SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 D Organization D D D D D D D JEDEC 168-Pin Dual-In-Line Memory − TM2EP64DxN . . . 2 097 152 × 64 Bits − TM2EP72DxN . . . 2 097 152 × 72 Bits − TM4EP64DxN . . . 4 194 304 × 64 Bits − TM4EP72DxN . . . 4 194 304 × 72 Bits Single 3.3-V Power Supply (±10% Tolerance) TM2EP64DxN — Uses Eight 16M-Bit (2M × 8-Bit) Dynamic Random Access Memories (DRAMs) in Thin Small-Outline Package (TSOP), or Small-Outline J-Lead Package (SOJ) TM2EP72DxN — Uses Nine 16M-Bit (2M × 8-Bit) DRAMs in TSOP, or SOJ TM4EP64DxN — Uses 16 16M-Bit (2M × 8-Bit) DRAMs in TSOP, or SOJ TM4EP72DxN — Uses 18 16M-Bit (2M × 8-Bit) DRAMs in TSOP, or SOJ Performance ranges ’xEPxxDxN-50 ’xEPxxDxN-60 ’xEPxxDxN-70 ACCESS ACCESS ACCESS TIME TIME TIME tRAC tCAC tAA MAX MAX MAX 50 ns 13 ns 25 ns 60 ns 15 ns 30 ns 70 ns 18 ns 35 ns D D D D D D D Module (DIMM) Without Buffer for Use With Socket High-Speed, Low-Noise LVTTL Interface Long Refresh Period: 32 ms (2 048 Cycles) 3-State Output Extended-Data-Out (EDO) Operation With CAS-Before-RAS (CBR), RAS-Only, and Hidden Refresh Serial Presence Detect (SPD) Using EEPROM Ambient Air Temperature Range 0°C to 70°C Gold-Plated Contacts EDO CYCLE tHPC MIN 20 ns 25 ns 30 ns description The TM2EP64DPN is a 16M-byte, 168-pin, dual-in-line memory module (DIMM). The DIMM is composed of eight TMS427809A, 2 097 152 byte × 8-bit 2K-refresh EDO DRAMs, each in a 400-mil, 28-pin plastic TSOP (DGC suffix) mounted on a substrate with decoupling capacitors. See the TMS427809A data sheet (literature number SMKS887). The TM2EP64DJN is available with an SOJ package (DZ suffix). The TM2EP72DPN is a 16M-byte, 168-pin DIMM. The DIMM is composed of nine TMS427809A, 2 097 152 byte × 8-bit 2K-refresh EDO DRAMs, mounted on a substrate with decoupling capacitors. See the TMS427809A data sheet (literature number SMKS887). The TM2EP72DJN is available with an SOJ package (DZ suffix). The TM4EP64DPN is a 32M-byte, 168-pin, dual-in-line memory module (DIMM). The DIMM is composed of sixteen TMS427809A, 2 097 152 × 8-bit 2K-refresh EDO DRAMs, mounted on a substrate with decoupling capacitors. The TM4EP64DJN is available with an SOJ package (DZ suffix). The TM4EP72DPN is a 32M-byte, 168-pin DIMM. The DIMM is composed of 18 TMS427809A, 2097152 × 8-bit 2K-refresh EDO DRAMs, mounted on a substrate with decoupling capacitors. See the TMS427809A data sheet (literature number SMKS887). The TM4EP72DJN is available with an SOJ package (DZ suffix). Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1998, Texas Instruments Incorporated ! "#$ ! %#&'" ($) (#"! " !%$""! %$ *$ $! $+! !#$! !(( ,-) (#" %"$!!. ($! $"$!!'- "'#($ $!. '' %$$!) • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 1 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 operation The TMxEPxxDxN DIMMs operate as displayed in Table 1. Table 1. TMxEPxxDxN DIMM Device Table 2 DIMM DEVICE AND QUANTITY ( ) TM2EP64DxN TMS427809A (8) TM2EP72DxN TMS427809A (9) TM4EP64DxN TMS427809A (16) TM4EP72DxN TMS427809A (18) Connected as shown in the functional block diagram. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 DUAL-IN-LINE MEMORY MODULE ( TOP VIEW ) TM2EP64DPN ( SIDE VIEW ) TM4EP72DPN ( SIDE VIEW ) PIN NOMENCLATURE A[0:10] A[0:9] DQ[0:63] CB[0:7] CAS[0:7] RAS[0:3] WE0 and WE2 OE0 and OE2 SA[0:2] 1 10 SDA SCL NC VDD VSS 11 Row Address Inputs Column Address Inputs Data In / Data Out Check-Bit In / Check-Bit Out Column-Address Strobe Row-Address Strobe Write Enable Output Enable Serial Presence Detect (SPD) Device Add Input SPD Address / Data SPD Clock No-Connect Pin 3.3-V Supply Ground 40 41 84 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 3 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 Pin Assignments ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PIN NO. NAME NO. 1 43 2 VSS DQ0 3 DQ1 4 NO. 85 44 VSS OE2 45 RAS2 DQ2 46 5 DQ3 6 7 VDD DQ4 8 DQ5 9 PIN NAME NO. PIN NAME 127 86 VSS DQ32 128 VSS NC 87 DQ33 129 RAS3 CAS2 88 DQ34 130 CAS6 47 CAS3 89 DQ35 131 CAS7 48 WE2 90 132 NC 49 91 133 50 VDD NC VDD DQ36 92 DQ37 134 VDD NC DQ6 51 NC 93 DQ38 135 NC 10 DQ7 52 CB2 94 DQ39 136 CB6 11 DQ8 53 CB3 95 DQ40 137 CB7 12 VSS DQ9 54 97 VSS DQ41 138 55 VSS DQ16 96 13 139 VSS DQ48 14 DQ10 56 DQ17 98 DQ42 140 DQ49 15 DQ11 57 DQ18 99 DQ43 141 DQ50 16 DQ12 58 DQ19 100 DQ44 142 DQ51 17 DQ13 59 101 DQ45 143 18 60 102 144 61 NC 103 VDD DQ46 VDD DQ52 19 VDD DQ14 VDD DQ20 145 NC 20 DQ15 62 NC 104 DQ47 146 NC 21 CB0 63 NC 105 CB4 147 NC 22 CB1 64 106 CB5 148 23 VSS NC 65 VSS DQ21 107 149 66 DQ22 108 VSS NC VSS DQ53 150 DQ54 25 NC 67 DQ23 109 NC 151 DQ55 26 68 111 VDD NC 152 69 VSS DQ24 110 27 VDD WE0 153 VSS DQ56 28 CAS0 70 DQ25 112 CAS4 154 DQ57 29 CAS1 71 DQ26 113 CAS5 155 DQ58 30 RAS0 72 DQ27 114 RAS1 156 DQ59 31 OE0 73 115 NC 157 32 74 116 VDD DQ60 75 DQ29 117 VSS A1 158 33 VSS A0 VDD DQ28 159 DQ61 34 A2 76 DQ30 118 A3 160 DQ62 35 A4 77 DQ31 119 A5 161 DQ63 36 A6 78 A7 162 A8 79 VSS NC 120 37 121 A9 163 VSS NC 38 A10 80 NC 122 NC 164 NC 39 NC 81 NC 123 NC 165 SA0 40 82 SDA 124 SA1 83 SCL 125 VDD NC 166 41 VDD VDD 167 SA2 42 NC 84 VDD 126 NC 168 VDD 24 4 PIN NAME • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 dual-in-line memory module and components The dual-in-line memory module and components include: D PC substrate: 1,27 " 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage D Bypass capacitors: Multilayer ceramic D Contact area: Nickel plate and gold plate over copper • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 5 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 functional block diagram The following table shows the four DIMM modules and locations (Ux/UBx) that are used. COMPONENT TABLE MODULE LOCATIONS USED TM2EP64DxN U[0:7] TM2EP72DxN U[0:8] TM4EP64DxN U[0:7], UB[0:7] TM4EP72DxN U[0:8], UB[0:8] RAS0 RAS1 RAS2 RAS3 WE0 OE0 WE0 OE0 WE2 OE2 WE2 OE2 CAS0 DQ[0:7] CAS1 DQ[8:15] CAS1 CB[0:7] CAS2 DQ[16:23] CAS3 DQ[24:31] CAS OE W RAS CAS OE W RAS DQ[0:7] U0 DQ[0:7] UB0 CAS OE W RAS CAS OE W RAS DQ[0:7] U1 DQ[0:7] UB1 CAS OE W RAS CAS OE W RAS DQ[0:7] U8 DQ[0:7] UB8 CAS OE W RAS CAS OE W RAS DQ[0:7] U2 DQ[0:7] UB2 CAS OE W RAS CAS OE W RAS DQ[0:7] U3 DQ[0:7] UB3 CAS4 DQ[32:39] CAS5 DQ[40:47] CAS6 DQ[48:55] CAS7 DQ[56:63] CAS OE W RAS CAS OE W RAS DQ[0:7] U4 DQ[0:7] UB4 CAS CAS OE W RAS OE W RAS DQ[0:7] U5 DQ[0:7] UB5 CAS CAS OE W RAS OE W RAS DQ[0:7] U6 DQ[0:7] UB6 CAS CAS OE W RAS OE W RAS DQ[0:7] UB7 DQ[0:7] U7 A[0: 10] A[0 : 10] : U[0:8], UB[0:8] SPD EEPROM SCL SDA Legend: SPD = Serial Presence Detect A0 A1 A2 SA0 SA1 SA2 VDD VSS 6 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • U[0:8], UB[0:8] Two 0.1 µF (minimum) per DRAM U[0:8], UB[0:8] SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 absolute maximum ratings over ambient temperature range (unless otherwise noted)† Supply voltage range, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.5 V to 4.6 V Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Power dissipation: TM2EP64DxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W TM2EP72DxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 W TM4EP64DxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W TM4EP72DxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 W Ambient temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 125°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to VSS. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ recommended operating conditions MIN NOM MAX UNIT 3 3.3 3.6 V VDD VSS Supply voltage VIH VIH −SPD High-level input voltage 2 High-level input voltage for the SPD device 2 VIL TA Low-level input voltage Supply voltage 0 V VDD + 0.3 5.5 V V −0.3 0.8 V 0 70 °C Ambient temperature capacitance over recommended ranges of supply voltage and ambient temperature, f = 1 MHz (see Note 2) ’2EP64DxN PARAMETER MIN ’2EP72DxN MAX MIN MAX ’4EP64DxN MIN MAX ’4EP72DxN MIN MAX UNIT Ci(A) Input capacitance, A0 −A10 42 47 82 92 pF Ci(OE) Input capacitance, OEx 30 37 58 72 pF Ci(CAS) Input capacitance, CASx 9 16 16 30 pF Ci(RAS) Input capacitance, RASx 30 37 30 37 pF Ci(W) Input capacitance, WEx 30 37 38 37 pF Co Output capacitance 9 9 16 16 pF Ci/o(SDA) Input/output capacitance, SDA input 9 9 9 9 pF Ci(SPD) Input capacitance, SA0,SA1,SA2,SCL inputs 7 7 7 7 pF NOTE 2: VDD = NOM supply voltage ± 10%, and the bias on pins under test is 0 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 7 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) TM2EP64DxN PARAMETER ’2EP64DxN-50 TEST CONDITIONS† MIN ’2EP64DxN-60 MAX MIN ’2EP64DxN-70 MAX MIN MAX UNIT High-level output voltage IOH = − 2 mA LVTTL VOH IOH = − 100 µA LVCMOS Low-level output voltage IOL = 2 mA LVTTL 0.4 0.4 0.4 VOL IOL = 100 µA LVCMOS 0.2 0.2 0.2 II Input current (leakage) VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD ± 10 ± 10 ± 10 µA IO Output current (leakage) VDD = 3.6 V, CASx high VO = 0 V to VDD, ± 10 ± 10 ± 10 µA ICC1‡§ Read- or write-cycle current VDD = 3.6 V, Minimum cycle 960 800 720 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 16 16 16 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 8 8 8 mA ICC2 Standby current 2.4 2.4 2.4 V VDD −0.2 VDD −0.2 VDD −0.2 V ICC3‡§ Average refresh current (RAS-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RAS-only refresh), RASx low after CASx low (CBR) 960 800 720 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 880 720 640 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC 8 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued) TM2EP72DxN PARAMETER ’2EP72DxN-50 TEST CONDITIONS† MIN ’2EP72DxN-60 MAX MIN ’2EP72DxN-70 MAX MIN MAX UNIT High-level output voltage IOH = − 2 mA LVTTL VOH IOH = − 100 µA LVCMOS Low-level output voltage IOL = 2 mA LVTTL 0.4 0.4 0.4 VOL IOL = 100 µA LVCMOS 0.2 0.2 0.2 II Input current (leakage) VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD ± 10 ± 10 ± 10 µA IO Output current (leakage) VDD = 3.6 V, CASx high VO = 0 V to VDD, ± 10 ± 10 ± 10 µA ICC1‡§ Read- or write-cycle current VDD = 3.6 V, Minimum cycle 976 816 736 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 18 18 18 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 9 9 9 mA ICC2 Standby current 2.4 2.4 2.4 V VDD −0.2 VDD −0.2 VDD −0.2 V ICC3‡§ Average refresh current (RASx-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RAS-only refresh), RASx low after CASx low (CBR) 976 816 736 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 990 810 720 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 9 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued) TM4EP64DxN PARAMETER ’4EP64DxN-50 TEST CONDITIONS† MIN ’4EP64DxN-60 MAX MIN MAX ’4EP64DxN-70 MIN MAX UNIT High-level output voltage IOH = − 2 mA LVTTL VOH IOH = − 100 µA LVCMOS Low-level output voltage IOL = 2 mA LVTTL 0.4 0.4 0.4 VOL IOL = 100 µA LVCMOS 0.2 0.2 0.2 II Input current (leakage) VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD ± 20 ± 20 ± 20 µA IO Output current (leakage) VDD = 3.6 V, CASx high VO = 0 V to VDD, ± 20 ± 20 ± 20 µA ICC1‡§ Read- or write-cycle current VDD = 3.6 V, Minimum cycle 976 816 736 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 32 32 32 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 16 16 16 mA ICC2 Standby current 2.4 2.4 2.4 V VDD −0.2 VDD−0.2 VDD −0.2 V ICC3‡§ Average refresh current (RASx-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RAS-only refresh), RASx low after CASx low (CBR) 976 816 736 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 896 736 656 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC 10 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued) TM4EP72DxN PARAMETER ’4EP72DxN-50 TEST CONDITIONS† MIN ’4EP72DxN-60 MAX MIN MAX ’4EP72DxN-70 MIN MAX UNIT High-level output voltage IOH = − 2 mA LVTTL VOH IOH = − 100 µA LVCMOS Low-level output voltage IOL = 2 mA LVTTL 0.4 0.4 0.4 VOL IOL = 100 µA LVCMOS 0.2 0.2 0.2 II Input current (leakage) VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD ± 20 ± 20 ± 20 µA IO Output current (leakage) VDD = 3.6 V, CASx high VO = 0 V to VDD, ± 20 ± 20 ± 20 µA ICC1‡§ Read- or write-cycle current VDD = 3.6 V, Minimum cycle 1098 918 828 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 36 36 36 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 18 18 18 mA ICC2 Standby current 2.4 2.4 2.4 V VDD −0.2 VDD −0.2 VDD −0.2 V ICC3‡§ Average refresh current (RASx-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RAS-only refresh), RASx low after CASx low (CBR) 1098 918 828 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 1008 828 738 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 11 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 switching characteristics over recommended ranges of supply voltage and ambient temperature (see Note 3) ’xEP64DxN-50 ’xEP72DxN-50 PARAMETER MIN MAX ’xEP64DxN-60 ’xEP72DxN-60 MIN MAX ’xEP64DxN-70 ’xEP72DxN-70 MIN UNIT MAX tAA tCAC Access time from column address (see Note 4) 25 30 35 ns Access time from CASx (see Note 4) 13 15 18 ns tCPA tRAC Access time from CASx precharge (see Note 4) 28 35 40 ns Access time from RASx (see Note 4) 50 60 70 ns tOEA tCLZ Access time from OEx (see Note 4) 18 ns Delay time, CASx to output in low impedance 0 tREZ tCEZ Output buffer turn off delay from RASx (see Note 5) 3 13 3 15 3 18 ns Output buffer turn off delay from CASx (see Note 5) 3 13 3 15 3 18 ns tOEZ tWEZ Output buffer turn off delay from OEx (see Note 5) 3 13 3 15 3 18 ns Output buffer turn off delay from WEx (see Note 5) 3 13 3 15 3 18 ns 13 15 0 0 ns NOTES: 3. With ac parameters, it is assumed that tT = 2 ns. 4. Access times are measured with output reference levels of VOH = 2 V and VOL = 0.8 V. 5. The maximum values of tREZ, tCEZ, tOEZ, and tWEZ are specified when the outputs are no longer driven. Data-in should not be driven until one of the applicable maximum values is satisfied. EDO timing requirements (see Note 3) ’xEP64DxN-50 ’xEP72DxN-50 