STMICROELECTRONICS VND5E160MJTR-E

VND5E160MJ-E
Double-channel high-side driver with analog current sense
for automotive applications
Features
Max transient supply voltage
VCC
Operating voltage range
VCC 4.5 V to 28 V
Max on-state resistance (per ch.) RON
41 V
Current limitation (typ.)
ILIMH
10 A
Off-state supply current
IS
2 µA(1)
1. Typical value with all loads connected.
■
■
■
General
– Inrush current active management by
power limitation
– Very low standby current
– 3 V CMOS compatible inputs
– Optimized electromagnetic emissions
– Very low electromagnetic susceptibility
– In compliance with the 2002/95/EC
european directive
– Very low current sense leakage
Diagnostic functions
– Proportional load current sense
– High-precision current sense for wide
currents range
– Current sense disable
– Overload and short to ground (power
limitation) indication
– Thermal shutdown indication
Protections
– Undervoltage shutdown
– Overvoltage clamp
– Load current limitation
– Self limiting of fast thermal transients
– Protection against loss of ground and loss
of VCC
– Overtemperature shutdown with auto
restart (thermal shutdown)
– Reverse battery protected (see Figure 29)
October 2009
PowerSSO-12
160 mΩ
– Electrostatic discharge protection
Application
■
All types of resistive, inductive and capacitive
loads
■
Suitable as LED driver
Description
The VND5E160MJ-E is a double-channel
high-side driver manufactured in the ST
proprietary VIPower™ M0-5 technology and
housed in the tiny PowerSSO-12 package. The
VND5E160MJ-E is designed to drive 12 V
automotive grounded loads delivering protection,
diagnostics and easy 3 V and 5 V CMOS
compatible interface with any microcontroller.
The device integrates advanced protective
functions such as load current limitation, inrush
and overload active management by power
limitation, overtemperature shut-off with
auto-restart and overvoltage active clamp. A
dedicated analog current sense pin is associated
with every output channel in order to provide
enhanced diagnostic functions including fast
detection of overload and short-circuit to ground
through power limitation indication and
overtemperature indication.
The current sensing and diagnostic feedback of
the whole device can be disabled by pulling the
CS_DIS pin high to allow sharing of the external
sense resistor with other similar devices.
Doc ID 15616 Rev 1
1/34
www.st.com
1
Contents
VND5E160MJ-E
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1
4
3.1.1
Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 22
3.1.2
Solution 2: diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . . 23
3.2
Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3
MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4
Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5
Maximum demagnetization energy (VCC = 13.5 V) . . . . . . . . . . . . . . . . . 25
Package and PC board thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1
5
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 22
PowerSSO-12 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1
ECOPACK®
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2/34
Doc ID 15616 Rev 1
VND5E160MJ-E
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Switching (VCC = 13 V, Tj = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Protections and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Current sense (8 V < VCC < 18 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical transient requirements (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical transient requirements (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical transient requirements (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
PowerSSO-12 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Doc ID 15616 Rev 1
3/34
List of figures
VND5E160MJ-E
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
4/34
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Current and voltage conventions(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Current sense delay characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Delay response time between rising edge of output current and rising edge of current sense
(CS enabled). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Output voltage drop limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Iout/ Isense vs Iout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Maximum current sense ratio drift vs load current(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Overload or short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Intermittent overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
TJ evolution in overload or short to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
OFF-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
High-level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Low-level input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
High-level input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Hysteresis input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ON-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ON-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ILIMH vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
High-level CS_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
CS_DIS clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Low-level CS_DIS voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Application schematic(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Current sense and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Maximum turn-off current versus inductance (for each channel)(1) . . . . . . . . . . . . . . . . . . 25
PowerSSO-12 PC board(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Rthj-amb vs PCB copper area in open box free air condition (one channel on) . . . . . . . . . 26
PowerSSO-12 thermal impedance junction ambient single pulse (one channel on) . . . . . 27
Thermal fitting model of a double-channel HSD in PowerSSO-12(1) . . . . . . . . . . . . . . . . . 27
PowerSSO-12 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
PowerSSO-12 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
PowerSSO-12 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Doc ID 15616 Rev 1
VND5E160MJ-E
Block diagram and pin description
Figure 1.
Block diagram
VCC
Signal Clamp
Undervoltage
IN1
Control & Diagnostic 1
Power
Clamp
DRIVER
IN2
VON
Limitation
Over
temp.
