HITACHI HD49815

HD49815TF
Digital Camera Signal Processor
ADE-207-316 (Z)
1st Edition
Sep. 1999
Description
The HD49815TF is a CMOS IC that has been developed as a digital signal-processing IC for CCD-camera
digital-signal-processing systems.
Functions
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
CCD-sensor drive-pulse generation (TG)
Digital AGC (automatic gain control)
Color signal separation circuit
RGB matrix
RGB gain
RGB and Y gamma
Color-difference matrix
Enhancer
RGB and Y setup
Digital I/F (4:2:2)
Zoom control
Mirror reversal
Synchronization signal generator for encoding (SSG)
AWB, AE, and AF detection
Two-channel 8-bit D/A converter
Features
• The HD49815TF provides camera-signal processing, TG, SSG, zoom, and D/A functions and other
functions in a single chip and supports high system-integration level.
• In conjunction with the HD49323AF-01 (CDS/AGC + 10-bit ADC) and the control microcomputer, the
HD49815TF forms a three-chip kit that can implement an optimal CCD-camera digital-signalprocessing system.
• The HD49815TF provides the zoom function and controls the 1- to 256- times linear zoom. It also
provides the half-mirror function.
HD49815TF
Features (cont)
• Since the HD49815TF can be made compatible with the former product, HD49811TFA, through
software, a shorter development term is enabled.
• Since software controls AWB, AE, and AF, any protocol can be prepared according to the camera
shooting conditions.
• Programmable TG enables use of any CCD device.
System Block Diagram
HD49815TF
Lens
CCD HD49323AF-01
CDS/AGC+
10-bit ADC
Input
line
memory
TG
SSG
Color
processing
Luminance
processing
Microprocessor
I/F
V.Driver
System
control
AE
(iris)
control
AWB
(white
balance)
control
8-bit single-chip microcomputer (H8 series)
2
Zoom
processing
Encode
DAC
C-signal output
Y-signal output
R-Y/B-Y
digital output
Y-signal
digital output
HD49815TF
AD(10)
AD(9)
AD(8)
AD(7)
AD(6)
AD(5)
AD(4)
AD(3)
AD(2)
AD(1)
ADCK
CPREF
DSP_MCK
VDD
VSS
SP1
SP2
OBP
VDD
H1
H2
VDD
RG
VDD
XV1
XV2
XV3
XV4
XSG1
XSG2
Pin Arrangement
1
120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91
90
DKF_LD
2
89
FP
T_CP(TEST)
3
88
NME
TY_K
4
87
CPI(1)
SDI
5
86
CPI(2)
SDCK
6
85
CPI(3)
SLD
7
84
CPI(4)
SDO
8
83
CPI(5)
EP(1)
9
82
CPI(6)
EP(2)
10
81
CPI(7)
BF
11
80
CPI(8)
HD_IN
12
79
CPO(1)
M_CK
13
78
CPO(2)
VDD
14
77
CPO(3)
VSS
15
76
CPO(4)
FV
16
75
VSS
HD
17
74
VDD
CBLK
18
73
CPO(5)
CSYNC
19
72
CPO(6)
SCBLK
20
71
CPO(7)
HSYNC
21
70
CPO(8)
ID
22
69
YPI(1)
IDP
23
68
YPI(2)
VDD
24
67
YPI(3)
VSS
25
66
YPI(4)
X1I
26
65
YPI(5)
X1O
27
64
YPI(6)
IDS
28
63
YPI(7)
MCK_S
29
62
YPI(8)
RESET
30
61
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ZOOM_HD
YPO(1)
YPO(2)
YPO(3)
YPO(4)
YPO(5)
YPO(6)
YPO(7)
YPO(8)
NRYBY
DICK
VSS
VDD
VSS
AVDD
VSS
Y_OUT
REXT
CBL
CBU
C_OUT
VSS
AVDD
VSS
AVDD
VSS
FSC
X2O
X2I
VR
TFP-120
PLL_P
PLL_N
XSUB
(Top view)
3
HD49815TF
Pin Description
Pin No.