MIN MAX ’xEP64DxN-60 ’xEP72DxN-60 MIN MAX ’xEP64DxN-70 ’xEP72DxN-70 MIN UNIT MAX tHPC tPRWC Cycle time, EDO page mode, read-write 20 25 30 ns Cycle time, EDO read-write 57 68 78 ns tCSH tCHO Delay time, RASx active to CASx precharge 40 48 58 ns Hold time, OEx from CASx 7 10 10 ns tDOH tOEP Hold time, output from CASx 5 5 5 ns Precharge time, OEx 5 5 5 ns tCAS tWPE Pulse duration, CASx active 8 Pulse duration, WEx active (output disable only) 7 7 7 ns tCP tOCH Pulse duration, CASx precharge 8 10 10 ns Setup time, OEx before CASx 8 10 10 ns 5 5 5 ns tOEP Precharge time, OEx NOTE 3: With ac parameters, it is assumed that tT = 2 ns. 12 • 10 000 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 10 10 000 12 10 000 ns SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 ac timing requirements ’xEP64DxN-50 ’xEP72DxN-50 ’xEP64DxN-60 ’xEP72DxN-60 ’xEP64DxN-70 ’xEP72DxN-70 MIN MIN MIN MAX MAX tRC tRWC Cycle time, random read or write tRASP tRAS Pulse duration, RASx active, fast page mode (see Note 6) 50 100 000 60 100 000 70 100 000 ns Pulse duration, RASx active, non-page mode (see Note 6) 50 10 000 60 10 000 70 10 000 ns tRP tWP Pulse duration, RASx precharge 30 tRASS tRPS Pulse duration, RASx active, self refresh (see Note 7) tASC tASR Cycle time, read-write 104 124 135 160 40 ns ns 50 ns ns 8 10 10 100 100 100 ms 90 110 130 ns Setup time, column address 0 0 0 ns Setup time, row address 0 0 0 ns tDS tRCS Setup time, data in (see Note 8) 0 0 0 ns Setup time, read command 0 0 0 ns tCWL tRWL Setup time, write command before CASx precharge 8 10 12 ns Setup time, write command before RASx precharge 8 10 12 ns Setup time, write command before CASx active (early-write only) 0 0 0 ns tWCS Pulse duration, write command 84 111 UNIT MAX Pulse duration, RASx precharge after self refresh tWRP tCSR Setup time, WEx high before RASx low (CBR refresh only) 10 10 10 ns Setup time, CASx referenced to RASx ( CBR refresh only ) 5 5 5 ns tCAH tDH Hold time, column address 8 10 12 ns Hold time, data in (see Note 8) 8 10 12 ns tRAH tRCH Hold time, row address 8 10 10 ns Hold time, read command referenced to CASx (see Note 9) 0 0 0 ns tRRH Hold time, read command referenced to RASx (see Note 9) 0 0 0 ns tWCH Hold time, write command during CASx active ( early-write only ) 8 10 12 ns tROH tWRH Hold time, RASx referenced to OEx 8 10 10 ns Hold time, WEx high after RASx low (CBR refresh only) 10 10 10 ns tCHR tOEH Hold time, CASx referenced to RASx ( CBR refresh only ) 10 10 10 ns Hold time, OEx command 13 15 18 ns tRHCP tCHS Hold time, RASx active from CASx precharge 28 35 40 ns − 50 − 50 − 50 ns 42 49 57 ns tAWD Hold time, CASx referenced to RASx (self refresh only) Delay time, column address to write command ( read-write only ) tCRP Delay time, CASx precharge to RASx 5 5 5 ns NOTES: 6. In a read-write cycle, tRWD and tRWL must be observed. 7. During the period of 10 µs ≤ tRASS ≤100 µs, the device is in a transition state from normal-operation mode to self-refresh mode. 8. Referenced to the later of CASx or WEx in write operations 9. Either tRRH or tRCH must be satisfied for a read cycle. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 13 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 ac timing requirements (continued) ’xEP64DxN-50 ’xEP72DxN-50 ’xEP64DxN-60 ’xEP72DxN-60 ’xEP64DxN-70 ’xEP72DxN-70 MIN MIN MIN MAX MAX UNIT MAX tCWD tOED Delay time, CASx to write command ( read-write only ) 30 34 40 Delay time, OEx to data in 13 15 18 tRAD tRAL Delay time, RASx to column address ( see Note 10) 10 Delay time, column address to RASx precharge 25 30 35 ns tCAL Delay time, column address to CASx precharge 18 20 25 ns tRCD tRPC Delay time, RASx to CASx ( see Note 10) 12 tRSH tRWD Delay time, CASx active to RASx precharge tCPW tREF tT Delay time, RASx precharge to CASx 25 37 14 30 45 12 14 ns 35 52 ns ns 5 5 5 ns 8 10 12 ns Delay time, RASx to write command (read-write only) 67 79 92 ns Delay time, CASx precharge to write command (read-write only) 45 54 62 ns Refresh time interval 32 Transition time 2 30 NOTE 10: The maximum value is specified only to ensure access time. 14 12 ns • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 32 2 30 2 32 ms 30 ns SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect The serial presence detect (SPD) is contained in a 2K-bit serial EEPROM located on the module. The SPD nonvolatile EEPROM contains various data such as module configuration, DRAM organization, and timing parameters (see tables below). Only the first 128 bytes are programmed by Texas Instruments, while the remaining 128 bytes are available for customer use. Programming is done through an IIC bus using the clock (SCL) and data (SDA) signals. All Texas Instruments module comply with the current JEDEC SPD Standard. Please see the Texas Instruments Serial Presence Detect Technical Reference (literature number SMMU001) for further details. Tables in this section list the SPD contents as follows: Table 2 −TM2EP64DxN Table 4 −TM4EP64DxN Table 3 −TM2EP72DxN Table 5 −TM4EP72DxN Table 2. Serial Presence Detect Data for the TM2EP64DxN BYTE NO. ’2EP64DxN-50 FUNCTION DESCRIBED ’2EP64DxN-60 ’2EP64DxN-70 ITEM DATA ITEM DATA ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 128 bytes 80h 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 256 bytes 08h 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM) EDO 02h EDO 02h EDO 02h 3 Number of row addresses on this assembly 11 0Bh 11 0Bh 11 0Bh 4 Number of column addresses on this assembly 10 0Ah 10 0Ah 10 0Ah 5 Number of module banks on this assembly 1 bank 01h 1 bank 01h 1 bank 01h 6 Data width of this assembly 64 bits 40h 64 bits 40h 64 bits 40h 7 Data width continuation 8 Voltage interface standard of this assembly 00h 00h 00h LVTTL 01h LVTTL 01h LVTTL 01h tRAC = 50 ns tCAC = 13 ns 32h tRAC = 60 ns tCAC = 15 ns 3Ch 0Fh tRAC = 70 ns tCAC = 18 ns 46h 0Dh Non-Parity 00h Non-Parity 00h Non-Parity 00h 15.6 µs 00h 15.6 µs 00h 15.6 µs 00h x8 08h x8 08h x8 08h N/A 00h N/A 00h N/A 00h 9 RASx access time of module 10 CASx access time of module 11 DIMM configuration type (non-parity, parity, ECC) 12 Refresh rate / type 13 DRAM width, primary DRAM 14 Error-checking SDRAM data width 62 SPD revision Rev. 1 01h Rev. 1 01h Rev. 1 01h 63 Checksum for bytes 0 −62 41 29h 53 35h 66 42h Manufacturer’s JEDEC ID code per JEP-106E 97h 9700...00h 97h 9700...00h 97h 9700...00h 64−71 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 12h 15 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 2. Serial Presence Detect Data for the TM2EP64DxN (Continued) BYTE NO. ’2EP64DxN-50 FUNCTION DESCRIBED ITEM DATA ’2EP64DxN-60 ITEM DATA ’2EP64DxN-70 ITEM Manufacturing location† TBD TBD TBD Manufacturer’s part number† Die revision code† TBD TBD TBD TBD TBD TBD TBD TBD TBD 93−94 PCB revision code† Manufacturing date† TBD TBD TBD 95−98 Assembly serial number† TBD TBD TBD 99−125 TBD TBD TBD 126−127 Manufacturer specific data† Vendor specific data† TBD TBD TBD 128−166 System integrator’s specific data‡ TBD TBD TBD 72 73−90 91 92 167−255 Open † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). 