CH 1
Current
Limitation
CS_
DIS
VSENSEH
CS1
CONTROL & DIAGNOSTIC
Channels 2
1
Block diagram and pin description
CH 2
Current
Sense
OUT2
CS2
OUT1
OVERLOAD PROTECTION
(ACTIVE POWER LIMITATION)
LOGIC
GND
Table 1.
Pin function
Name
VCC
Function
Battery connection.
OUTn
Power output.
GND
Ground connection. Must be reverse battery protected by an external
diode/resistor network.
INn
Voltage controlled input pin with hysteresis, CMOS compatible. Controls
output switch state.
CSn
Analog current sense pin, delivers a current proportional to the load current.
CS_DIS
Active high CMOS compatible pin, to disable the current sense pin.
Doc ID 15616 Rev 1
5/34
Block diagram and pin description
Figure 2.
VND5E160MJ-E
Configuration diagram (top view)
TAB = Vcc
GND
IN2
IN1
CS1
CS2
CS_DIS
1
2
3
4
5
6
12
11
10
9
8
7
N.C.
OUT2
OUT2
OUT1
OUT1
N.C.
PowerSSO-12
Table 2.
6/34
Suggested connections for unused and not connected pins
Connection / pin
Current sense
N.C.
Output
Input
CS_DIS
Floating
Not allowed
X
X
X
X
To ground
Through 1 kΩ
resistor
X
Not allowed
Doc ID 15616 Rev 1
Through 10 kΩ Through 10 kΩ
resistor
resistor
VND5E160MJ-E
2
Electrical specifications
Electrical specifications
Figure 3.
Current and voltage conventions(1)
IS
VCC
VCC
VFn
ICSD
OUT1
CS_DIS
VCSD
CS1
IN1
IIN2
VIN2
VOUT1
ISENSE1
IIN1
VIN1
IOUT1
OUT2
VSENSE1
IOUT2
VOUT2
IN2
ISENSE2
CS2
GND
VSENSE2
IGND
1. VFn = VOUTn - VCC during reverse battery condition.
2.1
Absolute maximum ratings
Stressing the device above the rating listed in the “absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to the conditions in table below for extended
periods may affect device reliability. Refer also to the STMicroelectronics SURE program
and other relevant quality document.
Table 3.
Absolute maximum ratings
Symbol
Parameter
Value
Unit
VCC
DC supply voltage
41
V
-VCC
Reverse DC supply voltage
0.3
V
- IGND
DC reverse ground pin current
200
mA
Internally limited
A
6
A
DC input current
-1 to 10
mA
DC current sense disable input current
-1 to 10
mA
200
mA
VCC-41
+VCC
V
V
IOUT
- IOUT
IIN
ICSD
DC output current
Reverse DC output current
-ICSENSE DC reverse CS pin current
VCSENSE Current sense maximum voltage
Doc ID 15616 Rev 1
7/34
Electrical specifications
Table 3.
Absolute maximum ratings (continued)
Symbol
Parameter
Unit
34
mJ
Maximum switching energy (single pulse)
(L = 12 mH, RL = 0 Ω, Vbat = 13.5 V, Tjstart = 150 °C,
IOUT = IlimL(Typ.))
VESD
Electrostatic discharge (human body model: R = 1.5 KΩ,
C = 100 pF)
- IN
- CS
- CS_DIS
- OUT
- VCC
4000
2000
4000
5000
5000
V
V
V
V
V
VESD
Charge device model (CDM-AEC-Q100-011)
750
V
Junction operating temperature
-40 to 150
°C
Storage temperature
-55 to 150
°C
Tstg
Thermal data
Table 4.
Symbol
Thermal data
Parameter
Rthj-case Thermal resistance junction-case (with one channel on)
Rthj-amb
8/34
Value
EMAX
Tj
2.2
VND5E160MJ-E
Thermal resistance junction-ambient
Doc ID 15616 Rev 1
Max. value
Unit
8
°C/W
See Figure 33
°C/W
VND5E160MJ-E
2.3
Electrical specifications
Electrical characteristics
Values specified in this section are for 8 V < VCC < 28 V, -40 °C < Tj < 150 °C, unless
otherwise stated.
Table 5.
