 3.8A
0.4
30
50
mΩ
VGS = 2.5V, ID = 3.0A
40
70
mΩ
VGS = 1.8V, ID = 2.0A
60
100
mΩ
d
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Switching Characteristics
VDS = 10V, VGS = 0V,
f = 1.0 MHz
330
pF
90
pF
60
pF
d
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 10V, ID = 3.5A,
VGS = 4.5V, RGEN = 6Ω
10
20
ns
6
12
ns
28
56
ns
30
Turn-Off Fall Time
tf
15
Total Gate Charge
Qg
5
nC
Gate-Source Charge
Qgs
1.0
nC
Gate-Drain Charge
Qgd
1.5
nC
VDS = 10V, ID = 3.5A,
VGS = 4.5V
ns
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current b
IS
Drain-Source Diode Forward Voltage c
VSD
VGS = 0V, IS = 1A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Surface Mounted on FR4 Board, t < 10 sec.
c.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
d.Guaranteed by design, not subject to production testing.
2
1
A
1.1
V
CEH2608
N-CHANNEL
7.5
25 C
VGS=4.5,3.5,2.5V
8
6
ID, Drain Current (A)
ID, Drain Current (A)
10
VGS=2.0V
4
2
0
1
2
3
-55 C
1.0
2.0
3.0
4.0
5.0
6.0
Figure 1. Output Characteristics
Figure 2. Transfer Characteristics
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
Ciss
300
200
Coss
100
Crss
0
5
10
15
20
25
1.8
1.6
ID=3.8
VGS=4.5V
1.4
1.2
1.0
0.8
0.6
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
ID=250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
0
VGS, Gate-to-Source Voltage (V)
IS, Source-drain current (A)
C, Capacitance (pF)
VTH, Normalized
Gate-Source Threshold Voltage
TJ=125 C
1.5
VDS, Drain-to-Source Voltage (V)
400
1.2
3
0
0
500
1.3
4.5
VGS=1.5V
600
0
6
-25
0
25
50
75
100
125
150
VGS=0V
10
1
10
0
10
-1
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
4
5 V =10V
DS
ID=3.5A
4
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEH2608
3
2
1
0
0
1
2
3
4
5
10
2
10
1
RDS(ON)Limit
10ms
10
0
10
-1
10
-2
DC
100ms
1s
TA=25 C
TJ=150 C
Single Pulse
10
-2
10
-1
10
0
10
1
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
V IN
RL
D
VGS
RGEN
toff
tr
td(on)
td(off)
tf
90%
90%
VOUT
VOUT
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
Figure 9. Switching Test Circuit
r(t),Normalized Effective
Transient Thermal Impedance
10
0
D=0.5
10
0.2
-1
0.1
0.05
10
PDM
0.02
0.01
-2
t1
1. RθJA (t)=r (t) * RθJA
2. RθJA=See Datasheet
3. TJM-TA = P* RθJA (t)
4. Duty Cycle, D=t1/t2
Single Pulse
10
-3
10
-4
t2
10
-3
10
-2
10
-1
10
0
Square Wave Pulse Duration (sec)
Figure 11. Normalized Thermal Transient Impedance Curve
4
10
1
10
2
2