16 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • DATA SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 3. Serial Presence Detect Data for the TM2EP72DxN BYTE NO. ’2EP72DxN-50 FUNCTION DESCRIBED ’2EP72DxN-60 ’2EP72DxN-70 ITEM DATA ITEM DATA ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 128 bytes 80h 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 256 bytes 08h 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM) EDO 02h EDO 02h EDO 02h 3 Number of row addresses on this assembly 11 0Bh 11 0Bh 11 0Bh 4 Number of column addresses on this assembly 10 0Ah 10 0Ah 10 0Ah 5 Number of module banks on this assembly 1 bank 01h 1 bank 01h 1 bank 01h 6 Data width of this assembly 72 bits 48h 72 bits 48h 72 bits 48h 7 Data width continuation 8 Voltage interface standard of this assembly 9 RASx access time of module 10 CASx access time of module 11 DIMM configuration type (non-parity, parity, ECC) 12 Refresh rate / type 13 DRAM width, primary DRAM 14 Error-checking SDRAM data width 62 SPD revision 63 00h 00h 00h LVTTL 01h LVTTL 01h LVTTL 01h tRAC = 50 ns tCAC = 13 ns 32h 3Ch 0Fh tRAC = 70 ns tCAC = 18 ns 46h 0Dh tRAC = 60 ns tCAC = 15 ns ECC 02h ECC 02h ECC 02h 15.6 µs 00h 15.6 µs 00h 15.6 µs 00h x8 08h x8 08h x8 08h 12h x8 08h x8 08h x8 08h Rev. 1 01h Rev. 1 01h Rev. 1 01h Checksum for bytes 0 −62 59 3Bh 71 47h 84 54h Manufacturer’s JEDEC ID code per JEP-106E 97h 9700...00h 97h 9700...00h 97h 9700...00h Manufacturing location† TBD TBD TBD Manufacturer’s part number† Die revision code† TBD TBD TBD TBD TBD TBD TBD TBD TBD 93−94 PCB revision code† Manufacturing date† TBD TBD TBD 95−98 Assembly serial number† TBD TBD TBD 99−125 TBD TBD TBD 126−127 Manufacturer specific data† Vendor specific data† TBD TBD TBD 128−166 System integrator’s specific data‡ TBD TBD TBD 64−71 72 73−90 91 92 167−255 Open † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 17 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 4. Serial Presence Detect Data for the TM4EP64DxN BYTE NO. ’4EP64DxN-50 FUNCTION DESCRIBED ’4EP64DxN-60 ’4EP64DxN-70 ITEM DATA ITEM DATA ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 128 bytes 80h 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 256 bytes 08h 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM) EDO 02h EDO 02h EDO 02h 3 Number of row addresses on this assembly 11 0Bh 11 0Bh 11 0Bh 4 Number of column addresses on this assembly 10 0Ah 10 0Ah 10 0Ah 5 Number of module banks on this assembly 2 banks 02h 2 banks 02h 2 banks 02h 6 Data width of this assembly 64 bits 40h 64 bits 40h 64 bits 40h 7 Data width continuation 8 Voltage interface standard of this assembly 9 RASx access time of module 10 CASx access time of module 11 DIMM configuration type (non-parity, parity, ECC) 12 Refresh rate / type 13 DRAM width, primary DRAM 14 Error-checking SDRAM data width 62 SPD revision 63 00h 00h 00h LVTTL 01h LVTTL 01h LVTTL 01h tRAC = 50 ns tCAC = 13 ns 32h 3Ch 0Fh tRAC = 70 ns tCAC = 18 ns 46h 0Dh tRAC = 60 ns tCAC = 15 ns Non-Parity 00h Non-Parity 00h Non-Parity 00h 15.6 µs 00h 15.6 µs 00h 15.6 µs 00h x8 08h x8 08h x8 08h 12h N/A 00h N/A 00h N/A 00h Rev. 1 01h Rev. 1 01h Rev. 1 01h Checksum for bytes 0 −62 42 2Ah 54 36h 67 43h Manufacturer’s JEDEC ID code per JEP-106E 97h 9700...00h 97h 9700...00h 97h 9700...00h Manufacturing location† TBD TBD TBD Manufacturer’s part number† Die revision code† TBD TBD TBD TBD TBD TBD TBD TBD TBD 93−94 PCB revision code† Manufacturing date† TBD TBD TBD 95−98 Assembly serial number† TBD TBD TBD 99−125 TBD TBD TBD 126−127 Manufacturer specific data† Vendor specific data† TBD TBD TBD 128−166 System integrator’s specific data‡ TBD TBD TBD 64−71 72 73−90 91 92 167−255 Open † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). 18 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 5. Serial Presence Detect for the TM4EP72DxN BYTE NO. ’4EP72DxN-50 FUNCTION DESCRIBED ’4EP72DxN-60 ’4EP72DxN-70 ITEM DATA ITEM DATA ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 128 bytes 80h 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 256 bytes 08h 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM) EDO 02h EDO 02h EDO 02h 3 Number of row addresses on this assembly 11 0Bh 11 0Bh 11 0Bh 4 Number of column addresses on this assembly 10 0Ah 10 0Ah 10 0Ah 5 Number of module banks on this assembly 2 banks 02h 2 banks 02h 2 banks 02h 6 Data width of this assembly 72 bits 48h 72 bits 48h 72 bits 48h 7 Data width continuation 8 Voltage interface standard of this assembly 9 RASx access time of module 10 CASx access time of module 11 DIMM configuration type (non-parity, parity, ECC) 12 Refresh rate / type 13 DRAM width, primary DRAM 14 Error-checking SDRAM data width 62 SPD revision 63 00h 00h 00h LVTTL 01h LVTTL 01h LVTTL 01h tRAC = 50 ns tCAC = 13 ns 32h 3Ch 0Fh tRAC = 70 ns tCAC = 18 ns 46h 0Dh tRAC = 60 ns tCAC = 15 ns ECC 02h ECC 02h ECC 02h 15.6 µs 00h 15.6 µs 00h 15.6 µs 00h x8 08h x8 08h x8 08h 12h x8 08h x8 08h x8 08h Rev. 1 01h Rev. 1 01h Rev. 1 01h Checksum for bytes 0 −62 60 3Ch 72 48h 85 55h Manufacturer’s JEDEC ID code per JEP-106E 97h 9700...00h 97h 9700...00h 97h 9700...00h Manufacturing location† TBD TBD TBD Manufacturer’s part number† Die revision code† TBD TBD TBD TBD TBD TBD TBD TBD TBD 93−94 PCB revision code† Manufacturing date† TBD TBD TBD 95−98 Assembly serial number† TBD TBD TBD 99−125 TBD TBD TBD 126−127 Manufacturer specific data† Vendor specific data† TBD TBD TBD 128−166 System integrator’s specific data‡ TBD TBD TBD 64−71 72 73−90 91 92 167−255 Open † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 19 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 device symbolization (TM4EP64DPN illustrated) TM4EP64DPN -SS Unbuffered Key Position 3.3-V Voltage Key Position YY MM T -SS = = = = Year Code Month Code Assembly Site Code Speed Code NOTE A: Location of symbolization may vary. 20 YYMMT • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 MECHANICAL DATA BR (R-PDIM-N168) DUAL IN-LINE MEMORY MODULE 5.255 (133,48) 5.245 (133,22) Notch 0.157 (4,00) x 0.122 (3,10) Deep 2 Places 0.039 (1,00) TYP 0.125 (3,18) (Note D) 0.054 (1,37) 0.046 (1,17) Notch 0.079 (2,00) x 0.122 (3,10) Deep 2 Places 0.050 (1,27) 0.014 (0,35) MAX 0.118 (3,00) TYP 0.125 (3,18) 0.700 (17,78) TYP 0.118 (3,00) DIA 2 Places 1.005 (25,53) 0.995 (25,27) 0.106 (2,70) MAX 0.157 (4,00) MAX (For Double Sided DIMM Only) 4088180/A 07/97 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Falls within JEDEC MO-161 Dimension includes de-panelization variations; applies between notch and tab edge. Outline may vary above notches to allow router/panelization irregularities. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 21 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 D Organization D D D D D D D JEDEC 168-Pin Dual-In-Line Memory − TM2EP64DxN . . . 