HD49815TF Digital Camera Signal Processor REJ03F0138-0100 (Previous: ADE-207-316) Rev.1.00 Jun 15, 2005 Description The HD49815TF is a CMOS IC that has been developed as a digital signal-processing IC for CCD-camera digitalsignal-processing systems. Functions • • • • • • • • • • • • • • • CCD-sensor drive-pulse generation (TG) Digital AGC (automatic gain control) Color signal separation circuit RGB matrix RGB gain RGB and Y gamma Color-difference matrix Enhancer RGB and Y setup Digital I/F (4:2:2) Zoom control Mirror reversal Synchronization signal generator for encoding (SSG) AWB, AE, and AF detection Two-channel 8-bit D/A converter Features • The HD49815TF provides camera-signal processing, TG, SSG, zoom, and D/A functions and other functions in a single chip and supports high system-integration level. • In conjunction with the HD49323AF-01 (CDS/AGC + 10-bit ADC) and the control microcomputer, the HD49815TF forms a three-chip kit that can implement an optimal CCD-camera digital-signal-processing system. • The HD49815TF provides the zoom function and controls the 1- to 256- times linear zoom. It also provides the half-mirror function. • Since the HD49815TF can be made compatible with the former product, HD49811TFA, through software, a shorter development term is enabled. • Since software controls AWB, AE, and AF, any protocol can be prepared according to the camera shooting conditions. • Programmable TG enables use of any CCD device. Rev.1.00 Jun 15, 2005 page 1 of 21 HD49815TF System Block Diagram HD49815TF Lens CCD HD49323AF-01 CDS/AGC+ 10-bit ADC Input line memory TG SSG Color processing Luminance processing Microprocessor I/F V.Driver System control AE (iris) control AWB (white balance) control 8-bit single-chip microcomputer (H8 series) Rev.1.00 Jun 15, 2005 page 2 of 21 Zoom processing Encode DAC C-signal output Y-signal output R-Y/B-Y digital output Y-signal digital output HD49815TF AD(10) AD(9) AD(8) AD(7) AD(6) AD(5) AD(4) AD(3) AD(2) AD(1) ADCK CPREF DSP_MCK VDD VSS SP1 SP2 OBP VDD H1 H2 VDD RG VDD XV1 XV2 XV3 XV4 XSG1 XSG2 Pin Arrangement 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 DKF_LD 2 89 FP T_CP(TEST) 3 88 NME TY_K 4 87 CPI(1) SDI 5 86 CPI(2) SDCK 6 85 CPI(3) SLD 7 84 CPI(4) SDO 8 83 CPI(5) EP(1) 9 82 CPI(6) EP(2) 10 81 CPI(7) BF 11 80 CPI(8) HD_IN 12 79 CPO(1) M_CK 13 78 CPO(2) VDD 14 77 CPO(3) VSS 15 76 CPO(4) FV 16 75 VSS HD 17 74 VDD CBLK 18 73 CPO(5) CSYNC 19 72 CPO(6) SCBLK 20 71 CPO(7) HSYNC 21 70 CPO(8) ID 22 69 YPI(1) IDP 23 68 YPI(2) VDD 24 67 YPI(3) VSS 25 66 YPI(4) X1I 26 65 YPI(5) X1O 27 64 YPI(6) IDS 28 63 YPI(7) MCK_S 29 62 YPI(8) RESET 30 61 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 (Top view) Rev.1.00 Jun 15, 2005 page 3 of 21 YPO(3) YPO(4) YPO(5) YPO(6) YPO(7) YPO(8) NRYBY DICK VSS VDD VSS AVDD VSS Y_OUT REXT CBL CBU C_OUT VSS AVDD VSS AVDD VSS FSC X2O X2I VR PLL_P TFP-120 YPO(2) 1 PLL_N XSUB ZOOM_HD YPO(1) HD49815TF Pin Description I/O Format ZC2R ICS IC ICD IC ICS ICS ZC2R Pin No. 1 2 3 4 5 6 7 8 9 Symbol XSUB DKF_LD T_CP TY_K SDI SDCK SLD SDO EP (1) Pin Name CCD shutter pulse Line input LD Test Title SW State data input State data clock State data load pulse AWB, AE, data output AE window pulse 1 I/O O I I I I I I O O Description CCD control pulse Line input dedicated load Test pin (GND input) Title-killer SW (1 = On, 0 = Off) State data-setting data input State data-setting clock State data-latch pulse AWB, AE, and AF detection-data output Iris detection-area-setting pulse: SP-A7 [8] output changeover ICZC2R 10 EP (2) AE window pulse 2 O ICZC2R 11 12 13 BF HD_IN M_CK Burst flag External CSYNC input Microprocessor clock O I O Iris detection-area-setting pulse: SP-A7 [8] output changeover Burst flag output External CSYNC input OC2R 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 VDD VSS FV HD CBLK CSYNC SCBLK HSYNC ID IDP VDD VSS X1I X1O IDS MCK_S VCC2 GND Field vertical output HD output Blanking pulse SYNC output SC blanking pulse Horizontal SYNC Identity Identity pulse VCC2 GND X’tal 1 input X’tal 1 output Line ID reset input MCK output SW — — O O O O O O O O — — I O I I Microprocessor clock output (1/2 or 1/4 dividing of X’tal 1) 3.3 V power supply GND Vertical synchronization pulse Horizontal synchronization pulse Blanking pulse SYNC pulse Subcarrier blanking pulse (SECAM) Horizontal SYNC pulse (SECAM) SECAM determination pulse SECAM determination pulse 3.3 V power supply GND 2fsc oscillator input 2fsc oscillator output Line-determination-signal input 30 31 32 33 34 35 36 RESET PLL_N PLL_P VR X2I X2O FSC Reset PLL negative PLL positive Vertical reset X’tal 2 input X’tal 2 output Sub carrier frequency 37 38 39 40 41 42 43 44 45 VSS AVDD VSS AVDD VSS C_OUT CBU CBL REXT GND Analog VCC2 GND Analog VCC2 GND C analog signal output Current buffer upper Current buffer lower Reference resister EXT Rev.1.00 Jun 15, 2005 page 4 of 21 ICZC2R ICSD VCCI GNDI ICZC2R ICZC2R ICZC2R ICZC2R ICZC2R OC2R OC2R ICZC2R VCCC GNDC IQ3 OQ3 ICD IC I O O I I O O Pin 13 MCK dividing setting SW (1 = 1/2, 0 = 1/4) Reset: to restore the initial data settings PLL signal output PLL signal output Vertical synchronization signal input 4fsc oscillator input 4fsc oscillator output fsc output ICS ZC2 ZC2 ICSD IQ2 OQ2 ICZC2R — — — — — O I I I GND Analog system power supply: 3.3 V GND Analog system power supply: 3.3 V GND Chrominance-signal analog output D/A upper current source D/A lower current source Reference voltage input GNDA VCCA GNDA VCCA GNDA OA IA IA IA HD49815TF Pin Description (cont.) Pin No. 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Symbol Y_OUT VSS AVDD VSS VDD VSS DICK NRYBY YPO (8) YPO (7) YPO (6) YPO (5) YPO (4) YPO (3) YPO (2) YPO (1) YPI (8) YPI (7) YPI (6) YPI (5) YPI (4) YPI (3) YPI (2) YPI (1) CPO (8) CPO (7) CPO (6) CPO (5) VDD VSS CPO (4) CPO (3) CPO (2) CPO (1) CPI (8) CPI (7) CPI (6) CPI (5) CPI (4) CPI (3) Pin Name Y analog signal output GND Analog VCC2 GND VCC2 GND Digital interface clock R-Y, B-Y phase output Y parallel output (8); MSB Y parallel output (7) Y parallel output (6) Y parallel output (5) Y parallel output (4) Y parallel output (3) Y parallel output (2) Y parallel output (1) ; LSB Y parallel input (8); MSB Y parallel input (7) Y parallel input (6) Y parallel input (5) Y parallel input (4) Y parallel input (3) Y parallel input (2) Y parallel input (1); LSB C parallel output (8); MSB C parallel output (7) C parallel output (6) C parallel output (5) VCC2 GND C parallel output (4) C parallel output (3) C parallel output (2) C parallel output (1); LSB C parallel input (8); MSB C parallel input (7) C parallel input (6) C parallel input (5) C parallel input (4) C parallel input (3) I/O O — — — — — O O O O O O O O O O I I I I I I I I O O O O — — O O O O I I I I I I Description Luminance-signal analog output GND Analog system power supply: 3.3 V GND Digital system power supply: 3.3 V GND Digital interface clock output Color-difference signal phase clock Luminance-signal digital output MSB Luminance-signal digital output Luminance-signal digital output Luminance-signal digital output Luminance-signal digital output Luminance-signal digital output Luminance-signal digital output Luminance-signal digital output LSB Luminance-signal digital input MSB Luminance-signal digital input Luminance-signal digital input Luminance-signal digital input Luminance-signal digital input Luminance-signal digital input Luminance-signal digital input Luminance-signal digital input LSB Chrominance-signal digital output MSB Chrominance-signal digital output Chrominance-signal digital output Chrominance-signal digital output 3.3 V power supply GND Chrominance-signal digital output Chrominance-signal digital output Chrominance-signal digital output Chrominance-signal digital output LSB Chrominance-signal digital input MSB Chrominance-signal digital input Chrominance-signal digital input Chrominance-signal digital input Chrominance-signal digital input Chrominance-signal digital input I/O Format OA GNDA VCCA GNDA VCCI GNDI ICZC2R ICZC2R OC2R OC2R OC2R OC2R OC2R OC2R OC2R OC2R ICD ICD ICD ICD ICD ICD ICD ICD OC2R OC2R OC2R OC2R VCCO GNDO OC2R OC2R OC2R OC2R ICD ICD ICD ICD ICD ICD 86 87 88 89 90 91 92 93 94 CPI (2) CPI (1) NME FP ZOOM_HD AD (10) AD (9) AD (8) AD (7) C parallel input (2) C parallel input (1); LSB Memory HD output Field pulse Zoom HD output AD input (10); MSB AD input (9) AD input (8) AD input (7) I I O O O I I I I Chrominance-signal digital input Chrominance-signal digital input LSB Line memory control output Field pulse Horizontal synchronization signal A/D data input MSB A/D data input A/D data input A/D data