Symbol
Pin Name
I/O
Description
I/O
Format
1
XSUB
CCD shutter pulse
O
CCD control pulse
ZC2R
2
DKF_LD
Line input LD
I
Line input dedicated load
ICS
3
T_CP
Test
I
Test pin (GND input)
IC
4
TY_K
Title SW
I
Title-killer SW (1 = On, 0 = Off)
ICD
5
SDI
State data input
I
State data-setting data input
IC
6
SDCK
State data clock
I
State data-setting clock
ICS
7
SLD
State data load pulse
I
State data-latch pulse
ICS
8
SDO
AWB, AE, data output
O
AWB, AE, and AF detection-data output
ZC2R
9
EP (1)
AE window pulse 1
O
Iris detection-area-setting pulse:
SP-A7 [8] output changeover
ICZC2R
10
EP (2)
AE window pulse 2
O
Iris detection-area-setting pulse:
SP-A7 [8] output changeover
ICZC2R
11
BF
Burst flag
O
Burst flag output
ICZC2R
12
HD_IN
External CSYNC input
I
External CSYNC input
ICSD
13
M_CK
Microprocessor clock
O
Microprocessor clock output
(1/2 or 1/4 dividing of X’tal 1)
OC2R
14
VDD
VCC2
—
3.3 V power supply
VCCI
15
VSS
GND
—
GND
GNDI
16
FV
Field vertical output
O
Vertical synchronization pulse
ICZC2R
17
HD
HD output
O
Horizontal synchronization pulse
ICZC2R
18
CBLK
Blanking pulse
O
Blanking pulse
ICZC2R
19
CSYNC
SYNC output
O
SYNC pulse
ICZC2R
20
SCBLK
SC blanking pulse
O
Subcarrier blanking pulse (SECAM)
ICZC2R
21
HSYNC
Horizontal SYNC
O
Horizontal SYNC pulse (SECAM)
OC2R
22
ID
Identity
O
SECAM determination pulse
OC2R
23
IDP
Identity pulse
O
SECAM determination pulse
ICZC2R
24
VDD
VCC2
—
3.3 V power supply
VCCC
25
VSS
GND
—
GND
GNDC
26
X1I
X’tal 1 input
I
2fsc oscillator input
IQ3
27
X1O
X’tal 1 output
O
2fsc oscillator output
OQ3
28
IDS
Line ID reset input
I
Line-determination-signal input
ICD
29
MCK_S
MCK output SW
I
Pin 13 MCK dividing setting SW
(1 = 1/2, 0 = 1/4)
IC
30
RESET
Reset
I
Reset: to restore the initial data settings
ICS
4
HD49815TF
Pin Description (cont)
Pin No.
Symbol
Pin Name
I/O
Description
I/O
Format
31
PLL_N
PLL negative
O
PLL signal output
ZC2
32
PLL_P
PLL positive
O
PLL signal output
ZC2
33
VR
Vertical reset
I
Vertical synchronization signal input
ICSD
34
X2I
X’tal 2 input
I
4fsc oscillator input
IQ2
35
X2O
X’tal 2 output
O
4fsc oscillator output
OQ2
36
FSC
Sub carrier frequency
O
fsc output
ICZC2R
37
VSS
GND
—
GND
GNDA
38
AVDD
Analog V CC2
—
Analog system power supply: 3.3 V
VCCA
39
VSS
GND
—
GND
GNDA
40
AVDD
Analog V CC2
—
Analog system power supply: 3.3 V
VCCA
41
VSS
GND
—
GND
GNDA
42
C_OUT
C analog signal output
O
Chrominance-signal analog output
OA
43
CBU
Current buffer upper
I
D/A upper current source
IA
44
CBL
Current buffer lower
I
D/A lower current source
IA
45
REXT
Reference resister EXT
I
Reference voltage input
IA
46
Y_OUT
Y analog signal output
O
Luminance-signal analog output
OA
47
VSS
GND
—
GND
GNDA
48
AVDD
Analog V CC2
—
Analog system power supply: 3.3 V
VCCA
49
VSS
GND
—
GND
GNDA
50
VDD
VCC2
—
Digital system power supply: 3.3 V
VCCI
51
VSS
GND
—
GND
GNDI
52
DICK
Digital interface clock
O
Digital interface clock output
ICZC2R
53
NRYBY
R-Y, B-Y phase output
O
Color-difference signal phase clock
ICZC2R
54
YPO (8)
Y parallel output (8); MSB
O
Luminance-signal digital output MSB
OC2R
55
YPO (7)
Y parallel output (7)
O
Luminance-signal digital output
OC2R
56
YPO (6)
Y parallel output (6)
O
Luminance-signal digital output
OC2R
57
YPO (5)
Y parallel output (5)
O
Luminance-signal digital output
OC2R
58
YPO (4)
Y parallel output (4)
O
Luminance-signal digital output
OC2R
59
YPO (3)
Y parallel output (3)
O
Luminance-signal digital output
OC2R
60
YPO (2)
Y parallel output (2)
O
Luminance-signal digital output
OC2R
61
YPO (1)
Y parallel output (1) ; LSB
O
Luminance-signal digital output LSB
OC2R
62
YPI (8)
Y parallel input (8); MSB
I
Luminance-signal digital input MSB
ICD
63
YPI (7)
Y parallel input (7)
I
Luminance-signal digital input
ICD
64
YPI (6)
Y parallel input (6)
I
Luminance-signal digital input
ICD
5
HD49815TF
Pin Description (cont)
Pin No.