Power section
Symbol
Parameter
VCC
Operating supply voltage
VUSD
VUSDhyst
RON
Vclamp
IS
IL(off1)
VF
Test conditions
Min. Typ. Max. Unit
13
28
V
Undervoltage shutdown
3.5
4.5
V
Undervoltage shutdown
hysteresis
0.5
ON-state
resistance (1)
Clamp voltage
4.5
IOUT = 1 A, Tj = 25 °C
160
IOUT = 1 A, Tj = 150 °C
320
IOUT = 1 A, VCC = 5 V, Tj = 25 °C
210
IS = 20 mA
41
OFF-state: VCC = 13 V, Tj = 25 °C,
VIN = VOUT = VSENSE = VCSD = 0 V
Supply current
Output - VCC diode
voltage (1)
VIN = VOUT = 0 V, VCC = 13 V,
Tj = 25 °C
0
VIN = VOUT = 0 V, VCC = 13 V,
Tj = 125 °C
0
mΩ
46
52
V
2(2)
5(2)
µA
3
6
mA
0.01
3
ON-state: VCC = 13 V, VIN = 5 V,
IOUT = 0 A
OFF-state output
current (1)
V
µA
-IOUT = 0.6 A, Tj = 150 °C
5
0.7
V
1. For each channel.
2. PowerMOS leakage included.
Table 6.
Symbol
Switching (VCC = 13 V, Tj = 25 °C)
Parameter
Test conditions
Min.
Typ.
Max.
Unit
td(on)
Turn-on delay time
RL = 13 Ω (see Figure 5.)
10
µs
td(off)
Turn-off delay time
RL = 13 Ω (see Figure 5.)
15
µs
(dVOUT/dt)on Turn-on voltage slope
RL = 13 Ω
See
Figure 23.
V/µs
(dVOUT/dt)off Turn-off voltage slope
RL = 13 Ω
See
Figure 25.
V/µs
WON
Switching energy
losses during twon
RL = 13 Ω (see Figure 5.)
0.03
mJ
WOFF
Switching energy
losses during twoff
RL = 13 Ω (see Figure 5.)
0.02
mJ
Doc ID 15616 Rev 1
9/34
Electrical specifications
Table 7.
Symbol
VND5E160MJ-E
Logic inputs
Parameter
Test conditions
VIL
Low-level input voltage
IIL
Low-level input current
VIH
High-level input voltage
IIH
High-level input current
VI(hyst)
Input voltage hysteresis
VICL
Min.
VIN = 0.9 V
Low-level CS_DIS current
VCSDH
High-level CS_DIS voltage
ICSDH
High-level CS_DIS current
V
7
V
-0.7
0.9
VCSD = 0.9 V
µA
2.1
V
VCSD = 2.1 V
10
0.25
ICSD = 1mA
V
1
µA
V
5.5
7
V
-0.7
Parameter
Test conditions
IlimL
Short-circuit current
during thermal cycling
TTSD
Shutdown temperature
VCC0 = 13 V
Min.
Typ.
Max.
7
10
14
TR
Reset temperature
TRS
Thermal reset of
STATUS
14
VCC = 13 V,
TR < Tj < TTSD
2.5
150
175
TRS + 1
TRS + 5
A
200
135
Thermal hysteresis
(TTSD - TR)
Unit
A
5 V < VCC < 28 V
°C
°C
°C
7
°C
Turn-off output voltage
clamp
IOUT = 1 A, VIN = 0 V,
L = 20 mH
VCC - 41 VCC - 46 VCC - 52
V
Output voltage drop
limitation
IOUT = 0.03 A,
Tj = -40 °C to 150 °C
(see Figure 7.)
25
mV
1. To ensure long term reliability under heavy overload or short-circuit conditions, protection and related
diagnostic signals must be used together with a proper software strategy. If the device is subjected to
abnormal conditions, this software must limit the duration and number of activation cycles.
10/34
µA
Protections and diagnostics (1)
DC short-circuit current
VON
V
ICSD = -1mA
IlimH
VDEMAG
2.1
5.5
VCSD(hyst) hysteresis CS_DIS voltage
THYST
V
µA
IIN = -1 mA
ICSDL
Symbol
0.9
10
IIN = 1 mA
Low-level CS_DIS voltage
Table 8.
Unit
0.25
Input voltage clamp
CS_DIS voltage clamp
Max.
1
VIN = 2.1 V
VCSDL
VCSCL
Typ.
Doc ID 15616 Rev 1
VND5E160MJ-E
Electrical specifications
Table 9.