input ICD ICD ICZC2DR ICZC2R ICZC2R IC IC IC IC Rev.1.00 Jun 15, 2005 page 5 of 21 HD49815TF Pin Description (cont.) Pin No. 95 96 97 98 99 100 101 102 103 Symbol AD (6) AD (5) AD (4) AD (3) AD (2) AD (1) ADCK CPREF DSP_MCK 104 105 106 107 108 109 Pin Name AD input (6) AD input (5) AD input (4) AD input (3) AD input (2) AD input (1); LSB AD clock Clamp reference output I/O Description I I I I I I O O A/D data input A/D data input A/D data input A/D data input A/D data input A/D data input LSB A/D converter clock Clamp reference pulse O VDD VSS SP1 SP2 OBP VDD Microprocessor clock output VCC2 GND Sampling pulse 1 Sampling pulse 2 OBP pulse VCC1 Microprocessor clock output: SP-A7 [8] output changeover 3.3 V power supply GND Sampling pulse for the AGC/CDS IC Sampling pulse for the AGC/CDS IC Optical black-pulse output 110 111 112 H1 H2 VDD H1 H2 VCC1 O O — 113 114 115 116 117 118 119 120 RG VDD XV1 XV2 XV3 XV4 XSG1 XSG2 Reset gate VCC2 XV1 XV2 XV3 XV4 XSG1 XSG2 O — O O O O O O Rev.1.00 Jun 15, 2005 page 6 of 21 — — O O O — I/O Format IC IC IC IC IC IC ICZC2R 2C3 ICZC2R VCCO GNDO ICZC2 ICZC2 ICZC2R 3 V or 5 V power supply (H1/H2 power supply) CCD-sensor horizontal drive pulse CCD-sensor horizontal drive pulse VCCC35 5 V power supply (RG power supply) CCD-sensor control reset gate 3.3 V power supply CCD-sensor vertical control pulse CCD-sensor vertical control pulse CCD-sensor vertical control pulse CCD-sensor vertical control pulse CCD-sensor vertical control pulse CCD-sensor vertical control pulse VCCC5 OC3R OC3R ZC3R VCCO ICZC2R ICZC2R ICZC2R ICZC2R ZC2R ZC2R HD49815TF Description of I/O Format I/O Format IC ICD ICS ICSD ICZC2 ICZC2DR ICZC2R OC2R OC3R IQ2 OQ2 IQ3 OQ3 ZC2 ZC2R ZC3 ZC3R VCCI VCCO VCCC VCCC5 VCCC35 GNDI GNDO GNDC IA OA VCCA GNDA Contents CMOS level input CMOS level input with pull-down resistor CMOS level schmitt input CMOS level input with pull-down resistor CMOS level common I/O (4 mA) CMOS level common I/O with pull-down resistor and through-put control (4 mA) CMOS level common I/O with through-put control (4 mA) CMOS level output with through-put control (4 mA) CMOS level output with through-put control (8 mA) Crystal oscillator input Crystal oscillator output Crystal oscillator input Crystal oscillator output CMOS-level three-state output (4 mA) CMOS-level three-state output with through-put control (4 mA) CMOS-level three-state output (8 mA) CMOS-level three-state output with through-put control (8 mA) Core system power supply: 3 V Puddling system power supply: 3 V Common power supply: 3 V Common power supply: 5 V for pin 112 Common power supply: 3 or 5 V for pin 109 Core system GND Puddling system GND Common GND Analog input Analog output Analog power supply Analog GND Notes: 1. Pin 113 is used for 5 V system output. 2. Pins 110 and 111 are used for 3 V or 5 V system output. They depend on the voltage of pin 109. Rev.1.00 Jun 15, 2005 page 7 of 21 Rev.1.00 Jun 15, 2005 page 8 of 21 16 16 16 16 16 1HDL FV, HD, MCK, MCKS PLLP, PLLN, fsc, CBLK CP, CSYNC, EP1-3 IDP, SCBLK, etc. FV, CHD etc. 16 H1, H2, RG, XV1 to 4 XSG1,2, XSUB SSG DL 1HDL Timing generator Memory control AGC ADCK, OBP, SP1 SP2, PBLK De-Knee SW LPF to CDS/AGC 16 to Vdriver 16 CCD DSP_MCK 16 M_CK 16 X'tal 2 X'tal 1 10-bit A/D input LPF + Zoom function PreFilter + CLK conversion MOD 7.5IRE + 16 16 16 16 BLK + Fade C-G 16 16 16 16 Y C Highlight enhancer YL Matrix Gamma correction Microprocessor interface SW SW Titler Gamma correction WB RGB Gain SDO Digital interface SW SW SW SW + + RGB Setup RGB Matrix Y Setup Luminance correction Climit AE detection H.V enhancer LINE SW AF detection 8-bit 8-bit WB detection Axis conversion (WB) Axis conversion C.DAC Y.DAC Base clipping 16 C out Y out 16 HD49815TF Block Diagram CPI SLD SDCK SDI YPI CPO YPO HD49815TF Absolute Maximum Ratings (Ta = 25°C) Item Ratings Unit Power supply voltage VCC –0.2 to +6.8 V Pin voltage (5 V operation block) Vt5V –0.2 to VCC1 +0.2 V Pin voltage (3 V operation block) Vt3V –0.2 to VCC2 +0.2 V Output current Per output Io –32 to +32 mA Per GND-VCC pair Iot –72 to +72 mA Allowable power dissipation Popr 450 mW Operating temperature Topr –10 to +75 °C Storage temperature With bias Tbias –10 to +75 °C Without bias Tstg –40 to +125 °C Notes: 1. Using this LSI at values in excess of the absolute maximum ratings may permanently damage the LSI. The LSI should normally be operated under the conditions specified for the electrical characteristics. Exceeding these conditions may lead to incorrect operation and may adversely affect LSI reliability. 