Symbol
Pin Name
I/O
Description
I/O
Format
65
YPI (5)
Y parallel input (5)
I
Luminance-signal digital input
ICD
66
YPI (4)
Y parallel input (4)
I
Luminance-signal digital input
ICD
67
YPI (3)
Y parallel input (3)
I
Luminance-signal digital input
ICD
68
YPI (2)
Y parallel input (2)
I
Luminance-signal digital input
ICD
69
YPI (1)
Y parallel input (1); LSB
I
Luminance-signal digital input LSB
ICD
70
CPO (8)
C parallel output (8); MSB
O
Chrominance-signal digital output
MSB
OC2R
71
CPO (7)
C parallel output (7)
O
Chrominance-signal digital output
OC2R
72
CPO (6)
C parallel output (6)
O
Chrominance-signal digital output
OC2R
73
CPO (5)
C parallel output (5)
O
Chrominance-signal digital output
OC2R
74
VDD
VCC2
—
3.3 V power supply
VCCO
75
VSS
GND
—
GND
GNDO
76
CPO (4)
C parallel output (4)
O
Chrominance-signal digital output
OC2R
77
CPO (3)
C parallel output (3)
O
Chrominance-signal digital output
OC2R
78
CPO (2)
C parallel output (2)
O
Chrominance-signal digital output
OC2R
79
CPO (1)
C parallel output (1); LSB
O
Chrominance-signal digital output
LSB
OC2R
80
CPI (8)
C parallel input (8); MSB
I
Chrominance-signal digital input
MSB
ICD
81
CPI (7)
C parallel input (7)
I
Chrominance-signal digital input
ICD
82
CPI (6)
C parallel input (6)
I
Chrominance-signal digital input
ICD
83
CPI (5)
C parallel input (5)
I
Chrominance-signal digital input
ICD
84
CPI (4)
C parallel input (4)
I
Chrominance-signal digital input
ICD
85
CPI (3)
C parallel input (3)
I
Chrominance-signal digital input
ICD
86
CPI (2)
C parallel input (2)
I
Chrominance-signal digital input
ICD
87
CPI (1)
C parallel input (1); LSB
I
Chrominance-signal digital input
LSB
ICD
88
NME
Memory HD output
O
Line memory control output
ICZC2DR
89
FP
Field pulse
O
Field pulse
ICZC2R
90
ZOOM_HD
Zoom HD output
O
Horizontal synchronization signal
ICZC2R
91
AD (10)
AD input (10); MSB
I
A/D data input MSB
IC
92
AD (9)
AD input (9)
I
A/D data input
IC
93
AD (8)
AD input (8)
I
A/D data input
IC
94
AD (7)
AD input (7)
I
A/D data input
IC
6
HD49815TF
Pin Description (cont)
Pin No.
Symbol
Pin Name
I/O
Description
I/O
Format
95
AD (6)
AD input (6)
I
A/D data input
IC
96
AD (5)
AD input (5)
I
A/D data input
IC
97
AD (4)
AD input (4)
I
A/D data input
IC
98
AD (3)
AD input (3)
I
A/D data input
IC
99
AD (2)
AD input (2)
I
A/D data input
IC
100
AD (1)
AD input (1); LSB
I
A/D data input LSB
IC
101
ADCK
AD clock
O
A/D converter clock
ICZC2R
102
CPREF
Clamp reference output
O
Clamp reference pulse
2C3
103
DSP_MCK
Microprocessor clock
output
O
Microprocessor clock output:
SP-A7 [8] output changeover
ICZC2R
104
VDD
VCC2
—
3.3 V power supply
VCCO
105
VSS
GND
—
GND
GNDO
106
SP1
Sampling pulse 1
O
Sampling pulse for the AGC/CDS
IC
ICZC2
107
SP2
Sampling pulse 2
O
Sampling pulse for the AGC/CDS
IC
ICZC2
108
OBP
OBP pulse
O
Optical black-pulse output
ICZC2R
109
VDD
VCC1
—
3 V or 5 V power supply
(H1/H2 power supply)
VCCC35
110
H1
H1
O
CCD-sensor horizontal drive pulse
OC3R
111
H2
H2
O
CCD-sensor horizontal drive pulse
OC3R
112
VDD
VCC1
—
5 V power supply
(RG power supply)
VCCC5
113
RG
Reset gate
O
CCD-sensor control reset gate
ZC3R
114
VDD
VCC2
—
3.3 V power supply
VCCO
115
XV1
XV1
O
CCD-sensor vertical control pulse
ICZC2R