Symbol
Parameter
IOUT/ISENSE
K0
IOUT/ISENSE
K1
dK1/K1(1)
K2
dK2/K2
Current sense (8 V < VCC < 18 V)
Current sense ratio
drift
IOUT/ISENSE
(1)
K3
dK3/K3(1)
ISENSE0
IOL
VSENSE
Current sense ratio
drift
IOUT/ISENSE
Test conditions
IOUT = 0.025 A, VSENSE = 0.5 V,
VCSD = 0 V, Tj = -40 °C to 150 °C
270
520
730
IOUT = 0.35 A, VSENSE = 0.5 V,
VCSD = 0 V, Tj = -40 °C to 150 °C
345
470
610
IOUT = 0.35 A, VSENSE = 0.5 V,
VCSD = 0 V, Tj = 25 °C to 150 °C
370
470
540
IOUT = 0.35 A; VSENSE = 0.5 V,
VCSD = 0 V, Tj = -40 °C to 150 °C
-13
IOUT = 0.5 A, VSENSE = 4 V, VCSD = 0 V,
Tj = -40 °C to 150 °C
370
460
550
IOUT = 0.5 A, VSENSE = 4 V, VCSD = 0 V,
Tj = 25 °C to 150 °C
390
460
510
IOUT = 0.5 A, VSENSE = 4 V,
VCSD = 0 V,
Tj = -40 °C to 150 °C
IOUT = 1.5 A, VSENSE = 4 V, VCSD = 0 V,
Tj = -40 °C to 150 °C
13
-8
8
400
430
470
IOUT = 1.5 A, VSENSE = 4 V, VCSD = 0 V,
410
Tj = 25 °C to 150 °C
430
460
IOUT = 1.5 A, VSENSE= 4 V,
VCSD = 0 V,
Tj = -40 °C to 150 °C
-4
4
IOUT = 0 A, VSENSE = 0 V, VCSD = 5 V,
VIN = 0 V, Tj = -40 °C to 150 °C
0
1
IOUT = 0 A, VSENSE = 0 V;, VCSD = 0 V,
VIN = 5 V, Tj = -40 °C to 150 °C
0
2
IOUT = 0.6 A, VSENSE = 0 V; VCSD = 5 V,
VIN = 5 V, Tj = -40 °C to 150 °C
0
1
Open-load ON-state V = 5 V, 8 V < V < 18 V
IN
CC
current detection
ISENSE = 5 µA
threshold
1
5
Max analog sense
output voltage
5
Current sense ratio
drift
Analog sense
leakage current
IOUT = 1.5 A, VCSD = 0 V
Analog sense output
VSENSEH(2) voltage in fault
VCC = 13 V, RSENSE = 3.9 KΩ;
condition
ISENSEH(2)
Min. Typ. Max. Unit
Analog sense output
current in fault
VCC = 13 V, VSENSE = 5 V
condition
Doc ID 15616 Rev 1
%
%
%
µA
mA
V
8
V
9
mA
11/34
Electrical specifications
Table 9.
Symbol
VND5E160MJ-E
Current sense (8 V < VCC < 18 V) (continued)
Parameter
Test conditions
Min. Typ. Max. Unit
tDSENSE1H
VSENSE < 4 V,
Delay response time
0.08 A < IOUT < 1.5 A
from falling edge of
ISENSE = 90% of ISENSE max
CS_DIS pin
(see Figure 4.)
40
100
µs
tDSENSE1L
VSENSE < 4 V,
Delay response time
0.08 A < IOUT < 1.5 A
from rising edge of
ISENSE = 10% of ISENSE max
CS_DIS pin
(see Figure 4.)
5
20
µs
tDSENSE2H
VSENSE < 4 V,
Delay response time
0.08 A < IOUT < 1.5 A
from rising edge of
ISENSE=90% of ISENSE max
IN pin
(see Figure 4.)
30
150
µs
110
µs
250
µs
Delay response time
between rising edge
ΔtDSENSE2H of output current and
rising edge of
current sense
tDSENSE2L
VSENSE < 4V,
ISENSE = 90% of ISENSEMAX,
IOUT = 90% of IOUTMAX
IOUTMAX = 1.5 A (see Figure 6)
VSENSE < 4 V,
Delay response time
0.08 A < IOUT < 1.5 A
from falling edge of
ISENSE = 10% of ISENSE max
IN pin
(see Figure 4.)
80
1. Parameter guaranteed by design; it is not tested.
2. Fault condition includes: power limitation and overtemperature.
Figure 4.
Current sense delay characteristics
INPUT
CS_DIS
LOAD CURRENT
CURRENT SENSE
tDSENSE2H
12/34
tDSENSE1L
Doc ID 15616 Rev 1
tDSENSE1H
tDSENSE2L
VND5E160MJ-E
Electrical specifications
Figure 5.
Switching characteristics
VOUT
tWoff
tWon
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
tr
tf
t
INPUT
td(on)
td(off)
t
Figure 6.
Delay response time between rising edge of output current and rising
edge of current sense (CS enabled)
VIN
ΔtDSENSE2H
t
IOUT
IOUTMAX
90% IOUTMAX
t
ISENSE
ISENSEMAX
90% ISENSEMAX
t
Doc ID 15616 Rev 1
13/34
Electrical specifications
Figure 7.
VND5E160MJ-E
Output voltage drop limitation
Vcc-Vout
Tj=150oC
Tj=25oC
Tj=-40oC
Von
Iout
Von/Ron(T)
Figure 8.
Iout/ Isense vs Iout
Iout / Isense
700
650
600
550
500
A
B
C
450
D
400
E
350
300
250
200
0,35
0,58
0,81
1,04
1,27
IOUT (A)
A: Max, Tj = -40 °C to 150 °C
B: Max, Tj = 25 °C to 150 °C
C: Typical, Tj = -40 °C to 150 °C
14/34
Doc ID 15616 Rev 1
D: Min, Tj = 25 °C to 150 °C
E: Min, Tj = -40 °C to 150 °C
1,5
VND5E160MJ-E
Electrical specifications
Figure 9.
Maximum current sense ratio drift vs load current(1)
dk/k(%)
15
10
A
5
0
-5
B
-10
-15
0,35
0,58
0,81
1,04
1,27
1,5
IOUT (A)
A: Max, Tj = -40 °C to 150 °C
B: Min, Tj = 25 °C to 150 °C
1. Parameter guaranteed by design; it is not tested.
Table 10.
Truth table
Input
Output
Sense (VCSD = 0 V)(1)
Normal operation
L
H
L
H
0
Nominal
Overtemperature
L
H
L
L
0
VSENSEH
Undervoltage
L
H
L
L
0
0
H
X
(no power limitation)
Cycling
(power limitation)
Nominal
Conditions
Overload
H
VSENSEH
Short-circuit to GND
(power limitation)
L
H
L
L
0
VSENSEH
Negative output voltage
clamp
L
L
0
1. If the VCSD is high, the SENSE output is at a high-impedance, its potential depends on leakage currents
and external circuit.
Doc ID 15616 Rev 1
15/34
Electrical specifications
Table 11.
ISO 7637-2:
2004(E)
Test pulse
VND5E160MJ-E
Electrical transient requirements (part 1)
Test levels(1)
III
IV
1
-75 V
-100 V
2a
+37 V
3a
Number of
pulses or
test times
Burst cycle/pulse
repetition time
Delays and
Impedance
Min.
Max.
5000 pulses
0.5 s
5s
2 ms, 10 Ω
+50 V
5000 pulses
0.2 s
5s
50 µs, 2 Ω
-100 V
-150 V
1h
90 ms
100 ms
0.1 µs, 50 Ω
3b
+75 V
+100 V
1h
90 ms
100 ms
0.1 µs, 50 Ω
4
-6 V
-7 V
1 pulse
100 ms, 0.01 Ω
+65 V
+87 V
1 pulse
400 ms, 2 Ω
5b
(2)
1. The above test levels must be considered referred to VCC = 13.5 V except for pulse 5b.
2. Valid in case of external load dump clamp: 40 V maximum referred to ground.
Table 12.
Electrical transient requirements (part 2)
ISO 7637-2:
2004(E)
Test level results
Test pulse
III
IV
1
C
C
2a
C
C
3a
C
C
3b
C
C
4
C
C
5b(1)
C
C
1. Valid in case of external load dump clamp: 40 V maximum referred to ground.
Table 13.
16/34
Electrical transient requirements (part 3)
Class
Contents
C
All functions of the device are performed as designed after exposure to disturbance.
E
One or more functions of the device are not performed as designed after exposure to
disturbance and cannot be returned to proper operation without replacing the device.
Doc ID 15616 Rev 1
VND5E160MJ-E
2.4
Electrical specifications
Waveforms
Figure 10. Normal operation
Normal operation
INPUT
Nominal load
Nominal load
IOUT
VSENSE
VCS_DIS
Figure 11.
Overload or short to GND
Overload or Short to GND
INPUT
ILimH >
Power Limitation
Thermal cycling
ILimL >
IOUT
VSENSE
VCS_DIS
Doc ID 15616 Rev 1
17/34
Electrical specifications
VND5E160MJ-E
Figure 12. Intermittent overload
Intermittent Overload
INPUT
Overload
ILimH >
ILimL >
Nominal load
IOUT
VSENSEH>
VSENSE
VCS_DIS
Figure 13. TJ evolution in overload or short to GND
TJ evolution in
Overload or Short to GND
INPUT
Self-limitation of fast thermal transients
TTSD
THYST
TR
TJ_START
TJ
ILimH >
Power Limitation
< ILimL
IOUT
18/34
Doc ID 15616 Rev 1
VND5E160MJ-E
2.5
Electrical specifications
Electrical characteristics curves
Figure 14. OFF-state output current
Figure 15. High-level input current
Iloff (nA)
Iih (µA)
300
5
4,5
250
Vin=2.1V
Off State
Vcc=13V
Vin=Vout=0V
200
4
3,5
3
150
2,5
2
100
1,5
1
50
0,5
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
150
175
150
175
Tc (°C)
Figure 16. Input clamp voltage
Figure 17. Low-level input voltage
Vicl (V)
Vil (V)
7
2
6,8
1,8
lin=1mA
6,6
1,6
6,4
1,4
6,2
1,2
6
1
5,8
0,8
5,6
0,6
5,4
0,4
5,2
0,2
5
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
Tc (°C)
Figure 18. High-level input voltage
Figure 19. Hysteresis input voltage
Vih (V)
Vihyst (V)
1
4
0,9
3,5
0,8
3
0,7
2,5
0,6
0,5
2
0,4
1,5
0,3
1
0,2
0,5
0,1
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
Tc (°C)
-25
0
25
50
75
100
125
Tc (°C)
Doc ID 15616 Rev 1
19/34
Electrical specifications
VND5E160MJ-E
Figure 20. ON-state resistance vs Tcase
Figure 21. ON-state resistance vs VCC
Ron (mOhm)
Ron (mOhm)
300
300
Iout= 1A
Vcc=13V
250
Tc=150°C
250
Tc=125°C
200
200
150
150
Tc=25°C
100
100
50
Tc=-40°C
50
-50
-25
0
25
50
75
100
125
150
175
0
5
10
15
Tc (°C)
20
25
30
35
40
150
175
150
175
Vcc (V)
Figure 22. Undervoltage shutdown
Figure 23. Turn-on voltage slope
Vusd (V)
(dVout/dt )On (V/ms)
16
1000
900
14
Vcc=13V
RI=13 Ohm
800
12
700
10
600
500
8
400
6
300
4
200
2
100
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
Tc (°C)
Figure 24. ILIMH vs Tcase
Figure 25. Turn-off voltage slope
Ilimh (A)
(dVout/dt )Off (V/ms)
20
1400
1300
Vcc=13V
Vcc=13V
RI= 13 Ohm
1200
15
1100
1000
10
900
800
5
700
600
0
500
-50
-25
0
25
50
75
100
125
150
-50
Tc (°C)
20/34
-25
0
25
50
75
Tc (°C)
Doc ID 15616 Rev 1
100
125
VND5E160MJ-E
Electrical specifications
Figure 26. High-level CS_DIS voltage
Figure 27. CS_DIS clamp voltage
Vcsdh (V)
Vcsdcl(V)
10
4
9
3,5
Iin = 1 mA
8
3
7
2,5
6
5
2
4
1,5
3
1
2
0,5
1
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
Tc (°C)
-25
0
25
50
75
100
125
150
175
Tc (°C)
Figure 28. Low-level CS_DIS voltage
Vcsdl (V)
3
2,5
2
1,5
1
0,5
0
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
Doc ID 15616 Rev 1
21/34
Application information
3
VND5E160MJ-E
Application information
Figure 29. Application schematic(1)
+5V
VCC
Rprot
CS_DIS
Dld
ΜCU
Rprot
INPUT
OUTPUT
Rprot
CURRENT SENSE
GND
RSENSE
VGND
CEXT
RGND
DGND
1. Channel 2 has the same internal circuit as channel 1.
3.1
GND protection network against reverse battery
This section provides two solutions for implementing a ground protection network against
reverse battery.