2 097 152 × 64 Bits − TM2EP72DxN . . . 2 097 152 × 72 Bits − TM4EP64DxN . . . 4 194 304 × 64 Bits − TM4EP72DxN . . . 4 194 304 × 72 Bits Single 3.3-V Power Supply (±10% Tolerance) TM2EP64DxN — Uses Eight 16M-Bit (2M × 8-Bit) Dynamic Random Access Memories (DRAMs) in Thin Small-Outline Package (TSOP), or Small-Outline J-Lead Package (SOJ) TM2EP72DxN — Uses Nine 16M-Bit (2M × 8-Bit) DRAMs in TSOP, or SOJ TM4EP64DxN — Uses 16 16M-Bit (2M × 8-Bit) DRAMs in TSOP, or SOJ TM4EP72DxN — Uses 18 16M-Bit (2M × 8-Bit) DRAMs in TSOP, or SOJ Performance ranges ’xEPxxDxN-50 ’xEPxxDxN-60 ’xEPxxDxN-70 ACCESS ACCESS ACCESS TIME TIME TIME tRAC tCAC tAA MAX MAX MAX 50 ns 13 ns 25 ns 60 ns 15 ns 30 ns 70 ns 18 ns 35 ns D D D D D D D Module (DIMM) Without Buffer for Use With Socket High-Speed, Low-Noise LVTTL Interface Long Refresh Period: 32 ms (2 048 Cycles) 3-State Output Extended-Data-Out (EDO) Operation With CAS-Before-RAS (CBR), RAS-Only, and Hidden Refresh Serial Presence Detect (SPD) Using EEPROM Ambient Air Temperature Range 0°C to 70°C Gold-Plated Contacts EDO CYCLE tHPC MIN 20 ns 25 ns 30 ns description The TM2EP64DPN is a 16M-byte, 168-pin, dual-in-line memory module (DIMM). The DIMM is composed of eight TMS427809A, 2 097 152 byte × 8-bit 2K-refresh EDO DRAMs, each in a 400-mil, 28-pin plastic TSOP (DGC suffix) mounted on a substrate with decoupling capacitors. See the TMS427809A data sheet (literature number SMKS887). The TM2EP64DJN is available with an SOJ package (DZ suffix). The TM2EP72DPN is a 16M-byte, 168-pin DIMM. The DIMM is composed of nine TMS427809A, 2 097 152 byte × 8-bit 2K-refresh EDO DRAMs, mounted on a substrate with decoupling capacitors. See the TMS427809A data sheet (literature number SMKS887). The TM2EP72DJN is available with an SOJ package (DZ suffix). The TM4EP64DPN is a 32M-byte, 168-pin, dual-in-line memory module (DIMM). The DIMM is composed of sixteen TMS427809A, 2 097 152 × 8-bit 2K-refresh EDO DRAMs, mounted on a substrate with decoupling capacitors. The TM4EP64DJN is available with an SOJ package (DZ suffix). The TM4EP72DPN is a 32M-byte, 168-pin DIMM. The DIMM is composed of 18 TMS427809A, 2097152 × 8-bit 2K-refresh EDO DRAMs, mounted on a substrate with decoupling capacitors. See the TMS427809A data sheet (literature number SMKS887). The TM4EP72DJN is available with an SOJ package (DZ suffix). Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1998, Texas Instruments Incorporated ! "#$ ! %#&'" ($) (#"! " !%$""! %$ *$ $! $+! !#$! !(( ,-) (#" %"$!!. ($! $"$!!'- "'#($ $!. '' %$$!) • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 23 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 operation The TMxEPxxDxN DIMMs operate as displayed in Table 1. Table 1. TMxEPxxDxN DIMM Device Table 24 DIMM DEVICE AND QUANTITY ( ) TM2EP64DxN TMS427809A (8) TM2EP72DxN TMS427809A (9) TM4EP64DxN TMS427809A (16) TM4EP72DxN TMS427809A (18) Connected as shown in the functional block diagram. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 DUAL-IN-LINE MEMORY MODULE ( TOP VIEW ) TM2EP64DPN ( SIDE VIEW ) TM4EP72DPN ( SIDE VIEW ) PIN NOMENCLATURE A[0:10] A[0:9] DQ[0:63] CB[0:7] CAS[0:7] RAS[0:3] WE0 and WE2 OE0 and OE2 SA[0:2] 1 10 SDA SCL NC VDD VSS 11 Row Address Inputs Column Address Inputs Data In / Data Out Check-Bit In / Check-Bit Out Column-Address Strobe Row-Address Strobe Write Enable Output Enable Serial Presence Detect (SPD) Device Add Input SPD Address / Data SPD Clock No-Connect Pin 3.3-V Supply Ground 40 41 84 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 25 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 Pin Assignments ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PIN NO. NAME NO. 1 43 2 VSS DQ0 3 DQ1 4 NO. 85 44 VSS OE2 45 RAS2 DQ2 46 5 DQ3 6 7 VDD DQ4 8 DQ5 9 PIN NAME NO. PIN NAME 127 86 VSS DQ32 128 VSS NC 87 DQ33 129 RAS3 CAS2 88 DQ34 130 CAS6 47 CAS3 89 DQ35 131 CAS7 48 WE2 90 132 NC 49 91 133 50 VDD NC VDD DQ36 92 DQ37 134 VDD NC DQ6 51 NC 93 DQ38 135 NC 10 DQ7 52 CB2 94 DQ39 136 CB6 11 DQ8 53 CB3 95 DQ40 137 CB7 12 VSS DQ9 54 97 VSS DQ41 138 55 VSS DQ16 96 13 139 VSS DQ48 14 DQ10 56 DQ17 98 DQ42 140 DQ49 15 DQ11 57 DQ18 99 DQ43 141 DQ50 16 DQ12 58 DQ19 100 DQ44 142 DQ51 17 DQ13 59 101 DQ45 143 18 60 102 144 61 NC 103 VDD DQ46 VDD DQ52 19 VDD DQ14 VDD DQ20 145 NC 20 DQ15 62 NC 104 DQ47 146 NC 21 CB0 63 NC 105 CB4 147 NC 22 CB1 64 106 CB5 148 23 VSS NC 65 VSS DQ21 107 149 66 DQ22 108 VSS NC VSS DQ53 150 DQ54 25 NC 67 DQ23 109 NC 151 DQ55 26 68 111 VDD NC 152 69 VSS DQ24 110 27 VDD WE0 153 VSS DQ56 28 CAS0 70 DQ25 112 CAS4 154 DQ57 29 CAS1 71 DQ26 113 CAS5 155 DQ58 30 RAS0 72 DQ27 114 RAS1 156 DQ59 31 OE0 73 115 NC 157 32 74 116 VDD DQ60 75 DQ29 117 VSS A1 158 33 VSS A0 VDD DQ28 159 DQ61 34 A2 76 DQ30 118 A3 160 DQ62 35 A4 77 DQ31 119 A5 161 DQ63 36 A6 78 A7 162 A8 79 VSS NC 120 37 121 A9 163 VSS NC 38 A10 80 NC 122 NC 164 NC 39 NC 81 NC 123 NC 165 SA0 40 82 SDA 124 SA1 83 SCL 125 VDD NC 166 41 VDD VDD 167 SA2 42 NC 84 VDD 126 NC 168 VDD 24 26 PIN NAME • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 dual-in-line memory module and components The dual-in-line memory module and components include: D PC substrate: 1,27 " 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage D Bypass capacitors: Multilayer ceramic D Contact area: Nickel plate and gold plate over copper • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 27 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 functional block diagram The following table shows the four DIMM modules and locations (Ux/UBx) that are used. COMPONENT TABLE MODULE LOCATIONS USED TM2EP64DxN U[0:7] TM2EP72DxN U[0:8] TM4EP64DxN U[0:7], UB[0:7] TM4EP72DxN U[0:8], UB[0:8] RAS0 RAS1 RAS2 RAS3 WE0 OE0 WE0 OE0 WE2 OE2 WE2 OE2 CAS0 DQ[0:7] CAS1 DQ[8:15] CAS1 CB[0:7] CAS2 DQ[16:23] CAS3 DQ[24:31] CAS OE W RAS CAS OE W RAS DQ[0:7] U0 DQ[0:7] UB0 CAS OE W RAS CAS OE W RAS DQ[0:7] U1 DQ[0:7] UB1 CAS OE W RAS CAS OE W RAS DQ[0:7] U8 DQ[0:7] UB8 CAS OE W RAS CAS OE W RAS DQ[0:7] U2 DQ[0:7] UB2 CAS OE W RAS CAS OE W RAS DQ[0:7] U3 DQ[0:7] UB3 CAS4 DQ[32:39] CAS5 DQ[40:47] CAS6 DQ[48:55] CAS7 DQ[56:63] CAS OE W RAS CAS OE W RAS DQ[0:7] U4 DQ[0:7] UB4 CAS CAS OE W RAS OE W RAS DQ[0:7] U5 DQ[0:7] UB5 CAS CAS OE W RAS OE W RAS DQ[0:7] U6 DQ[0:7] UB6 CAS CAS OE W RAS OE W RAS DQ[0:7] UB7 DQ[0:7] U7 A[0: 10] A[0 : 10] : U[0:8], UB[0:8] SPD EEPROM SCL SDA Legend: SPD = Serial Presence Detect A0 A1 A2 SA0 SA1 SA2 VDD VSS 28 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • U[0:8], UB[0:8] Two 0.1 µF (minimum) per DRAM U[0:8], UB[0:8] SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 absolute maximum ratings over ambient temperature range (unless otherwise noted)† Supply voltage range, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.5 V to 4.6 V Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Power dissipation: TM2EP64DxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W TM2EP72DxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 W TM4EP64DxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W TM4EP72DxN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 W Ambient temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 125°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to VSS. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ recommended operating conditions MIN NOM MAX UNIT 3 3.3 3.6 V VDD VSS Supply voltage VIH VIH −SPD High-level input voltage 2 High-level input voltage for the SPD device 2 VIL TA Low-level input voltage Supply voltage 0 V VDD + 0.3 5.5 V V −0.3 0.8 V 0 70 °C Ambient temperature capacitance over recommended ranges of supply voltage and ambient temperature, f = 1 MHz (see Note 2) ’2EP64DxN PARAMETER MIN ’2EP72DxN MAX MIN MAX ’4EP64DxN MIN MAX ’4EP72DxN MIN MAX UNIT Ci(A) Input capacitance, A0 −A10 42 47 82 92 pF Ci(OE) Input capacitance, OEx 30 37 58 72 pF Ci(CAS) Input capacitance, CASx 9 16 16 30 pF Ci(RAS) Input capacitance, RASx 30 37 30 37 pF Ci(W) Input capacitance, WEx 30 37 38 37 pF Co Output capacitance 9 9 16 16 pF Ci/o(SDA) Input/output capacitance, SDA input 9 9 9 9 pF Ci(SPD) Input capacitance, SA0,SA1,SA2,SCL inputs 7 7 7 7 pF NOTE 2: VDD = NOM supply voltage ± 10%, and the bias on pins under test is 0 V. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 29 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) TM2EP64DxN PARAMETER ’2EP64DxN-50 TEST CONDITIONS† MIN ’2EP64DxN-60 MAX MIN ’2EP64DxN-70 MAX MIN MAX UNIT High-level output voltage IOH = − 2 mA LVTTL VOH IOH = − 100 µA LVCMOS Low-level output voltage IOL = 2 mA LVTTL 0.4 0.4 0.4 VOL IOL = 100 µA LVCMOS 0.2 0.2 0.2 II Input current (leakage) VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD ± 10 ± 10 ± 10 µA IO Output current (leakage) VDD = 3.6 V, CASx high VO = 0 V to VDD, ± 10 ± 10 ± 10 µA ICC1‡§ Read- or write-cycle current VDD = 3.6 V, Minimum cycle 960 800 720 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 16 16 16 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 8 8 8 mA ICC2 Standby current 2.4 2.4 2.4 V VDD −0.2 VDD −0.2 VDD −0.2 V ICC3‡§ Average refresh current (RAS-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RAS-only refresh), RASx low after CASx low (CBR) 960 800 720 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 880 720 640 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC 30 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued) TM2EP72DxN PARAMETER ’2EP72DxN-50 TEST CONDITIONS† MIN ’2EP72DxN-60 MAX MIN ’2EP72DxN-70 MAX MIN MAX UNIT High-level output voltage IOH = − 2 mA LVTTL VOH IOH = − 100 µA LVCMOS Low-level output voltage IOL = 2 mA LVTTL 0.4 0.4 0.4 VOL IOL = 100 µA LVCMOS 0.2 0.2 0.2 II Input current (leakage) VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD ± 10 ± 10 ± 10 µA IO Output current (leakage) VDD = 3.6 V, CASx high VO = 0 V to VDD, ± 10 ± 10 ± 10 µA ICC1‡§ Read- or write-cycle current VDD = 3.6 V, Minimum cycle 976 816 736 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 18 18 18 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 9 9 9 mA ICC2 Standby current 2.4 2.4 2.4 V VDD −0.2 VDD −0.2 VDD −0.2 V ICC3‡§ Average refresh current (RASx-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RAS-only refresh), RASx low after CASx low (CBR) 976 816 736 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 990 810 720 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 31 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued) TM4EP64DxN PARAMETER ’4EP64DxN-50 TEST CONDITIONS† MIN ’4EP64DxN-60 MAX MIN MAX ’4EP64DxN-70 MIN MAX UNIT High-level output voltage IOH = − 2 mA LVTTL VOH IOH = − 100 µA LVCMOS Low-level output voltage IOL = 2 mA LVTTL 0.4 0.4 0.4 VOL IOL = 100 µA LVCMOS 0.2 0.2 0.2 II Input current (leakage) VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD ± 20 ± 20 ± 20 µA IO Output current (leakage) VDD = 3.6 V, CASx high VO = 0 V to VDD, ± 20 ± 20 ± 20 µA ICC1‡§ Read- or write-cycle current VDD = 3.6 V, Minimum cycle 976 816 736 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 32 32 32 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 16 16 16 mA ICC2 Standby current 2.4 2.4 2.4 V VDD −0.2 VDD−0.2 VDD −0.2 V ICC3‡§ Average refresh current (RASx-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RAS-only refresh), RASx low after CASx low (CBR) 976 816 736 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 896 736 656 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC 32 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued) TM4EP72DxN PARAMETER ’4EP72DxN-50 TEST CONDITIONS† MIN ’4EP72DxN-60 MAX MIN MAX ’4EP72DxN-70 MIN MAX UNIT High-level output voltage IOH = − 2 mA LVTTL VOH IOH = − 100 µA LVCMOS Low-level output voltage IOL = 2 mA LVTTL 0.4 0.4 0.4 VOL IOL = 100 µA LVCMOS 0.2 0.2 0.2 II Input current (leakage) VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD ± 20 ± 20 ± 20 µA IO Output current (leakage) VDD = 3.6 V, CASx high VO = 0 V to VDD, ± 20 ± 20 ± 20 µA ICC1‡§ Read- or write-cycle current VDD = 3.6 V, Minimum cycle 1098 918 828 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 36 36 36 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 18 18 18 mA ICC2 Standby current 2.4 2.4 2.4 V VDD −0.2 VDD −0.2 VDD −0.2 V ICC3‡§ Average refresh current (RASx-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RAS-only refresh), RASx low after CASx low (CBR) 1098 918 828 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 1008 828 738 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 33 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 switching characteristics over recommended ranges of supply voltage and ambient temperature (see Note 3) ’xEP64DxN-50 ’xEP72DxN-50 PARAMETER MIN MAX ’xEP64DxN-60 ’xEP72DxN-60 MIN MAX ’xEP64DxN-70 ’xEP72DxN-70 MIN UNIT MAX tAA tCAC Access time from column address (see Note 4) 25 30 35 ns Access time from CASx (see Note 4) 13 15 18 ns tCPA tRAC Access time from CASx precharge (see Note 4) 28 35 40 ns Access time from RASx (see Note 4) 50 60 70 ns tOEA tCLZ Access time from OEx (see Note 4) 18 ns Delay time, CASx to output in low impedance 0 tREZ tCEZ Output buffer turn off delay from RASx (see Note 5) 3 13 3 15 3 18 ns Output buffer turn off delay from CASx (see Note 5) 3 13 3 15 3 18 ns tOEZ tWEZ Output buffer turn off delay from OEx (see Note 5) 3 13 3 15 3 18 ns Output buffer turn off delay from WEx (see Note 5) 3 13 3 15 3 18 ns 13 15 0 0 ns NOTES: 3. With ac parameters, it is assumed that tT = 2 ns. 4. Access times are measured with output reference levels of VOH = 2 V and VOL = 0.8 V. 5. The maximum values of tREZ, tCEZ, tOEZ, and tWEZ are specified when the outputs are no longer driven. Data-in should not be driven until one of the applicable maximum values is satisfied. EDO timing requirements (see Note 3) ’xEP64DxN-50 ’xEP72DxN-50 MIN MAX ’xEP64DxN-60 ’xEP72DxN-60 MIN MAX ’xEP64DxN-70 ’xEP72DxN-70 