BUL642D2 High Speed, High Gain Bipolar NPN Transistor with Integrated Collector−Emitter and Built−in Efficient Antisaturation Network http://onsemi.com 3 AMPERES 825 VOLTS 75 WATTS POWER TRANSISTOR The BUL642D2 is a state−of−the−art High Speed High Gain Bipolar Transistor (H2BIP). Tight dynamic characteristics and lot to lot minimum spread (150 ns on storage time) make it ideally suitable for Light Ballast Application. A new development process brings avalanche energy capability, making the device extremely rugged. Features • Low Base Drive Requirement • High Peak DC Current Gain (55 Typical) @ IC = 300 mA/5 V • Extremely Low Storage Time Min/Max Guarantees Due to the • • • • • H2BIP Structure which Minimizes the Spread Integrated Collector−Emitter Free Wheeling Diode Fully Characterized Dynamic VCEsat “Six Sigma” Process Providing Tight and Reproducible Parameter Spreads Avalanche Energy 20 mJ Typical Capability Pb−Free Package is Available* MARKING DIAGRAM 4 TO−220AB CASE 221A STYLE 1 1 2 BUL642D2G AYWW 3 BUL642D2 A Y WW G = Device Code = Assembly Location = Year = Work Week = Pb−Free Package ORDERING INFORMATION Device Package Shipping BUL642D2 TO−220 50 Units/Rail TO−220 (Pb−Free) 50 Units/Rail BUL642D2G *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2005 August, 2005 − Rev. 1 1 Publication Order Number: BUL642D2/D BUL642D2 MAXIMUM RATINGS Symbol Value Unit Collector−Emitter Sustaining Voltage Rating VCEO 440 Vdc Collector−Base Breakdown Voltage VCES 825 Vdc Emitter−Base Voltage VEBO 11 Vdc Collector Current − Continuous − Peak (Note 1) IC ICM 3.0 8.0 Adc Base Current − Continuous − Peak (Note 1) IB IBM 2.0 4.0 Adc PD 75 0.6 W W/°C TJ, Tstg −65 to +150 °C *Total Device Dissipation @ TC = 25°C *Derate above 25°C Operating and Storage Temperature Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. TYPICAL GAIN Rating Symbol Value Unit hFE hFE 45 50 − − Symbol Value Unit Thermal Resistance, Junction−to−Case RqJC 1.6 °C/W Thermal Resistance, Junction−to−Ambient RqJA 62.5 °C/W TL 260 °C Typical Gain @ IC = 1 A, VCE = 2 V Typical A, VCE = 1 V THERMAL CHARACTERISTICS Characteristic Maximum Lead Temperature for Soldering Purposes: 1/8 in. from Case for 5 seconds 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10% http://onsemi.com 2 BUL642D2 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max 440 − − − Unit OFF CHARACTERISTICS Collector−Emitter Sustaining Voltage VCEO(sus) (IC = 200 mA, L = 25 mH) Collector−Base Breakdown Voltage Emitter−Base Breakdown Voltage Vdc (ICBO = 1 mA) VCBO 825 − (IEBO = 1 mA) Vdc VEBO 11 − − Vdc Collector Cutoff Current (VCE = Rated VCEO, IB = 0) @ TC = 25°C @ TC = 125°C ICEO − − − − 200 1000 mAdc Collector Cutoff Current (VCE = Rated VCES, VEB = 0) @ TC = 25°C @ TC = 125°C ICES − − − − 100 1000 mAdc IEBO − − 100 mAdc − − − − 1.1 1.5 − − − − 0.5 1.5 hFE 16 18 − − − − VCE(dsat) − − 2.0 5.0 − − Emitter−Cutoff Current (VEB = 10 Vdc, IC = 0) ON CHARACTERISTICS Base−Emitter Saturation Voltage VBE(sat) (IC = 0.5 Adc, IB = 100 mAdc (IC = 1 Adc, IB = 0.2 Adc) Collector−Emitter Saturation Voltage VCE(sat) (IC = 0.5 Adc, IB = 50 mAdc) (IC = 2 Adc, IB = 0.2 Adc) DC Current Gain Vdc (IC = 0.5 Adc, VCE = 1 Vdc) (IC = 0.5 Adc, VCE = 3 Vdc) Vdc − DYNAMIC SATURATION VOLTAGE @ 1 ms @ TC = 25°C @ TC = 125°C @ 3 ms @ TC = 25°C − − 0.2 1.3 − − @ 1 ms @ TC = 25°C @ TC = 125°C − − 4.5 10 − − @ 3 ms @ TC = 25°C − − 1.0 3.0 − − fT − 13 − MHz Output Capacitance @ Vcb = 10 V, IE = 0, f = 1 MHz Cob − 70 150 pF Input Capacitance @ VEB = 8 V, f = 1 MHz Cib − 500 1000 pF VEC − − 0.8 1.0 1.5 2.0 V Dynamic Saturation Voltage: IC = 0.5 Adc IB1 = 50 mAdc VCC = 125 Vdc IC = 1 Adc IB1 = 100 mAdc VCC = 300 Vdc V DYNAMIC CHARACTERISTICS Current Gain Bandwidth IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz DIODE CHARACTERISTICS Forward Diode Voltage (IEC = 0.5 Adc) (IEC = 1.0 Adc) SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 70 ms) Delay Time IC = 0.5 Adc td − 60 400 ns Rise Time IB1 = 45 mA tr − 160 1100 ns Storage Time IB2 = 500 mA ts − 0.5 1400 ms Fall Time VCC = 125 V tf − 0.4 600 ns http://onsemi.com 3 BUL642D2 100 hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 100 25°C 125°C −20°C 10 VCE = 5 V 1.0 0.01 0.1 1 125°C 25°C −20°C 10 VCE = 5 V 1.0 0.01 10 0.1 1 10 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 1. DC Current Gain Figure 2. DC Current Gain 10 10 IC = 4 A VCE(sat), VOLTAGE (V) VCE(sat), VOLTAGE (V) IC = 2A IC = 5 A IC = 1 A 1.0 IC = 3 A 125°C 1.0 −20°C 0.1 25°C IC = 500 mA IC/IB = 5.0 0.01 0.01 0.1 0.01 0.1 1.0 10 IB, BASE CURRENT (mA) 0.1 1 10 IC, COLLECTOR CURRENT (AMP) Figure 3. Collector Saturation Region Figure 4. Collector−Emitter Saturation Voltage 10 VCE, VOLTAGE (V) VCE, VOLTAGE (V) 10 25°C 1.0 125°C −20°C 1.0 125°C IC/IB = 10 0.1 0.1 0.01 0.1 1.0 10 0.01 IC, COLLECTOR CURRENT (AMP) 25°C −20°C 0.1 1.0 IC/IB = 20 10 IC, COLLECTOR CURRENT (AMP) Figure 5. Collector−Emitter Saturation Voltage Figure 6. Collector−Emitter Saturation Voltage http://onsemi.com 4 BUL642D2 10 Vbe, VOLTAGE (V) Vbe, VOLTAGE (V) 10 −20°C 1.0 −20°C 1.0 25°C 125°C 0.1 125°C 25°C IC/IB = 5.0 0.1 0.01 0.1 1.0 IC/IB = 10 0.01 0.01 10 1.0 IC, COLLECTOR CURRENT (AMP) Figure 7. Base−Emitter Saturation Voltage Figure 8. Base−Emitter Saturation Voltage FORWARD DIODES VOLTAGE (V) 10 −20°C 1.0 25°C 125°C 0.1 IC/IB = 20 0.01 0.01 1.0 25°C 125°C 0.1 0.1 1.0 10 0.01 0.1 1.0 10 IC, COLLECTOR CURRENT (AMP) REVERSE EMITTER−COLLECTOR (AMP) Figure 9. Base−Emitter Saturation Voltage Figure 10. Forward Diode Voltage 10000 1000 Cib Ib2 = IC/2 @ 125°C 1000 T, TIME (mS) C, CAPACITANCE (pF) 10 IC, COLLECTOR CURRENT (AMP) 10 Vbe, VOLTAGE (V) 0.1 100 Cob Ib2 = IC @ 125°C Ib2 = IC @ 25°C 100 Ib2 = IC/2 @ 25°C 10 1.0 VCC = 125 V, Pw = 100 mS, G = 10 10 10 0.1 100 Vr, REVERSE VOLTAGE (V) 0.3 0.5 0.7 0.9 1.1 1.3 Figure 12. Resistive Switch Time, Storage Time TON Figure 11. Capacitance http://onsemi.com 5 1.5 BUL642D2 3.0 750 VCC = 125 V, Pw = 100 mS, G = 10 650 Ib2 = IC/2 @ 125°C T, TIME (mS) T, TIME (mS) VCC = 125 V, Pw = 100 mS, G = 10 550 2.0 Ib2 = IC @ 125°C 1.0 Ib2 = IC/2 @ 125°C Ib2 = IC/2 @ 25°C 450 Ib2 = IC @ 25°C 350 I = I /2 @ 25°C 250 b2 C 150 Ib2 = IC @ 25°C 0 0.1 0.3 0.5 50 0.7 0.9 1.1 1.3 Ib2 = IC @ 125°C 0.1 1.5 0.3 IC, COLLECTOR CURRENT (AMP) 0.7 0.9 1.1 1.3 1.5 IC, COLLECTOR CURRENT (AMP) Figure 13. Resistive Switch Time, Storage Time Figure 14. Resistive Switch Time, Fall Time 100 1.0 5 ms 10 1 ms 10 ms POWER DERATING FACTOR IC, COLLECTOR CURRENT (AMPS) 0.5 1 ms DC 1.0 0.1 SECOND BREAKDOWN DERATING 0.8 0.6 0.4 0.2 THERMAL DERATING 0 0.01 10 100 1000 20 40 60 80 100 120 VCE, COLLECTOR−EMITTER VOLTAGE (V) TC, CASE TEMPERATURE (°C) Figure 15. Figure 16. Power Derating There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC−VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25°C; Tj(pk) is variable depending on power level. Second breakdown pulse limits do not derate like 140 160 thermal limitations. Allowable current at the voltages shown on Figure 10 may be found at any case temperature by using the appropriate curve on Figure 16. Tj(pk) may be calculated from the data in Figure 18. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. http://onsemi.com 6 BUL642D2 Energy VCE IC NPD CHARACTERIZATION LAB Figure 17. Typical Avalanche Energy Test/Waveforms 1 r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED) b P(pk) 0.1 t1 t2 DUTY CYCLE, D = t1/t2 0.01 0.01 0.1 1 10 t, TIME (ms) Figure 18. Thermal Response http://onsemi.com 7 RqJC(t) = r(t) RqJC RqJC = 5 °C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 100 1000 BUL642D2 PACKAGE DIMENSIONS TO−220 CASE 221A−09 ISSUE AA −T− B SEATING PLANE C F T S 4 DIM A B C D F G H J K L N Q R S T U V Z A Q 1 2 3 U H K Z L R V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. J G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 −−− −−− 0.080 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 −−− −−− 2.04 BASE COLLECTOR EMITTER COLLECTOR ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 8 For additional information, please contact your local Sales Representative. BUL642D2/D