3.1.1
Solution 1: resistor in the ground line (RGND only)
This can be used with any type of load.
The following is an indication on how to dimension the RGND resistor.
1.
RGND ≤ 600 mV / (IS(on)max)
2.
RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device datasheet.
Power dissipation in RGND (when VCC < 0: during reverse battery situations) is:
Equation 1
PD = (-VCC)2 / RGND
22/34
Doc ID 15616 Rev 1
VND5E160MJ-E
Application information
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum ON-state currents of the different devices.
Please note that if the microprocessor ground is not shared by the device ground then the
RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift will vary depending on how many devices are on in the case of several
high-side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor or several devices have to share
the same resistor then ST suggests to utilize Solution 2 (see below).
3.1.2
Solution 2: diode (DGND) in the ground line
A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device drives an
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network will produce a shift (≈600 mV) in the input
threshold and in the status output values if the microprocessor ground is not common to the
device ground. This shift will not vary if more than one HSD shares the same diode/resistor
network.
3.2
Load dump protection
Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the
VCC max DC rating. The same applies if the device is subject to transients on the VCC line
that are greater than the ones shown in the ISO 7637-2: 2004(E) table.
3.3
MCU I/Os protection
If a ground protection network is used and negative transient are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to
prevent the microcontroller I/Os pins to latch-up.
The value of these resistors is a compromise between the leakage current of microcontroller
and the current required by the HSD I/Os (input levels compatibility) with the latch-up limit of
microcontroller I/Os:
Equation 2
-VCCpeak / Ilatchup ≤ Rprot ≤ (VOHμC - VIH - VGND) / IIHmax
Calculation example:
For VCCpeak = - 100 V, Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V
5 kΩ ≤ Rprot ≤ 180 kΩ
Recommended values: Rprot =10 kΩ, CEXT =10 nF.
Doc ID 15616 Rev 1
23/34
Application information
3.4
VND5E160MJ-E
Current sense and diagnostic
The current sense pin performs a double function (see Figure 30: Current sense and
diagnostic):
●
Current mirror of the load current in normal operation, delivering a current
proportional to the load one according to a know ratio KX.
The current ISENSE can be easily converted to a voltage VSENSE by means of an
external resistor RSENSE. Linearity between IOUT and VSENSE is ensured up to 5 V
minimum (see parameter VSENSE in Table 9: Current sense (8 V < VCC < 18 V)). The
current sense accuracy depends on the output current (refer to current sense electrical
characteristics Table 9: Current sense (8 V < VCC < 18 V)).
●
Diagnostic flag in fault conditions, delivering a fixed voltage VSENSEH up to a
maximum current ISENSEH in case of the following fault conditions (refer to Table 10:
Truth table):
–
Power limitation activation
–
Overtemperature
A logic level high on CS_DIS pin sets at the same time all the current sense pins of the
device in a high-impedance state, thus disabling the current monitoring and diagnostic
detection. This feature allows multiplexing of the microcontroller analog inputs by sharing of
sense resistance and ADC line among different devices.
Figure 30. Current sense and diagnostic
VBAT
VCC
Main MOSn
41V
Overtemperature
IOUT/KX
ISENSEH
Pwr_Lim
VSENSEH
CS_DIS
CURRENT
SENSEn
RPROT
To uC ADC
24/34
OUTn
RSENSE
VSENSE
Doc ID 15616 Rev 1
GND
Load
VND5E160MJ-E
Maximum demagnetization energy (VCC = 13.5 V)
Figure 31. Maximum turn-off current versus inductance (for each channel)(1)
100
10
A
C
B
1
I (A)
3.5
Application information
0,1
0,1
1
L (mH)
10
100
A: Tjstart = 150 °C single pulse
B: Tjstart = 100 °C repetitive pulse
C: Tjstart = 125 °C repetitive pulse
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
1. Values are generated with RL = 0 Ω.
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves A and B.
Doc ID 15616 Rev 1
25/34
Package and PC board thermal data
VND5E160MJ-E
4
Package and PC board thermal data
4.1
PowerSSO-12 thermal data
Figure 32. PowerSSO-12 PC board(1)
1. Layout condition of Rth and Zth measurements (PCB: double layer, thermal vias,
FR4 area = 77 mm x 86 mm, PCB thickness =1.6 mm, Cu thickness =70 µm (front and back side), Copper
areas: from minimum pad lay-out to 8 cm2).
Figure 33. Rthj-amb vs PCB copper area in open box free air condition (one channel on)
RTHj_amb( ° C/ W)
70
65
60
55
50
45
40
0
2
4
6
PCB Cu heat sink area ( cm^ 2)
26/34
Doc ID 15616 Rev 1
8
10
VND5E160MJ-E
Package and PC board thermal data
Figure 34. PowerSSO-12 thermal impedance junction ambient single pulse (one
channel on)
ZTH ( ° C/ W)
100
Footprint
2 cm2
8 cm2
10
1
0,001
0,01
0,1
1
Time ( s)
10
100
1000
Equation 3: pulse calculation formula
Z
THδ
= R
TH
⋅δ+Z
THtp
(1 – δ)
where δ = tP/T
Figure 35. Thermal fitting model of a double-channel HSD in PowerSSO-12(1)
1. The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded
protections (power limitation or thermal cycling during thermal shutdown) are not triggered.
Doc ID 15616 Rev 1
27/34
Package and PC board thermal data
Table 14.
28/34
VND5E160MJ-E
Thermal parameters
Area/island (cm2)
Footprint
R1= R7 (°C/W)
1.2
R2= R8 (°C/W)
6
R3 (°C/W)
3
R4 (°C/W)
2
8
8
8
7
R5 (°C/W)
22
15
10
R6 (°C/W)
26
20
15
C1= C7 (W.s/°C)
0.0008
C2= C8 (W.s/°C)
0.0016
C3 (W.s/°C)
0.0166
C4 (W.s/°C)
0.2
0.1
0.1
C5 (W.s/°C)
0.27
0.8
1
C6 (W.s/°C)
3
6
9
Doc ID 15616 Rev 1
VND5E160MJ-E
Package and packing information
5
Package and packing information
5.1
ECOPACK®
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2
Package mechanical data
Figure 36. PowerSSO-12 package dimensions
Doc ID 15616 Rev 1
29/34
Package and packing information
Table 15.
VND5E160MJ-E
PowerSSO-12 mechanical data
Symbol
Millimeters
Min.
Max.
A
1.250
1.620
A1
0.000
0.100
A2
1.100
1.650
B
0.230
0.410
C
0.190
0.250
D
4.800
5.000
E
3.800
4.000
e
0.800
H
5.800
6.200
h
0.250
0.500
L
0.400
1.270
k
0°
8°
X
2.200
2.800
Y
2.900
3.500
ddd
30/34
Typ.
0.100
Doc ID 15616 Rev 1
VND5E160MJ-E
5.3
Package and packing information
Packing information
Figure 37. PowerSSO-12 tube shipment (no suffix)
B
C
A
Base q.ty
100
Bulk q.ty
2000
Tube length (± 0.5)
532
A
1.85
B
6.75
C (± 0.1)
0.6
Figure 38. PowerSSO-12 tape and reel shipment (suffix “TR”)
Reel dimensions
Base q.ty
Bulk q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
12.4
60
18.4
Tape dimensions
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
Tape width
Tape hole spacing
Component spacing
Hole diameter
Hole diameter
Hole position
Compartment depth
Hole spacing
W
P0 (± 0.1)
P
D (± 0.05)
D1 (min)
F (± 0.1)
K (max)
P1 (± 0.1)
12
4
8
1.5
1.5
5.5
4.5
2
End
All dimensions are in mm.
Start
Top
cover
tape
No components Components
500mm min
No components
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
Doc ID 15616 Rev 1
31/34
Order codes
6
VND5E160MJ-E
Order codes
Table 16.
Device summary
Package
PowerSSO-12
32/34
Order codes
Tube
Tape and reel
VND5E160MJ-E
VND5E160MJTR-E
Doc ID 15616 Rev 1
VND5E160MJ-E
7
Revision history
Revision history
Table 17.
Document revision history
Date
Revision
08-Oct-2009
1
Changes
Initial release.
Doc ID 15616 Rev 1
33/34
VND5E160MJ-E
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
34/34
Doc ID 15616 Rev 1