MIN UNIT MAX tHPC tPRWC Cycle time, EDO page mode, read-write 20 25 30 ns Cycle time, EDO read-write 57 68 78 ns tCSH tCHO Delay time, RASx active to CASx precharge 40 48 58 ns Hold time, OEx from CASx 7 10 10 ns tDOH tOEP Hold time, output from CASx 5 5 5 ns Precharge time, OEx 5 5 5 ns tCAS tWPE Pulse duration, CASx active 8 Pulse duration, WEx active (output disable only) 7 7 7 ns tCP tOCH Pulse duration, CASx precharge 8 10 10 ns Setup time, OEx before CASx 8 10 10 ns 5 5 5 ns tOEP Precharge time, OEx NOTE 3: With ac parameters, it is assumed that tT = 2 ns. 34 • 10 000 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 10 10 000 12 10 000 ns SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 ac timing requirements ’xEP64DxN-50 ’xEP72DxN-50 ’xEP64DxN-60 ’xEP72DxN-60 ’xEP64DxN-70 ’xEP72DxN-70 MIN MIN MIN MAX MAX tRC tRWC Cycle time, random read or write tRASP tRAS Pulse duration, RASx active, fast page mode (see Note 6) 50 100 000 60 100 000 70 100 000 ns Pulse duration, RASx active, non-page mode (see Note 6) 50 10 000 60 10 000 70 10 000 ns tRP tWP Pulse duration, RASx precharge 30 tRASS tRPS Pulse duration, RASx active, self refresh (see Note 7) tASC tASR Cycle time, read-write 104 124 135 160 40 ns ns 50 ns ns 8 10 10 100 100 100 ms 90 110 130 ns Setup time, column address 0 0 0 ns Setup time, row address 0 0 0 ns tDS tRCS Setup time, data in (see Note 8) 0 0 0 ns Setup time, read command 0 0 0 ns tCWL tRWL Setup time, write command before CASx precharge 8 10 12 ns Setup time, write command before RASx precharge 8 10 12 ns Setup time, write command before CASx active (early-write only) 0 0 0 ns tWCS Pulse duration, write command 84 111 UNIT MAX Pulse duration, RASx precharge after self refresh tWRP tCSR Setup time, WEx high before RASx low (CBR refresh only) 10 10 10 ns Setup time, CASx referenced to RASx ( CBR refresh only ) 5 5 5 ns tCAH tDH Hold time, column address 8 10 12 ns Hold time, data in (see Note 8) 8 10 12 ns tRAH tRCH Hold time, row address 8 10 10 ns Hold time, read command referenced to CASx (see Note 9) 0 0 0 ns tRRH Hold time, read command referenced to RASx (see Note 9) 0 0 0 ns tWCH Hold time, write command during CASx active ( early-write only ) 8 10 12 ns tROH tWRH Hold time, RASx referenced to OEx 8 10 10 ns Hold time, WEx high after RASx low (CBR refresh only) 10 10 10 ns tCHR tOEH Hold time, CASx referenced to RASx ( CBR refresh only ) 10 10 10 ns Hold time, OEx command 13 15 18 ns tRHCP tCHS Hold time, RASx active from CASx precharge 28 35 40 ns − 50 − 50 − 50 ns 42 49 57 ns tAWD Hold time, CASx referenced to RASx (self refresh only) Delay time, column address to write command ( read-write only ) tCRP Delay time, CASx precharge to RASx 5 5 5 ns NOTES: 6. In a read-write cycle, tRWD and tRWL must be observed. 7. During the period of 10 µs ≤ tRASS ≤100 µs, the device is in a transition state from normal-operation mode to self-refresh mode. 8. Referenced to the later of CASx or WEx in write operations 9. Either tRRH or tRCH must be satisfied for a read cycle. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 35 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 ac timing requirements (continued) ’xEP64DxN-50 ’xEP72DxN-50 ’xEP64DxN-60 ’xEP72DxN-60 ’xEP64DxN-70 ’xEP72DxN-70 MIN MIN MIN MAX MAX UNIT MAX tCWD tOED Delay time, CASx to write command ( read-write only ) 30 34 40 Delay time, OEx to data in 13 15 18 tRAD tRAL Delay time, RASx to column address ( see Note 10) 10 Delay time, column address to RASx precharge 25 30 35 ns tCAL Delay time, column address to CASx precharge 18 20 25 ns tRCD tRPC Delay time, RASx to CASx ( see Note 10) 12 tRSH tRWD Delay time, CASx active to RASx precharge tCPW tREF tT Delay time, RASx precharge to CASx 25 37 14 30 45 12 14 ns 35 52 ns ns 5 5 5 ns 8 10 12 ns Delay time, RASx to write command (read-write only) 67 79 92 ns Delay time, CASx precharge to write command (read-write only) 45 54 62 ns Refresh time interval 32 Transition time 2 30 NOTE 10: The maximum value is specified only to ensure access time. 36 12 ns • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 32 2 30 2 32 ms 30 ns SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect The serial presence detect (SPD) is contained in a 2K-bit serial EEPROM located on the module. The SPD nonvolatile EEPROM contains various data such as module configuration, DRAM organization, and timing parameters (see tables below). Only the first 128 bytes are programmed by Texas Instruments, while the remaining 128 bytes are available for customer use. Programming is done through an IIC bus using the clock (SCL) and data (SDA) signals. All Texas Instruments module comply with the current JEDEC SPD Standard. Please see the Texas Instruments Serial Presence Detect Technical Reference (literature number SMMU001) for further details. Tables in this section list the SPD contents as follows: Table 2 −TM2EP64DxN Table 4 −TM4EP64DxN Table 3 −TM2EP72DxN Table 5 −TM4EP72DxN Table 2. Serial Presence Detect Data for the TM2EP64DxN BYTE NO. ’2EP64DxN-50 FUNCTION DESCRIBED ’2EP64DxN-60 ’2EP64DxN-70 ITEM DATA ITEM DATA ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 128 bytes 80h 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 256 bytes 08h 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM) EDO 02h EDO 02h EDO 02h 3 Number of row addresses on this assembly 11 0Bh 11 0Bh 11 0Bh 4 Number of column addresses on this assembly 10 0Ah 10 0Ah 10 0Ah 5 Number of module banks on this assembly 1 bank 01h 1 bank 01h 1 bank 01h 6 Data width of this assembly 64 bits 40h 64 bits 40h 64 bits 40h 7 Data width continuation 8 Voltage interface standard of this assembly 00h 00h 00h LVTTL 01h LVTTL 01h LVTTL 01h tRAC = 50 ns tCAC = 13 ns 32h tRAC = 60 ns tCAC = 15 ns 3Ch 0Fh tRAC = 70 ns tCAC = 18 ns 46h 0Dh Non-Parity 00h Non-Parity 00h Non-Parity 00h 15.6 µs 00h 15.6 µs 00h 15.6 µs 00h x8 08h x8 08h x8 08h N/A 00h N/A 00h N/A 00h 9 RASx access time of module 10 CASx access time of module 11 DIMM configuration type (non-parity, parity, ECC) 12 Refresh rate / type 13 DRAM width, primary DRAM 14 Error-checking SDRAM data width 62 SPD revision Rev. 1 01h Rev. 1 01h Rev. 1 01h 63 Checksum for bytes 0 −62 41 29h 53 35h 66 42h Manufacturer’s JEDEC ID code per JEP-106E 97h 9700...00h 97h 9700...00h 97h 9700...00h 64−71 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 12h 37 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 2. Serial Presence Detect Data for the TM2EP64DxN (Continued) BYTE NO. ’2EP64DxN-50 FUNCTION DESCRIBED ITEM DATA ’2EP64DxN-60 ITEM DATA ’2EP64DxN-70 ITEM Manufacturing location† TBD TBD TBD Manufacturer’s part number† Die revision code† TBD TBD TBD TBD TBD TBD TBD TBD TBD 93−94 PCB revision code† Manufacturing date† TBD TBD TBD 95−98 Assembly serial number† TBD TBD TBD 99−125 TBD TBD TBD 126−127 Manufacturer specific data† Vendor specific data† TBD TBD TBD 128−166 System integrator’s specific data‡ TBD TBD TBD 72 73−90 91 92 167−255 Open † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). 