BT134 series GENERAL DESCRIPTION SYMBOL Glass passivated triacs in a plastic envelope, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching. T2 SOT82 TO-126 T1 G QUICK REFERENCE DATA SYMBOL PARAMETER MAX. MAX. MAX. UNIT V DRM BT134BT134BT134Repetitive peak off-state voltages RMS on-state current Non-repetitive peak on-state current 500 500F 500G 500 600 600F 600G 600 800 800F 800G 800 V 4 25 4 25 4 25 A A IT(RMS) ITSM LIMITING VALUES Limiting values in accordance with the Absolute Maximum System (IEC 134). SYMBOL PARAMETER VDRM Repetitive peak off-state voltages IT(RMS) ITSM RMS on-state current Non-repetitive peak on-state current I2t dIT/dt IGM VGM PGM PG(AV) Tstg Tj I2t for fusing Repetitive rate of rise of on-state current after triggering Peak gate current Peak gate voltage Peak gate power Average gate power Storage temperature Operating junction temperature CONDITIONS MIN. - full sine wave; Tmb ≤ 107 ˚C full sine wave; Tj = 25 ˚C prior to surge t = 20 ms t = 16.7 ms t = 10 ms ITM = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs T2+ G+ T2+ GT2- GT2- G+ over any 20 ms period MAX. -500 5001 -600 6001 UNIT -800 800 V - 4 A - 25 27 3.1 A A A2s -40 - 50 50 50 10 2 5 5 0.5 150 125 A/µs A/µs A/µs A/µs A V W W ˚C ˚C 1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 3 A/µs. 2014-6-13 1 www.kersemi.com BT134 series THERMAL RESISTANCES SYMBOL PARAMETER Rth j-mb Thermal resistance full cycle junction to mounting base half cycle Thermal resistance in free air junction to ambient Rth j-a CONDITIONS MIN. TYP. MAX. UNIT - 100 3.0 3.7 - K/W K/W K/W STATIC CHARACTERISTICS Tj = 25 ˚C unless otherwise stated SYMBOL PARAMETER IGT Gate trigger current IL Latching current IH Holding current VT VGT On-state voltage Gate trigger voltage ID Off-state leakage current CONDITIONS MIN. BT134VD = 12 V; IT = 0.1 A T2+ G+ T2+ GT2- GT2- G+ VD = 12 V; IGT = 0.1 A T2+ G+ T2+ GT2- GT2- G+ VD = 12 V; IGT = 0.1 A IT = 5 A VD = 12 V; IT = 0.1 A VD = 400 V; IT = 0.1 A; Tj = 125 ˚C VD = VDRM(max); Tj = 125 ˚C TYP. MAX. UNIT ... ...F ...G - 5 8 11 30 35 35 35 70 25 25 25 70 50 50 50 100 mA mA mA mA - 7 16 5 7 5 20 30 20 30 15 20 30 20 30 15 30 45 30 45 30 mA mA mA mA mA 0.25 1.4 0.7 0.4 1.70 1.5 - V V V - 0.1 0.5 mA MIN. TYP. MAX. UNIT DYNAMIC CHARACTERISTICS Tj = 25 ˚C unless otherwise stated SYMBOL PARAMETER dVD/dt Critical rate of rise of off-state voltage dVcom/dt Critical rate of change of commutating voltage tgt Gate controlled turn-on time 2014-6-13 CONDITIONS BT134VDM =67% VDRM(max); Tj = 125 ˚C; exponential waveform; gate open circuit VDM = 400 V; Tj = 95 ˚C; IT(RMS) = 4 A; dIcom/dt = 1.8 A/ms; gate open circuit ITM = 6 A; VD = VDRM(max); IG = 0.1 A; dIG/dt = 5 A/µs; 2 ... 100 ...F 50 ...G 200 250 - V/µs - - 10 50 - V/µs - - - 2 - µs www.kersemi.com BT134 series 8 BT136 Ptot / W Tmb(max) / C 5 101 IT(RMS) / A BT136 104 7 6 = 180 1 107 C 4 107 120 5 110 90 60 4 3 113 30 3 116 2 119 1 122 2 1 0 0 1 2 3 IT(RMS) / A 125 5 4 0 -50 Fig.1. Maximum on-state dissipation, Ptot, versus rms on-state current, IT(RMS), where α = conduction angle. 1000 50 Tmb / C 100 150 Fig.4. Maximum permissible rms current IT(RMS) , versus mounting base temperature Tmb. BT136 ITSM / A 0 12 BT136 IT(RMS) / A ITSM IT 10 T time 8 Tj initial = 25 C max 100 6 dIT /dt limit 4 T2- G+ quadrant 2 10 10us 100us 1ms T/s 10ms 0 0.01 100ms Fig.2. Maximum permissible non-repetitive peak on-state current ITSM, versus pulse width tp, for sinusoidal currents, tp ≤ 20ms. 30 ITSM / A BT136 T Tj initial = 25 C max 1.2 1 10 0.8 5 0.6 1 10 100 Number of cycles at 50Hz 0.4 -50 1000 Fig.3. Maximum permissible non-repetitive peak on-state current ITSM, versus number of cycles, for sinusoidal currents, f = 50 Hz. 2014-6-13 BT136 1.4 time 15 0 VGT(Tj) VGT(25 C) I TSM IT 20 10 Fig.5. Maximum permissible repetitive rms on-state current IT(RMS), versus surge duration, for sinusoidal currents, f = 50 Hz; Tmb ≤ 107˚C. 1.6 25 0.1 1 surge duration / s 0 50 Tj / C 100 150 Fig.6. Normalised gate trigger voltage VGT(Tj)/ VGT(25˚C), versus junction temperature Tj. 3 www.kersemi.com BT134 series 3 IGT(Tj) IGT(25 C) Tj = 125 C Tj = 25 C T2+ G+ T2+ GT2- GT2- G+ 2.5 2 8 1 4 0.5 2 50 Tj / C 100 0 150 Fig.7. Normalised gate trigger current IGT(Tj)/ IGT(25˚C), versus junction temperature Tj. 3 IL(Tj) IL(25 C) max Vo = 1.27 V Rs = 0.091 ohms 6 0 typ 10 1.5 0 -50 BT136 IT / A 12 BT136 0 0.5 1 1.5 VT / V 2 2.5 3 Fig.10. Typical and maximum on-state characteristic. 10 TRIAC BT136 Zth j-mb (K/W) unidirectional 2.5 bidirectional 1 2 1.5 0.1 1 P D tp 0.5 t 0 -50 0 50 Tj / C 100 0.01 10us 150 IH(Tj) IH(25C) 1ms 10ms 0.1s 1s 10s tp / s Fig.11. Transient thermal impedance Zth j-mb, versus pulse width tp. Fig.8. Normalised latching current IL(Tj)/ IL(25˚C), versus junction temperature Tj. 3 0.1ms 1000 TRIAC dVcom/dt (V/us) off-state dV/dt limit BT134...G SERIES 2.5 BT134 SERIES 100 2 BT134...F SERIES 1.5 10 1 0.5 0 -50 dIcom/dt = 5.1 A/ms 0 50 Tj / C 100 1 150 3 50 2.3 1.8 100 1.4 150 Tj / C Fig.9. Normalised holding current IH(Tj)/ IH(25˚C), versus junction temperature Tj. 2014-6-13 0 3.9 Fig.12. Typical commutation dV/dt versus junction temperature, parameter commutation dIT/dt. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dIT/dt. 4 www.kersemi.com