2. All voltage values are referenced to GND = 0 V. 3. The pin voltage ratings also apply to the NC pins. 4. VCC1 indicates the 5 V system power supply and VCC2 indicates the 3 V system power supply. Rev.1.00 Jun 15, 2005 page 9 of 21 Symbol HD49815TF Electrical Characteristics (VCC1 = 4.75 V to 5.25 V, VCC2 = 2.85 V to 3.15 V, AVCC = 2.85 V to 3.15 V, Ta = 25°C) Item CMOS-level input voltage CMOS schmitt input voltage Output voltage Symbol VIHC VILC VTC+ VTC– VOHC1 Min VCC2×0.75 0.0 2.50 0.0 VCC1–0.5 Typ — — — — — Max VCC2 VCC2×0.20 VCC2 0.60 — Unit V V V V V Test Conditions Note VOLC1 — — 0.4 V IOL = 200 µA 5 V system pin VOHC2 VCC2–0.5 — — V IOH = –200 µA 3 V system pin 1, 5 VOLC2 — — 0.4 V 1, 6 Input leakage current Output leakage current ILI ILO — — — — 1.0 1.0 µA µA IOL = 200 µA 3 V system pin VIN = 0 V to VCC 2 Pull-down current IPD 5 — 100 µA Output Hi-Z conditions VIN = VCC2 = 3 V Power dissipation Popr — — 450 mW VCC1 = 5 V, VCC2 = 3 V, AVCC = 3 V 3 Analog output voltage (full scale) Vfull 0.80 1.00 1.20 V VCC1 = 5 V VCC2 = 3 V IOH = –200 µA 5 V system pin 1 2 3, 4 Vzero –0.20 0.00 0.20 V Analog output voltage (zero scale) Differential linearity DNL –2.0 — 2.0 LSB Notes: 1. Output voltage must be measured in the steady state. 2. Except for pins that include a pull-down resistor. 3. Guaranteed at CBU = 0.1 µF, CBL = 0.1 µF, REXT = 3.4 kΩ, analog output load resistance = 500 Ω, and Ta = 25°C. 4. Applied to pins indicated as OA in the I/O format column of the pin-functions table. 5. Because VOH of pin 31 cannot be measured logically, it was not tested. 6. Because VOL of pin 32 cannot be measured logically, it was not tested. 7. VCC1, VCC2, and AVCC indicate the 5 V system power supply, the 3 V system power supply, and the analog system power supply, respectively. VCC indicates VCC1, VCC2, and AVCC. 8. The voltage range of pin 109 (VCCC35) is VCC = 2.85 V to 5.25 V. Rev.1.00 Jun 15, 2005 page 10 of 21 HD49815TF Crystal Oscillation Circuit 1. Measuring conditions The oscillation frequency was measured under the following conditions VCC1 = 5.0 V VCC2 = 3 V Ta = 25°C 8 MHz, 20 MHz, and 24 MHz: Rf = 1 to 10 MΩ Cin, Cout = 20 pF (±20 pF) 32 MHz: Rf = 1 to 10 MΩ Cin = 20 pF (±20 pF) Cout = 100 pF (±20 pF), Co = 15 pF (±5 pF), Lout = 1 µH The conditions above may be changed within the range of measuring conditions. 2. Measuring method Under the measuring conditions above, two methods were tested. fmin. = 20 MHz, and fmax. = 32 MHz (applied to pins 26 and 27) fmin. = 8 MHz, and fmax. = 24 MHz (applied to pins 34 and 35) Note: The oscillation start time tosc is max. = 200 ms. 3. Measuring circuit To the internal circuit Xout Xin Dividing counter Cin Monitor pin Cout Counter Co Lout Note: The part enclosed by the dotted line in the above circuit is used when measuring at 32 MHz. Figure 1 Measuring Circuit Rev.1.00 Jun 15, 2005 page 11 of 21 HD49815TF Built-in Functions and System Configuration System Configuration HD49815TF Lens CCD HD49323AF-01 CDS/AGC+ 10-bit ADC Color processing Input line memory Luminance processing SP1/2 Microprocessor I/F TG SSG H1, H2 V.Driver Zoom processing Encode DAC C-signal output Y-signal output R-Y/B-Y digital output Y-signal digital output Initial setting resistor input and AE, AWB detection data output XV1 to 4 AGC gain setting System control AE (iris) control AWB (white balance) control 8-bit single-chip microcomputer (H8 series) Figure 2 System Configuration System Description 1. CCD The following lists the pixels of the CCD sensors that can be used with the HD49815TF. For other pixel numbers, contact our sales dept. 512 (H) × 492 (V) NTSC 512 (H) × 582 (V) PAL 682 (H) × 492 (V) NTSC 681 (H) × 582 (V) PAL 2. CDS/AGC + 10-bit ADC The HD49323AF-01 (manufactured by Renesas) is recommended as an optimal CDS/AGC + 10-bit ADC IC for the HD49815TF. Since the HD49323AF-01 provides a correlated double sampling circuit that realizes high S/N and an automatic gain control (AGC) circuit that implements programmable control of 0 dB to 34.7 dB, it enables a highimage-quality camera system when used in conjunction with the HD49815TF. 3. 8-bit single-chip microcomputer The 8-bit single-chip microcomputer controls the system. It receives the image detection data that the HD49815TF is gathering and implements automatic iris control (AE), automatic white balance control (AWB), and automatic focus control (AF). When setting the power on, this microcomputer implements the initial setting to the state data of the HD49815TF. For details on the state data, see “Renesas Camera DSP (HD49815TF) State Data”. Rev.1.00 Jun 15, 2005 page 12 of 21 HD49815TF Built-in Functions 1. Input line memory block A/D input 10-bit 16 De-Knee AGC DL + To the color-signal processing block 1HDL Memory control 16 1HDL To the luminance-signal processing block Figure 3 Input Line Memory Block a. De-knee function When the CDS/AGC IC at the pre-stage or the external circuit uses the knee circuit to expand the dynamic range of the signal, the de-knee (inverse knee) circuit returns the signal converted by the knee circuit to the original state. The de-knee point can be set in State Data SP_A0 [1]. The gain of the high-luminance block is 1/2. b. AGC function A digital AGC circuit is provided. The AGC gain can be set in State Data SP_A0 [2] from 1 to 16 times. c. 1H delay line (1HDL) function This circuit obtains horizontal efficient pixels of the CCD output signal. The number of efficient pixels is set in State Data SP_A0 [9, 10] and TM_A0 [14] MCSET. 2. Color-signal processing block From the input line memory block + LINE SW Climit PreFilter RGB Matrix + RGB Setup RGB Gain Gamma correction WB YL Matrix Axis conversion C-G To the luminance signal processing block Base clipping To the zoom function Axis conversion (WB) To the AWB detection block Figure 4 Color-Signal Processing Block a. C-limit (complementary color clipping level) function High clipping processing is performed on the complementary color signals independently. High clipping is set in State Data SP_A2 [0 to 3]. The complementary color signal indicates Gb: (G + Cy), Wr: (Ye + Mg), Wb: (Mg + Cy), and Gr: (G + Ye). b. RGB-matrix block The three primary colors (red, green, and blue) are acquired in the RGB matrix by multiplying arbitrary coefficients by the four complementary colors (Gb, Wr, Wb, and Gr) and taking the total of those results. The RGB matrix is designed to support the minimum color moire and to enable free color reproduction. Arbitrary coefficients are set in State Data SP_A2 [4 to 15]. The following shows the formula. KRa KRb KRc KRd R B = KBa KBb KBc KBd KGa KGb KGc KGd G Gb Wr Wb Gr State Data SP_A2 [4 to 15] Rev.1.00 Jun 15, 2005 page 13 of 21 HD49815TF c. RGB-setup block The black level of the color signals is variable according to the coefficients of the RGB matrix. The value calculated by the formula below is subtracted from the color signal to correct the black level. The subtracted value can be set externally and is set in State Data SP_A3 [0 to 2]. Formula = −[48 × Σ (Matrix data) × 23] d. RGB-gain block The RGB gain value acquired in the AWB control is set in the RGB gain circuit to improve the white reproduction performance. As it is set prior to the gamma correction, it changes the gamma correction amount. The RGB gain can be set in State Data SP_A3 [3 to 5] from 1 to 256 times. (The G gain is set from 1 to 128 times.) e. C gamma (γ) correction block The C gamma correction circuit performs gamma processing on the RGB signal. It is set in State Data SP_A3 [6 to 9]. Four kinds of values can be set independently, according to the input-signal level, to acquire optimal gamma characteristics: the C gamma dark (to reduce the gain of the small signals for improving S/N), C gamma coefficient (to control the expansion of the gamma curve), C gamma knee (to decide the slope of the large signals), and C gamma limit (to perform high-clipping processing for the input signal of the C gamma circuit). f. YL matrix block The luminance level changes according to the color temperature of the imaged object. Set State Data SP_A5 [12, 13] for the luminance correction. To correct the luminance, create YL from the three primary colors (R, G, and B) and convert it to the luminance signal level. The YL matrix circuit creates the YL level from the RGB signal. The YL matrix is set in State Data SP_A3 [11 to 13]. g. The axis-conversion (C-Y matrix) block The C-Y (color-difference) matrix takes R-G and B-G as its input signals, and creates the R-Y and B-Y colordifference signals by setting coefficients for those inputs. The axis-conversion (C-Y matrix) circuits are set in State Data SP_A8 [0 to 5]. h. Base-clipping block Since base clipping is performed on the color-difference signals, the base-clipping circuit has the characteristics of clipping the sections near axes on a vector scope. This circuit is set in State Data SP_A8 [8]. 