38 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • DATA SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 3. Serial Presence Detect Data for the TM2EP72DxN BYTE NO. ’2EP72DxN-50 FUNCTION DESCRIBED ’2EP72DxN-60 ’2EP72DxN-70 ITEM DATA ITEM DATA ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 128 bytes 80h 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 256 bytes 08h 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM) EDO 02h EDO 02h EDO 02h 3 Number of row addresses on this assembly 11 0Bh 11 0Bh 11 0Bh 4 Number of column addresses on this assembly 10 0Ah 10 0Ah 10 0Ah 5 Number of module banks on this assembly 1 bank 01h 1 bank 01h 1 bank 01h 6 Data width of this assembly 72 bits 48h 72 bits 48h 72 bits 48h 7 Data width continuation 8 Voltage interface standard of this assembly 9 RASx access time of module 10 CASx access time of module 11 DIMM configuration type (non-parity, parity, ECC) 12 Refresh rate / type 13 DRAM width, primary DRAM 14 Error-checking SDRAM data width 62 SPD revision 63 00h 00h 00h LVTTL 01h LVTTL 01h LVTTL 01h tRAC = 50 ns tCAC = 13 ns 32h 3Ch 0Fh tRAC = 70 ns tCAC = 18 ns 46h 0Dh tRAC = 60 ns tCAC = 15 ns ECC 02h ECC 02h ECC 02h 15.6 µs 00h 15.6 µs 00h 15.6 µs 00h x8 08h x8 08h x8 08h 12h x8 08h x8 08h x8 08h Rev. 1 01h Rev. 1 01h Rev. 1 01h Checksum for bytes 0 −62 59 3Bh 71 47h 84 54h Manufacturer’s JEDEC ID code per JEP-106E 97h 9700...00h 97h 9700...00h 97h 9700...00h Manufacturing location† TBD TBD TBD Manufacturer’s part number† Die revision code† TBD TBD TBD TBD TBD TBD TBD TBD TBD 93−94 PCB revision code† Manufacturing date† TBD TBD TBD 95−98 Assembly serial number† TBD TBD TBD 99−125 TBD TBD TBD 126−127 Manufacturer specific data† Vendor specific data† TBD TBD TBD 128−166 System integrator’s specific data‡ TBD TBD TBD 64−71 72 73−90 91 92 167−255 Open † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 39 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 4. Serial Presence Detect Data for the TM4EP64DxN BYTE NO. ’4EP64DxN-50 FUNCTION DESCRIBED ’4EP64DxN-60 ’4EP64DxN-70 ITEM DATA ITEM DATA ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 128 bytes 80h 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 256 bytes 08h 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM) EDO 02h EDO 02h EDO 02h 3 Number of row addresses on this assembly 11 0Bh 11 0Bh 11 0Bh 4 Number of column addresses on this assembly 10 0Ah 10 0Ah 10 0Ah 5 Number of module banks on this assembly 2 banks 02h 2 banks 02h 2 banks 02h 6 Data width of this assembly 64 bits 40h 64 bits 40h 64 bits 40h 7 Data width continuation 8 Voltage interface standard of this assembly 9 RASx access time of module 10 CASx access time of module 11 DIMM configuration type (non-parity, parity, ECC) 12 Refresh rate / type 13 DRAM width, primary DRAM 14 Error-checking SDRAM data width 62 SPD revision 63 00h 00h 00h LVTTL 01h LVTTL 01h LVTTL 01h tRAC = 50 ns tCAC = 13 ns 32h 3Ch 0Fh tRAC = 70 ns tCAC = 18 ns 46h 0Dh tRAC = 60 ns tCAC = 15 ns Non-Parity 00h Non-Parity 00h Non-Parity 00h 15.6 µs 00h 15.6 µs 00h 15.6 µs 00h x8 08h x8 08h x8 08h 12h N/A 00h N/A 00h N/A 00h Rev. 1 01h Rev. 1 01h Rev. 1 01h Checksum for bytes 0 −62 42 2Ah 54 36h 67 43h Manufacturer’s JEDEC ID code per JEP-106E 97h 9700...00h 97h 9700...00h 97h 9700...00h Manufacturing location† TBD TBD TBD Manufacturer’s part number† Die revision code† TBD TBD TBD TBD TBD TBD TBD TBD TBD 93−94 PCB revision code† Manufacturing date† TBD TBD TBD 95−98 Assembly serial number† TBD TBD TBD 99−125 TBD TBD TBD 126−127 Manufacturer specific data† Vendor specific data† TBD TBD TBD 128−166 System integrator’s specific data‡ TBD TBD TBD 64−71 72 73−90 91 92 167−255 Open † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). 40 • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 5. Serial Presence Detect for the TM4EP72DxN BYTE NO. ’4EP72DxN-50 FUNCTION DESCRIBED ’4EP72DxN-60 ’4EP72DxN-70 ITEM DATA ITEM DATA ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 128 bytes 80h 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 256 bytes 08h 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM) EDO 02h EDO 02h EDO 02h 3 Number of row addresses on this assembly 11 0Bh 11 0Bh 11 0Bh 4 Number of column addresses on this assembly 10 0Ah 10 0Ah 10 0Ah 5 Number of module banks on this assembly 2 banks 02h 2 banks 02h 2 banks 02h 6 Data width of this assembly 72 bits 48h 72 bits 48h 72 bits 48h 7 Data width continuation 8 Voltage interface standard of this assembly 9 RASx access time of module 10 CASx access time of module 11 DIMM configuration type (non-parity, parity, ECC) 12 Refresh rate / type 13 DRAM width, primary DRAM 14 Error-checking SDRAM data width 62 SPD revision 63 00h 00h 00h LVTTL 01h LVTTL 01h LVTTL 01h tRAC = 50 ns tCAC = 13 ns 32h 3Ch 0Fh tRAC = 70 ns tCAC = 18 ns 46h 0Dh tRAC = 60 ns tCAC = 15 ns ECC 02h ECC 02h ECC 02h 15.6 µs 00h 15.6 µs 00h 15.6 µs 00h x8 08h x8 08h x8 08h 12h x8 08h x8 08h x8 08h Rev. 1 01h Rev. 1 01h Rev. 1 01h Checksum for bytes 0 −62 60 3Ch 72 48h 85 55h Manufacturer’s JEDEC ID code per JEP-106E 97h 9700...00h 97h 9700...00h 97h 9700...00h Manufacturing location† TBD TBD TBD Manufacturer’s part number† Die revision code† TBD TBD TBD TBD TBD TBD TBD TBD TBD 93−94 PCB revision code† Manufacturing date† TBD TBD TBD 95−98 Assembly serial number† TBD TBD TBD 99−125 TBD TBD TBD 126−127 Manufacturer specific data† Vendor specific data† TBD TBD TBD 128−166 System integrator’s specific data‡ TBD TBD TBD 64−71 72 73−90 91 92 167−255 Open † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 41 SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 device symbolization (TM4EP64DPN illustrated) TM4EP64DPN -SS Unbuffered Key Position 3.3-V Voltage Key Position YY MM T -SS = = = = Year Code Month Code Assembly Site Code Speed Code NOTE A: Location of symbolization may vary. 42 YYMMT • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SMMS684A − AUGUST 1997 − REVISED FEBRUARY 1998 MECHANICAL DATA BR (R-PDIM-N168) DUAL IN-LINE MEMORY MODULE 5.255 (133,48) 5.245 (133,22) Notch 0.157 (4,00) x 0.122 (3,10) Deep 2 Places 0.039 (1,00) TYP 0.125 (3,18) (Note D) 0.054 (1,37) 0.046 (1,17) Notch 0.079 (2,00) x 0.122 (3,10) Deep 2 Places 0.050 (1,27) 0.014 (0,35) MAX 0.118 (3,00) TYP 0.125 (3,18) 0.700 (17,78) TYP 0.118 (3,00) DIA 2 Places 1.005 (25,53) 0.995 (25,27) 0.106 (2,70) MAX 0.157 (4,00) MAX (For Double Sided DIMM Only) 4088180/A 07/97 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Falls within JEDEC MO-161 Dimension includes de-panelization variations; applies between notch and tab edge. Outline may vary above notches to allow router/panelization irregularities. • POST OFFICE BOX 655303 DALLAS, TEXAS 75265 POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 43 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated