IRF IRFH5304PBF

PD -97447
IRFH5304PbF
HEXFET® Power MOSFET
VDS
RDS(on) max
(@VGS = 10V)
Qg (typical)
ID
(@Tc(Bottom) = 25°C)
30
V
4.5
mΩ
16
nC
79
A
PQFN 5X6 mm
Applications
• Control MOSFET for buck converters
Features and Benefits
Benefits
Features
Low charge (typical 16nC)
Low Thermal Resistance to PCB (<2.7°C/W)
100% Rg tested
Low Profile (<0.9 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Orderable part number
IRFH5304TRPBF
IRFH5304TR2PBF
Package Type
PQFN 5mm x 6mm
PQFN 5mm x 6mm
Lower Switching Losses
Increased Power Density
Increased Reliability
results in Increased Power Density
⇒ Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
Absolute Maximum Ratings
VDS
VGS
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
ID @ T A = 25°C
ID @ T A = 70°C
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
22
17
ID @ T C(Bottom) = 25°C
ID @ T C(Bottom) = 100°C
IDM
PD @T A = 25°C
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Power Dissipation
79
50
320
3.6
c
PD @ TC(Bottom) = 25°C
g
Power Dissipation g
TJ
TSTG
Linear Derating Factor
Operating Junction and
Storage Temperature Range
g
Max.
30
± 20
46
0.029
-55 to + 150
Units
V
A
W
W/°C
°C
Notes  through † are on page 8
www.irf.com
1
2/8/10
IRFH5304PbF
Static @ TJ = 25°C (unless otherwise specified)
BVDSS
ΔΒVDSS/ΔTJ
RDS(on)
VGS(th)
ΔVGS(th)
IDSS
IGSS
gfs
Qg
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Output Charge
Min.
30
–––
–––
–––
1.35
–––
–––
–––
–––
–––
88
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.02
3.8
5.8
1.8
-6.6
–––
–––
–––
–––
–––
41
16
3.6
2.7
5.8
3.9
8.5
9.8
Conditions
Max. Units
–––
V VGS = 0V, ID = 250μA
––– V/°C Reference to 25°C, ID = 1mA
4.5
VGS = 10V, ID = 47A
mΩ
VGS = 4.5V, ID = 47A
6.8
2.35
V
VDS = VGS, ID = 50μA
––– mV/°C
VDS = 24V, VGS = 0V
5.0
μA
VDS = 24V, VGS = 0V, TJ = 125°C
150
VGS = 20V
100
nA
-100
VGS = -20V
–––
S VDS = 15V, ID = 47A
–––
nC VGS = 10V, VDS = 15V, ID = 49A
24
–––
VDS = 15V
–––
VGS = 4.5V
nC
–––
ID = 47A
–––
See Fig.17 & 18
–––
–––
nC VDS = 16V, VGS = 0V
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
–––
–––
–––
–––
–––
1.2
13
25
12
6.6
2360
510
220
–––
–––
–––
–––
–––
–––
–––
–––
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
e
e
Ω
ns
pF
VDD = 15V, VGS = 4.5V
ID = 47A
RG=1.8Ω
See Fig.15
VGS = 0V
VDS = 10V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
Typ.
–––
–––
d
Units
mJ
A
Max.
46
47
Diode Characteristics
IS
Parameter
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
VSD
trr
Qrr
ton
c
(Body Diode)
Diode Forward Voltage
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min.
Typ.
–––
–––
Max. Units
79
–––
–––
320
–––
–––
–––
0.71
–––
19
–––
1.0
29
Conditions
MOSFET symbol
D
A
showing the
integral reverse
V
V
ns
p-n junction diode.
TJ = 25°C, IS = 5A, VGS = 0V
TJ = 25°C, IS = 47A, VGS = 0V
TJ = 25°C, IF = 47A, VDD = 15V
di/dt = 300A/μs
G
S
e
e
–––
44
66
nC
Time is dominated by parasitic Inductance
e
Thermal Resistance
RθJC (Bottom)
RθJC (Top)
RθJA
RθJA (<10s)
2
f
f
Junction-to-Case
Junction-to-Case
Junction-to-Ambient
Junction-to-Ambient
Parameter
g
g
Typ.