116
XV2
XV2
O
CCD-sensor vertical control pulse
ICZC2R
117
XV3
XV3
O
CCD-sensor vertical control pulse
ICZC2R
118
XV4
XV4
O
CCD-sensor vertical control pulse
ICZC2R
119
XSG1
XSG1
O
CCD-sensor vertical control pulse
ZC2R
120
XSG2
XSG2
O
CCD-sensor vertical control pulse
ZC2R
7
HD49815TF
Description of I/O Format
I/O Format
Contents
IC
CMOS level input
ICD
CMOS level input with pull-down resistor
ICS
CMOS level schmitt input
ICSD
CMOS level input with pull-down resistor
ICZC2
CMOS level common I/O (4 mA)
ICZC2DR
CMOS level common I/O with pull-down resistor and through-put control (4 mA)
ICZC2R
CMOS level common I/O with through-put control (4 mA)
OC2R
CMOS level output with through-put control (4 mA)
OC3R
CMOS level output with through-put control (8 mA)
IQ2
Crystal oscillator input
OQ2
Crystal oscillator output
IQ3
Crystal oscillator input
OQ3
Crystal oscillator output
ZC2
CMOS-level three-state output (4 mA)
ZC2R
CMOS-level three-state output with through-put control (4 mA)
ZC3
CMOS-level three-state output (8 mA)
ZC3R
CMOS-level three-state output with through-put control (8 mA)
VCCI
Core system power supply: 3 V
VCCO
Puddling system power supply: 3 V
VCCC
Common power supply: 3 V
VCCC5
Common power supply: 5 V for pin 112
VCCC35
Common power supply: 3 or 5 V for pin 109
GNDI
Core system GND
GNDO
Puddling system GND
GNDC
Common GND
IA
Analog input
OA
Analog output
VCCA
Analog power supply
GNDA
Analog GND
Notes: 1. Pin 113 is used for 5 V system output.
2. Pins 110 and 111 are used for 3 V or 5 V system output. They depend on the voltage of pin 109.
8
16
16
16
16
16
1HDL
FV, HD, MCK, MCKS
PLLP, PLLN, fsc, CBLK
CP, CSYNC, EP1-3
IDP, SCBLK, etc.
FV,
CHD etc. 16
H1, H2, RG, XV1 to 4
XSG1,2, XSUB
SSG
DL
1HDL
Timing
generator
Memory
control
AGC
ADCK, OBP, SP1
SP2, PBLK
De-Knee
SW
LPF
to
CDS/AGC 16
to
Vdriver 16
CCD
DSP_MCK 16
M_CK 16
X’tal 2
X’tal 1
10-bit
A/D input
LPF
+
Zoom
function
PreFilter
+
CLK
conversion
MOD
7.5IRE
+
16 16 16 16
BLK
+
Fade
C-G
16 16 16 16
Y
C
Highlight
enhancer
YL
Matrix
Gamma
correction
Microprocessor interface
SW
SW
Titler
Gamma
correction
WB
RGB
Gain
SDO
Digital interface
SW
SW
SW
SW
+
+
RGB Setup
RGB
Matrix
Y Setup
Luminance
correction
Climit
AE
detection
H.V
enhancer
LINE
SW
AF
detection
8-bit
8-bit
WB
detection
Axis
conversion
(WB)
Axis
conversion
C.DAC
Y.DAC
Base
clipping
16
C out
Y out
16
HD49815TF
Block Diagram
CPI
SLD
SDCK
SDI
YPI
CPO
YPO
9
HD49815TF
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
Power supply voltage
VCC
–0.2 to +6.8
V
Pin voltage (5 V operation block)
Vt5V
–0.2 to VCC1 +0.2
V
Pin voltage (3 V operation block)
Vt3V
–0.2 to VCC2 +0.2
V
Output current
Per output
Io
–32 to +32
mA
Per GND-VCC pair
Iot
–72 to +72
mA
Allowable power dissipation
Popr
450
mW
Operating temperature
Topr
–10 to +75
°C
With bias
Tbias
–10 to +75
°C
Without bias
Tstg
–40 to +125
°C
Storage temperature
Notes: 1. Using this LSI at values in excess of the absolute maximum ratings may permanently damage
the LSI. The LSI should normally be operated under the conditions specified for the electrical
characteristics. Exceeding these conditions may lead to incorrect operation and may adversely
affect LSI reliability.