3. Luminance-signal-processing block To the AWBdetection block from YL matrix From the input line memory block H.V enhancer Luminance correction + Gamma correction Y Setup Highlight enhancer Fade + To the zoom function 7.5IRE Figure 5 Luminance-Signal-Processing Block a. H-enhancer function The H-enhancer circuit allows the core level, the enhancer gain, and the noise coefficient to be set independently to acquire optimal characteristics. This circuit is set in State Data SP_A4 [4 to 7]. b. V-enhancer function The V-enhancer circuit allows the enhancer coefficient to be set and can control the gain for only those signal components that exceed the set core level. This circuit is set in State Data SP_A4 [8 to 10]. c. Luminance correction The ratio of the red and blue levels changes according to the color temperature of the imaged object. For example, if a red object is imaged at a low color temperature, the luminance level increases and the object appears to have a lower chrominance. Therefore, the luminance correction circuit performs luminancecorrection processing to implement color depth reproduction. The luminance-correction circuit is set in State Data SP_A5 [12, 13]. Rev.1.00 Jun 15, 2005 page 14 of 21 HD49815TF d. Y setup Since the OB clamp processes the signal, the black level of the 10-bit signal input to the HD49815TF is fixed to 48/1024. The Y-setup circuit subtracts 48 at the black level. However, when 48 at the black level differs due to the noise mixed in the analog signal, the Y-setup circuit subtracts that value. The Y-setup circuit is set in State Data SP_A5 [6]. e. Gamma correction The gamma-correction circuit implements the gamma-correction processing for the separated Y signal. Four kinds of values can be set independently, according to the input-signal level, to acquire optimal gamma characteristics: the gamma input limit, the gamma knee coefficient, the gamma coefficient, and the gamma black clipping. The gamma correction circuit is set in State Data SP_A5 [1 to 4]. f. Highlight enhancer For input-Y signal levels in excess of 100 IRE, the highlight enhancer implements highlight enhancer processing. This circuit is set in State Data SP_A5 [0, 5, and 14]. g. Fade The fade circuit amplifies the luminance signal by a factor of 0 to 1. This circuit is set in State Data SP_A5 [9]. 4. Zoom, encode block, TG, SSG, and AWB and AE detection blocks a. Zoom processing The Y, R-Y, and B-Y signals completed the color-signal processing and the luminance-signal processing can be electronically zoomed by a factor of 1 to 256. After clipping CCD signals for V direction, zoom circuit clips these signals for H direction, and expand these signals for H and V directions. The zooming times and the read starting position for the V and H directions are set in State Data TM_A2 [3, 4, 5, 6, 8, and 9] and ZM_A0 to 6. b. Encode block This circuit encodes the signals completed the color-signal processing, the luminance-signal processing, and the zoom processing as the NTSC/PAL TV-monitor method. A DAC that converts the digital signal to an analog signal is provided. The DAC has two channels: one for R-Y signals and one for B-Y signals. c. TG and SSG The TG generates the signals required to drive the CCD sensor (H1, H2, RG, SG1/2, and the V transfer pulse), and the CDS/AGC control signals (SP1 and SP2). In addition, the SSG generates the signals to synchronize with the TV monitor (the Sync signal). The drive timing of the generated signals differs according to the manufacturer and the specifications of the CCD sensor. Setting the state data enables setting of any timing. The state data of TG and SSG can be set in TM_A0, A1, A2, A3, and A8. d. AWB- and AE-detection blocks The HD49815TF provides automatic white-balance (AWB) and automatic-iris (AE) detection circuits that are indispensable for a camera. The AWB-detection block takes the R-Y and B-Y color-difference signals completed the color-signal processing, and converts to the R-B and MG-G axes. The converted signals are sent to circuits for the white detection to obtain white signal components only, and the white-color difference value is detected. The 8-bit single-chip microcomputer acquires this detection data, and controls the R and B gains to produce the true white. The State Data of the AWB detection is AWB_A0 and A8. The AE-detection block divides the CCD output signal converted to digital by the 10-bit ADC to six arbitrary areas, and performs integration processing. This function enables detection of the lighting level of the image signal. The 8-bit single-chip microcomputer acquires this detection data, and controls the accumulation amount (the shutter) of the CCD sensor or the iris motor of the lens to maintain the proper lighting. The State Data of the AF detection is AE_A0 to A7 and A8. Rev.1.00 Jun 15, 2005 page 15 of 21 HD49815TF Microcomputer Interface Specifications • Write format SLD (Pin 7) SDCK (Pin 6) LSB SDI (Pin 5) MSB D1 D2 D3 D4 D5 D6 D7 D8 1 byte Data (N byte) STD3-----STH2-----STD1 LSB MSB LSB MSB D1 D2 D3 D4 D5 D6 D7 D8 D1 D2 D3 D4 D5 D6 D7 D8 Address STAL STAH Function address (write address) • Read format SLD (Pin 7) SDCK (Pin 6) LSB SDI (Pin 5) MSB LSB MSB D1 D2 D3 D4 D5 D6 D7 D8 D1 D2 D3 D4 D5 D6 D7 D8 STAL 1 byte or 2 byte STAH Function address LSB SDO (Pin 8) MSB Hi-Z Hi-Z Data (N byte) Notes: 1. 2. 3. 4. Synchronous serial transfer (The microcomputer serial port can be used.) Transfer frequency: 3.58 MHz or lower Data and address are handled in a byte unit. The clock and load pulse are used in common for read/write. Rev.1.00 Jun 15, 2005 page 16 of 21 HD49815TF Data Transfer Specification For data transfer between the HD49815TF and the microcomputer, two types (N and E for write, and R1 and R2 for read) are available. The following table shows the relationship between the function block and the transfer specifications. On the next page, the details of the transfer specifications are described. Function Block Signal processing TM Iris White balance AF ZOOM Note: Transfer Mode W W R W R W R W R W Transfer 1 Specifications * N N E R1 N R2 N R1 N R1 N Related Address SP_A0, 2 to 5, 7 to 10, 15 TM_A3, 15 TM_A0 to 2, 8, 10 to 12 TMR_A0 AE_A0 to 7 AE_A8 AWB_A0 AWB_A8 AF_A0 to 3 AF_A8 to 13 ZM_A0 to 6 1. Transfer specifications Type N : Normal transfer from the microcomputer to the DSP Type E : Transfer using the set pulse (synchronous with VD) or the reset signal (used as a synchronous pulse in the DSP) sent from the microcomputer to the RS latch in the DSP Note: This cannot be set during the standby mode. Type R1 : Data transfer (1) from the DSP to microcomputer Type R2 : Data transfer (2) from the DSP to microcomputer Rev.1.00 Jun 15, 2005 page 17 of 21 HD49815TF • Type N Transfer specification Pulse Timing Conditions SLD (Pin 7) A = 100 ns or more B = 100 ns or more C = 100 ns or more N SDCK (Pin 6) A B C • Type E Transfer specification Pulse Timing SLD (Pin 7) E SDCK (Pin 6) A B D Conditions 270,000 pixels 150 ns A 0.5 / fs + 100 ns or more or more 300 ns B 2 / fs + 100 ns or more or more 650 ns D 5.5 / fs + 100 ns or more or more fs Sensor clock 100 ns 410,000 pixels 135 ns or more 240 ns or more 485 ns or more 70 ns • Type R1 Transfer specification Pulse Timing SLD (Pin 7) R1 Conditions A = 100 ns or more B = 100 ns or more D = 400 ns or more SDCK (Pin 6) B A D Do not read the white balance data and the AF read data within the 1H period from the start of the V blanking. • Type R2 Transfer specification Pulse Timing A = 100 ns or more B = 100 ns or more SLD (Pin 7) R2 Conditions SDCK (Pin 6) A D {1 / fs × (32 + 5) + 400 ns} or more B D Rev.1.00 Jun 15, 2005 page 18 of 21 fs Sensor clock 270,000 pixels 4.1 µs or more 410,000 pixels 2.99 µs or more 100 ns 70 ns HD49815TF Note: 2 to 9. Function addresses The following table shows the function addresses for each function block (during state data transfer) and the data to be transferred from the microcomputer. Table 2 Function Addresses for each Function Block and State Data List of Data Transferred 2 Function Address STAH STAL STD1 STD2 Signal D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 processing 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (Setting example) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 D8 D7 D6 D5 D4 D3 D2 D1 D9 3 Function Address STAH STAL STD1 STD2 TM write D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 0 0 0 0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (Setting example) 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 D8 D7 D6 D5 D4 D3 D2 D1 4 Function Address TM read D8 D7 D6 D5 D4 D3 D2 D1 Data read for automatic phase adjustment for SP1, SP2, and RG 0 0 0 0 1 0 0 1 Function Address ADATA STAH STAL STD1 STD2 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 5 0 0 0 1 0 1 0 0 D3 D2 D1 0 0 0 0 0 0 0 0 W Function Address ADATA STAH STAL STD1 STD2 AE D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 0 0 0 0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 D5 D4 D3 D2 D1 0 0 0 0 0 0 0 0 Function Address STAH STAL 6 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 Read area setting by STAL (4 bits) R 0 0 0 1 1 0 0 0 ∗ ∗ ∗ ∗ Function Address ADATA STAH STAL STD1 STD2 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 0 0 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 7 0 0 1 0 0 0 0 0 0 1 D6 D5 D4 D3 D2 D1 0 0 0 0 0 0 0 0 STAH STAL STD1 W Function Address ADATA Window setting AWB D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 for white balance WB detection 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ axis phase setting 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 D8 D7 D6 D5 D4 D3 D2 D1 Function Address 8 D8 D7 D6 D5 D4 D3 D2 D1 White balance read R 0 0 1 0 1 0 0 0 Function Address ADATA STAH STAL HPF bandwidth selection D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 0 0 1 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Base-clip quantity setting, etc. 9 0 0 1 1 0 0 0 0 D4 D3 D2 D1 W Function Address ADATA STAH STAL STD1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 Setting for integration AF and display gate 0 0 0 0 0 0 0 1 1 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 D8 D7 D6 D5 D4 D3 D2 D1 Function Address 10 D8 D7 D6 D5 D4 D3 D2 D1 Vf fetch address (read_cycle) R 0 0 1 1 1 ∗ ∗ ∗ Data 3 Data 2 Header Data 1 D8 D7 D6 D5 D4 D3 D2 D1 1 0 1 1 0 ∗ ∗ ∗ ZOOM W Data 5 Data 6 Data 4 Remarks This example is related to SP-A0[9]. This example is related to TM-A0 [14]. This example is related to the IRIS peak detection area. This example is related to the window H count 3. This example is related to the offset R-B. This example is related to the V count 2. This example is related to the HRF bandwidth selection. This example is related to the differential gate of V-end. Note: For the ZOOM, the transfer of in total of seven bytes is required for the header and data 1 to 6. Rev.1.00 Jun 15, 2005 page 19 of 21 HD49815TF Digital Interface Timing • The output specification and timing of the digital interface output (Y, R-Y, B-Y) NRYBY DICK 4 : 2 : 2 output timing CPO (1 to 8) R-Y0 B-Y0 R-Y2 B-Y1 R-Y4 B-Y4 YPO (1 to 8) Y0 Y1 Y2 Y3 Y4 Y5 • Detailed specifications of digital interface timing X'tal CLK 35 nsec 70 nsec DICK output 2 to 15 nsec CPO, YPO 10 to 50 nsec CPI, YPI 20 to 35 nsec NRYBY (Reference) NRYBY DICK CPO, YPO CPI, YPI : R-Y/B-Y determination pulse : Clock dedicated to the digital interface (The clock generated from the external X'tal.) : Digital interface output terminal : Digital interface input terminal Rev.1.00 Jun 15, 2005 page 20 of 21 HD49815TF Package Dimensions JEITA Package Code P-TQFP120-14x14-0.40 RENESAS Code PTQP0120LA-A Previous Code TFP-120/TFP-120V MASS[Typ.] 0.5g HD *1 D 90 NOTE) 1. DIMENSIONS"*1"AND"*2" DO NOT INCLUDE MOLD FLASH 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. 61 91 60 bp Reference Symbol D c c1 HE Dimension in Millimeters Min Nom Max 14 E 14 A2 1.00 *2 E b1 Terminal cross section 15.8 16.0 16.2 HE 15.8 16.0 16.2 A1 0.00 0.10 0.20 bp 0.12 0.17 0.22 0.12 0.17 1.20 ZE A 31 120 HD 0.15 b1 ZD c c1 Index mark θ F A1 L L1 Detail F e *3 y bp θ 0° e M 8° 0.4 x 0.07 y 0.10 ZD L L1 Rev.1.00 Jun 15, 2005 page 21 of 21 0.15 1.20 1.20 ZE x 0.22 c A2 30 A 1 0.4 0.5 1.0 0.6 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2005. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 2.0