–––
–––
–––
–––
Max.
2.7
15
35
22
Units
°C/W
www.irf.com
IRFH5304PbF
1000
1000
100
BOTTOM
TOP
10
2.8V
≤ 60μs PULSE WIDTH
Tj = 25°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
8.0V
4.5V
3.8V
3.5V
3.3V
3.0V
2.8V
100
BOTTOM
2.8V
10
≤ 60μs PULSE WIDTH
Tj = 150°C
1
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
TJ = 150°C
10
TJ = 25°C
1
V DS = 15V
≤ 60μs PULSE WIDTH
0.1
1.0
2.0
3.0
4.0
5.0
6.0
7.0
ID = 47A
V GS = 10V
1.5
1.0
0.5
-60 -40 -20
V GS, Gate-to-Source Voltage (V)
10000
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance Vs. Temperature
Fig 3. Typical Transfer Characteristics
14
V GS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = Cds + C gd
C, Capacitance (pF)
VGS
10V
8.0V
4.5V
3.8V
3.5V
3.3V
3.0V
2.8V
Ciss
1000
Coss
Crss
ID= 47A
12
V DS= 24V
V DS= 15V
V DS= 6.0V
10
8
6
4
2
0
100
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage
3
IRFH5304PbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
100.0
TJ = 150°C
10.0
TJ = 25°C
1.0
V GS = 0V
0.4
0.6
0.8
1.0
1.2
1.4
1000
100
100μsec
10
1msec
Tc = 25°C
Tj = 150°C
Single Pulse
1
0.1
1.6
1
10
100
V DS, Drain-to-Source Voltage (V)
V SD, Source-to-Drain Voltage (V)
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
3.0
V GS(th) Gate threshold Voltage (V)
80
60
ID , Drain Current (A)
10msec
0.1
0.1
0.2
OPERATION IN THIS AREA
LIMITED BY R DS(on)
40
20
2.5
2.0
1.5
ID = 1.0A
ID = 1.0mA
1.0
ID = 250μA
ID = 50μA
0.5
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
TJ , Temperature ( °C )
TC , CaseTemperature (°C)
Fig 9. Maximum Drain Current Vs.
Case (Bottom) Temperature
Fig 10. Threshold Voltage Vs. Temperature
Thermal Response ( ZthJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com
200
16
EAS, Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRFH5304PbF
ID = 47A
12
8
TJ = 125°C
4
TJ = 25°C
0
2
4
6
8
10
12
14
16
18
ID
6.5A
14A
BOTTOM 47A
TOP
160
120
80
40
0
20
25
V GS, Gate-to-Source Voltage (V)
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
A
Fig 14a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
Fig 14b. Unclamped Inductive Waveforms
VDS
90%
D.U.T.
+
-VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
Fig 15a. Switching Time Test Circuit
www.irf.com
I AS
0.01Ω
tp
10%
VGS
td(on)
tr
td(off)
tf
Fig 15b. Switching Time Waveforms
5
IRFH5304PbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
L
DUT
0
1K
S
VCC
Vgs(th)
Qgs1 Qgs2
Fig 17. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 18. Gate Charge Waveform
www.irf.com
IRFH5304PbF
PQFN 5x6 Outline "B" Package Details
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 5x6 Outline "B" Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
XXXX
XYWWX
XXXXX
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRFH5304PbF
PQFN Tape and Reel
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Qualification information†
Qualification level
Moisture Sensitivity Level
Indus trial
(per JE DE C JE S D47F
PQFN 5mm x 6mm
RoHS compliant
†
††
†††
††
†††
guidelines )
MS L1
†††
(per JE DE C J-S T D-020D
)
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.041mH, RG = 50Ω, IAS = 47A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.2/2010
8
www.irf.com