PD -97410 IRFH5300PbF HEXFET® Power MOSFET VDS 30 V RDS(on) max 1.4 m 50 1.3 nC (@VGS = 10V) Qg (typical) RG (typical) ID 100 (@Tc(Bottom) = 25°C) : : h A PQFN 5X6 mm Applications • OR-ing MOSFET for 12V (typical) Bus in-Rush Current • Battery Operated DC Motor Inverter MOSFET Features and Benefits Benefits Features Low RDSon (≤ 1.4mΩ) Low Thermal Resistance to PCB (≤ 0.5°C/W) 100% Rg tested Low Profile (≤ 0.9 mm) Lower Conduction Losses Enable better thermal dissipation Increased Reliability results in Increased Power Density Industry-Standard Pinout ⇒ Multi-Vendor Compatibility Easier Manufacturing Compatible with Existing Surface Mount Techniques Environmentally Friendlier RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Increased Reliability Orderable part number IRFH5300TRPBF IRFH5300TR2PBF Package Type PQFN 5mm x 6mm PQFN 5mm x 6mm Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC(Bottom) = 25°C ID @ TC(Bottom) = 100°C IDM PD @TA = 25°C PD @ TC(Bottom) = 25°C Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range g g c g Max. 30 ± 20 40 32 100 100 h h 400 3.6 250 0.029 -55 to + 150 Units V A W W/°C °C Notes through are on page 8 www.irf.com 1 9/17/09 IRFH5300PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ΔΒVDSS/ΔTJ RDS(on) VGS(th) ΔVGS(th) IDSS IGSS gfs Qg Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Output Charge Min. 30 ––– ––– ––– 1.35 ––– ––– ––– ––– ––– 190 ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.02 1.1 1.7 1.8 -6.2 ––– ––– ––– ––– ––– 120 50 12 6.5 16 16 23 30 Conditions Max. Units ––– V VGS = 0V, ID = 250μA ––– V/°C Reference to 25°C, ID = 1mA 1.4 VGS = 10V, ID = 50A mΩ VGS = 4.5V, ID = 50A 2.1 2.35 V VDS = VGS, ID = 150μA ––– mV/°C 5.0 VDS = 24V, VGS = 0V μA VDS = 24V, VGS = 0V, TJ = 125°C 150 VGS = 20V 100 nA -100 VGS = -20V ––– S VDS = 15V, ID = 50A ––– nC VGS = 10V, VDS = 15V, ID = 50A 75 VDS = 15V ––– ––– VGS = 4.5V nC ––– ID = 50A ––– See Fig.17 & 18 ––– ––– nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– ––– ––– ––– ––– ––– 1.3 26 30 31 13 7200 1360 590 ––– ––– ––– ––– ––– ––– ––– ––– Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) e e Ω ns pF VDD = 15V, VGS = 4.5V ID = 50A RG=1.8Ω See Fig.15 VGS = 0V VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Max. 420 50 Typ. ––– ––– d Units mJ A Diode Characteristics IS Parameter Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr ton c (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. ––– ––– Max. Units 100 h ––– ––– 400 ––– ––– ––– 34 1.0 51 Conditions MOSFET symbol D A showing the integral reverse V ns p-n junction diode. TJ = 25°C, IS = 50A, VGS = 0V TJ = 25°C, IF = 50A, VDD = 15V di/dt = 200A/μs G S e ––– 68 100 nC Time is dominated by parasitic Inductance e Thermal Resistance RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 f f Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient Parameter g g Typ. ––– ––– ––– ––– Max. 0.5 15 35 21 Units °C/W www.irf.com IRFH5300PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 3.5V 3.3V 3.0V 2.9V 2.7V 10 2.7V BOTTOM 100 2.7V ≤ 60μs PULSE WIDTH Tj = 25°C ≤ 60μs PULSE WIDTH Tj = 150°C 1 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 1000 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 TJ = 150°C 10 TJ = 25°C 1 0.1 VDS = 15V ≤ 60μs PULSE WIDTH 0.01 1.0 2.0 3.0 4.0 5.0 ID = 50A VGS = 10V 1.5 1.0 0.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 100000 20 40 60 80 100 120 140 160 Fig 4. Normalized On-Resistance Vs. Temperature 14 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 10000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 10V 5.0V 4.5V 3.5V 3.3V 3.0V 2.9V 2.7V Ciss Coss 1000 Crss ID= 50A 12 VDS= 24V VDS= 15V 10 8 6 4 2 0 100 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage www.irf.com 0 40 80 120 160 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage 3 IRFH5300PbF 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) TJ = 150°C 100 10 TJ = 25°C 1 100μsec 100 1msec 10 10msec 1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.1 1.6 VSD, Source-to-Drain Voltage (V) 10 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 3.0 350 VGS(th) Gate threshold Voltage (V) LIMITED BY PACKAGE 300 ID, Drain Current (A) 1 VDS, Drain-to-Source Voltage (V) 250 200 150 100 50 2.5 2.0 1.5 1.0 0 25 50 75 100 125 150 ID = 1.0A ID = 1.0mA ID = 500μA ID = 150μA 0.5 175 -75 -50 -25 TC, Case Temperature (°C) 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 9. Maximum Drain Current Vs. Case (Bottom) Temperature Fig 10. Threshold Voltage Vs. Temperature Thermal Response ( ZthJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com 6 EAS, Single Pulse Avalanche Energy (mJ) ( Ω) RDS (on), Drain-to -Source On Resistance m IRFH5300PbF ID = 50A 5 4 3 2 TJ = 125°C 1 TJ = 25°C 0 2 4 6 8 10 12 14 16 18 2000 I D 15A 21A BOTTOM 50A TOP 1600 1200 800 400 0 20 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 Fig 15a. Switching Time Test Circuit www.irf.com I AS 0.01Ω tp 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRFH5300PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18. Gate Charge Waveform www.irf.com IRFH5300PbF PQFN 5x6 Outline "B" Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFH5300PbF PQFN Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Indus trial (per JE DE C JE S D47F PQFN 5mm x 6mm †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.337mH, RG = 25Ω, IAS = 50A. Pulse width ≤ 400μs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test capability Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.9/2009 8 www.irf.com