2. All voltage values are referenced to GND = 0 V.
3. The pin voltage ratings also apply to the NC pins.
4. VCC1 indicates the 5 V system power supply and VCC2 indicates the 3 V system power supply.
10
HD49815TF
Electrical Characteristics (VCC1 = 4.75 V to 5.25 V, VCC2 = 2.85 V to 3.15 V,
AVCC = 2.85 V to 3.15 V, Ta = 25°C)
Test Conditions
Item
Symbol
Min
Typ
Max
Unit
Note
CMOS-level
VIHC
VCC2×0.75
—
VCC2
V
input voltage
VILC
0.0
—
VCC2×0.20
V
CMOS schmitt
VTC +
2.50
—
VCC2
V
VCC1 = 5 V
input voltage
VTC –
0.0
—
0.60
V
VCC2 = 3 V
Output voltage
VOHC1
VCC1–0.5
—
—
V
I OH = –200 µA
5 V system pin
VOLC1
—
—
0.4
V
I OL = 200 µA
5 V system pin
VOHC2
VCC2–0.5
—
—
V
I OH = –200 µA
3 V system pin
1, 5
VOLC2
—
—
0.4
V
I OL = 200 µA
3 V system pin
1, 6
Input leakage current
I LI
—
—
1.0
µA
VIN = 0 V to VCC
2
Output leakage current
I LO
—
—
1.0
µA
Output Hi-Z
conditions
2
Pull-down current
I PD
5
—
100
µA
VIN = VCC2 = 3 V
Power dissipation
Popr
—
—
450
mW
VCC1 = 5 V,
VCC2 = 3 V,
AVCC = 3 V
Analog output voltage
(full scale)
Vfull
0.80
1.00
1.20
V
Analog output voltage
(zero scale)
Vzero
–0.20
0.00
0.20
V
Differential linearity
DNL
–2.0
—
2.0
LSB
1
3
3, 4
Notes: 1. Output voltage must be measured in the steady state.
2. Except for pins that include a pull-down resistor.
3. Guaranteed at CBU = 0.1 µF, CBL = 0.1 µF, REXT = 3.4 kΩ, analog output load resistance = 500
Ω, and Ta = 25°C.
4. Applied to pins indicated as OA in the I/O format column of the pin-functions table.
5. Because V OH of pin 31 cannot be measured logically, it was not tested.
6. Because V OL of pin 32 cannot be measured logically, it was not tested.
7. VCC1, VCC2, and AVCC indicate the 5 V system power supply, the 3 V system power supply, and
the analog system power supply, respectively. V CC indicates VCC1, VCC2, and AVCC.
8. The voltage range of pin 109 (VCCC35) is VCC = 2.85 V to 5.25 V.
11
HD49815TF
Crystal Oscillation Circuit
1. Measuring conditions
The oscillation frequency was measured under the following conditions.
VCC1 = 5.0 V
VCC2 = 3 V
Ta = 25°C
8 MHz, 20 MHz, and 24 MHz:
Rf = 1 to 10 MΩ
Cin, Cout = 20 pF (±20 pF)
32 MHz:
Rf = 1 to 10 MΩ
Cin = 20 pF (±20 pF)
Cout = 100 pF (±20 pF), Co = 15 pF (±5 pF), Lout = 1 µH
The conditions above may be changed within the range of measuring conditions.
2. Measuring method
Under the measuring conditions above, two methods were tested.
fmin. = 20 MHz, and fmax. = 32 MHz (applied to pins 26 and 27)
fmin. = 8 MHz, and fmax. = 24 MHz (applied to pins 34 and 35)
Note: The oscillation start time tosc is max. = 200 ms.
3. Measuring circuit
To the internal circuit
Xout
Xin
Dividing
counter
Cin
Monitor pin
Cout
Counter
Co
Lout
Note: The part enclosed by the dotted line in the above
circuit is used when measuring at 32 MHz.
Figure 1 Measuring Circuit
12
HD49815TF
Built-in Functions and System Configuration
System Configuration
HD49815TF
Lens
CCD HD49323AF-01
CDS/AGC+
10-bit ADC
Color
processing
Input
line
memory
Luminance
processing
SP1/2
Microprocessor
I/F
TG
SSG
H1, H2
V.Driver
Zoom
processing
Encode
DAC
C-signal output
Y-signal output
R-Y/B-Y
digital output
Y-signal
digital output
Initial setting resistor input and
AE, AWB detection data output
XV1 to 4
AGC gain setting
System
control
AE
(iris)
control
AWB
(white
balance)
control
8-bit single-chip microcomputer (H8 series)
Figure 2 System Configuration
System Description
1. CCD
The following lists the pixels of the CCD sensors that can be used with the HD49815TF. For other
pixel numbers, contact our sales dept.
512 (H) × 492 (V) NTSC
512 (H) × 582 (V) PAL
682 (H) × 492 (V) NTSC
681 (H) × 582 (V) PAL
2. CDS/AGC + 10-bit ADC
The HD49323AF-01 (manufactured by Hitachi) is recommended as an optimal CDS/AGC + 10-bit
ADC IC for the HD49815TF. Since the HD49323AF-01 provides a correlated double sampling circuit
that realizes high S/N and an automatic gain control (AGC) circuit that implements programmable
control of 0 dB to 34.7 dB, it enables a high-image-quality camera system when used in conjunction
with the HD49815TF.
13
HD49815TF
3. 8-bit single-chip microcomputer
The 8-bit single-chip microcomputer controls the system. It receives the image detection data that the
HD49815TF is gathering and implements automatic iris control (AE), automatic white balance control
(AWB), and automatic focus control (AF).
When setting the power on, this microcomputer implements the initial setting to the state data of the
HD49815TF.
For details on the state data, see “Hitachi Camera DSP (HD49815TF) State Data”.
Built-in Functions
1. Input line memory block
A/D input
10-bit
16
De-Knee
AGC
DL
+
To the color-signal
processing block
1HDL
16
Memory
control
1HDL
To the luminance-signal
processing block
Figure 3 Input Line Memory Block
a. De-knee function
When the CDS/AGC IC at the pre-stage or the external circuit uses the knee circuit to expand the
dynamic range of the signal, the de-knee (inverse knee) circuit returns the signal converted by the
knee circuit to the original state.
The de-knee point can be set in State Data SP_A0 [1]. The gain of the high-luminance block is 1/2.
b. AGC function
A digital AGC circuit is provided. The AGC gain can be set in State Data SP_A0 [2] from 1 to 16
times.
c. 1H delay line (1HDL) function
This circuit obtains horizontal efficient pixels of the CCD output signal. The number of efficient
pixels is set in State Data SP_A0 [9, 10] and TM_A0 [14] MCSET.
14
HD49815TF
2. Color-signal processing block
From
the input LINE
line
SW
memory
block
+
Climit
PreFilter
RGB
Matrix
+
RGB Setup
RGB
Gain
Gamma
correction
WB
YL
Matrix
C-G
To the luminance
signal processing block
Axis
conversion
Base
clipping
To
the zoom
function
Axis
conversion
(WB)
To the AWB
detection block
Figure 4 Color-Signal Processing Block
a. C-limit (complementary color clipping level) function
High clipping processing is performed on the complementary color signals independently. High
clipping is set in State Data SP_A2 [0 to 3].
The complementary color signal indicates Gb: (G + Cy), Wr: (Ye + Mg), Wb: (Mg + Cy), and Gr:
(G + Ye).
b. RGB-matrix block
The three primary colors (red, green, and blue) are acquired in the RGB matrix by multiplying
arbitrary coefficients by the four complementary colors (Gb, Wr, Wb, and Gr) and taking the total of
those results. The RGB matrix is designed to support the minimum color moire and to enable free
color reproduction. Arbitrary coefficients are set in State Data SP_A2 [4 to 15]. The following
shows the formula.
R
KRa KRb KRc KRd
B = KBa KBb KBc KBd
G
KGa KGb KGc KGd
Gb
Wr
Wb
Gr
State Data SP_A2 [4 to 15]
c. RGB-setup block
The black level of the color signals is variable according to the coefficients of the RGB matrix. The
value calculated by the formula below is subtracted from the color signal to correct the black level.
The subtracted value can be set externally and is set in State Data SP_A3 [0 to 2].
Formula = −[48 × Σ (Matrix data) × 23]
d. RGB-gain block
The RGB gain value acquired in the AWB control is set in the RGB gain circuit to improve the
white reproduction performance. As it is set prior to the gamma correction, it changes the gamma
correction amount. The RGB gain can be set in State Data SP_A3 [3 to 5] from 1 to 256 times.
(The G gain is set from 1 to 128 times.)
15
HD49815TF
e. C gamma (γ) correction block
The C gamma correction circuit performs gamma processing on the RGB signal. It is set in State
Data SP_A3 [6 to 9]. Four kinds of values can be set independently, according to the input-signal
level, to acquire optimal gamma characteristics: the C gamma dark (to reduce the gain of the small
signals for improving S/N), C gamma coefficient (to control the expansion of the gamma curve), C
gamma knee (to decide the slope of the large signals), and C gamma limit (to perform high-clipping
processing for the input signal of the C gamma circuit).
f. YL matrix block
The luminance level changes according to the color temperature of the imaged object. Set State
Data SP_A5 [12, 13] for the luminance correction. To correct the luminance, create YL from the
three primary colors (R, G, and B) and convert it to the luminance signal level. The YL matrix
circuit creates the YL level from the RGB signal.
The YL matrix is set in State Data SP_A3 [11 to 13].
g. The axis-conversion (C-Y matrix) block
The C-Y (color-difference) matrix takes R-G and B-G as its input signals, and creates the R-Y and
B-Y color-difference signals by setting coefficients for those inputs.
The axis-conversion (C-Y matrix) circuits are set in State Data SP_A8 [0 to 5].
h. Base-clipping block
Since base clipping is performed on the color-difference signals, the base-clipping circuit has the
characteristics of clipping the sections near axes on a vector scope.
This circuit is set in State Data SP_A8 [8].
3. Luminance-signal-processing block
To
the AWBdetection block
from
YL matrix
From
the input
line
memory
block
H.V
enhancer
Luminance
correction
+
Gamma
correction
Y Setup
Highlight
enhancer
+
Fade
To
the zoom
function
7.5IRE
Figure 5 Luminance-Signal-Processing Block
a. H-enhancer function
The H-enhancer circuit allows the core level, the enhancer gain, and the noise coefficient to be set
independently to acquire optimal characteristics.
This circuit is set in State Data SP_A4 [4 to 7].
b. V-enhancer function
The V-enhancer circuit allows the enhancer coefficient to be set and can control the gain for only
those signal components that exceed the set core level.
This circuit is set in State Data SP_A4 [8 to 10].
16
HD49815TF
c. Luminance correction
The ratio of the red and blue levels changes according to the color temperature of the imaged object.
For example, if a red object is imaged at a low color temperature, the luminance level increases and
the object appears to have a lower chrominance. Therefore, the luminance correction circuit
performs luminance-correction processing to implement color depth reproduction.
The luminance-correction circuit is set in State Data SP_A5 [12, 13].
d. Y setup
Since the OB clamp processes the signal, the black level of the 10-bit signal input to the
HD49815TF is fixed to 48/1024. The Y-setup circuit subtracts 48 at the black level. However,
when 48 at the black level differs due to the noise mixed in the analog signal, the Y-setup circuit
subtracts that value.
The Y-setup circuit is set in State Data SP_A5 [6].
e. Gamma correction
The gamma-correction circuit implements the gamma-correction processing for the separated Y
signal. Four kinds of values can be set independently, according to the input-signal level, to acquire
optimal gamma characteristics: the gamma input limit, the gamma knee coefficient, the gamma
coefficient, and the gamma black clipping.
The gamma correction circuit is set in State Data SP_A5 [1 to 4].
f. Highlight enhancer
For input-Y signal levels in excess of 100 IRE, the highlight enhancer implements highlight
enhancer processing.
This circuit is set in State Data SP_A5 [0, 5, and 14].
g. Fade
The fade circuit amplifies the luminance signal by a factor of 0 to 1.
This circuit is set in State Data SP_A5 [9].
4. Zoom, encode block, TG, SSG, and AWB and AE detection blocks
a. Zoom processing
The Y, R-Y, and B-Y signals completed the color-signal processing and the luminance-signal
processing can be electronically zoomed by a factor of 1 to 256.
After clipping CCD signals for V direction, zoom circuit clips these signals for H direction, and
expand these signals for H and V directions.
The zooming times and the read starting position for the V and H directions are set in State Data
TM_A2 [3, 4, 5, 6, 8, and 9] and ZM_A0 to 6.
b. Encode block
This circuit encodes the signals completed the color-signal processing, the luminance-signal
processing, and the zoom processing as the NTSC/PAL TV-monitor method.
A DAC that converts the digital signal to an analog signal is provided. The DAC has two channels:
one for R-Y signals and one for B-Y signals.
17
HD49815TF
c. TG and SSG
The TG generates the signals required to drive the CCD sensor (H1, H2, RG, SG1/2, and the V
transfer pulse), and the CDS/AGC control signals (SP1 and SP2).
In addition, the SSG generates the signals to synchronize with the TV monitor (the Sync signal).
The drive timing of the generated signals differs according to the manufacturer and the
specifications of the CCD sensor. Setting the state data enables setting of any timing.
The state data of TG and SSG can be set in TM_A0, A1, A2, A3, and A8.
d. AWB- and AE-detection blocks
The HD49815TF provides automatic white-balance (AWB) and automatic-iris (AE) detection
circuits that are indispensable for a camera.
The AWB-detection block takes the R-Y and B-Y color-difference signals completed the colorsignal processing, and converts to the R-B and MG-G axes. The converted signals are sent to
circuits for the white detection to obtain white signal components only, and the white-color
difference value is detected. The 8-bit single-chip microcomputer acquires this detection data, and
controls the R and B gains to produce the true white.
The State Data of the AWB detection is AWB_A0 and A8.
The AE-detection block divides the CCD output signal converted to digital by the 10-bit ADC to six
arbitrary areas, and performs integration processing. This function enables detection of the lighting
level of the image signal.
The 8-bit single-chip microcomputer acquires this detection data, and controls the accumulation
amount (the shutter) of the CCD sensor or the iris motor of the lens to maintain the proper lighting.
The State Data of the AF detection is AE_A0 to A7 and A8.
18
HD49815TF
Microcomputer Interface Specifications
• Write format
SLD
(Pin 7)
SDCK
(Pin 6)
LSB
SDI
(Pin 5)
MSB
D1 D2 D3 D4 D5 D6 D7 D8
1 byte
Data (N byte)
STD3-----STH2-----STD1
LSB
MSB LSB
MSB
D1 D2 D3 D4 D5 D6 D7 D8 D1 D2 D3 D4 D5 D6 D7 D8
Address
STAL
STAH
Function address
(write address)
• Read format
SLD
(Pin 7)
SDCK
(Pin 6)
LSB
SDI
(Pin 5)
MSB LSB
MSB
D1 D2 D3 D4 D5 D6 D7 D8 D1 D2 D3 D4 D5 D6 D7 D8
STAL
1 byte or 2 byte
Function address
STAH
LSB
SDO
(Pin 8)
MSB
Hi-Z
Hi-Z
Data
(N byte)
Notes: 1.
2.
3.
4.
Synchronous serial transfer (The microcomputer serial port can be used.)
Transfer frequency: 3.58 MHz or lower
Data and address are handled in a byte unit.
The clock and load pulse are used in common for read/write.
19
HD49815TF
Data Transfer Specification
For data transfer between the HD49815TF and the microcomputer, two types (N and E for write, and R1
and R2 for read) are available. The following table shows the relationship between the function block and
the transfer specifications. On the next page, the details of the transfer specifications are described.
Function Block
Transfer Mode
Transfer
Specifications *1
Related Address
Signal processing
W
N
SP_A0, 2 to 5, 7 to 10, 15
TM
W
N
TM_A3, 15
E
TM_A0 to 2, 8, 10 to 12
R
R1
TMR_A0
W
N
AE_A0 to 7
R
R2
AE_A8
W
N
AWB_A0
R
R1
AWB_A8
W
N
AF_A0 to 3
R
R1
AF_A8 to 13
W
N
ZM_A0 to 6
Iris
White balance
AF
ZOOM
Note:
20
1. Transfer specifications
Type N : Normal transfer from the microcomputer to the DSP
Type E : Transfer using the set pulse (synchronous with VD) or the reset signal (used as a
synchronous pulse in the DSP) sent from the microcomputer to the RS latch in the
DSP
Note: This cannot be set during the standby mode.
Type R1 : Data transfer (1) from the DSP to microcomputer
Type R2 : Data transfer (2) from the DSP to microcomputer
HD49815TF
• Type N
Transfer
specification
Pulse Timing
Conditions
SLD
(Pin 7)
A = 100 ns or more
B = 100 ns or more
C = 100 ns or more
N
SDCK
(Pin 6)
A
B
C
• Type E
Transfer
specification
Pulse Timing
SLD
(Pin 7)
E
SDCK
(Pin 6)
B
A
D
Conditions
270,000
pixels
150 ns
A 0.5 / fs + 100 ns or more or more
300 ns
B 2 / fs + 100 ns or more
or more
650 ns
D 5.5 / fs + 100 ns or more or more
fs Sensor clock
100 ns
410,000
pixels
135 ns
or more
240 ns
or more
485 ns
or more
70 ns
• Type R1
Transfer
specification
Pulse Timing
SLD
(Pin 7)
R1
Conditions
A = 100 ns or more
B = 100 ns or more
D = 400 ns or more
SDCK
(Pin 6)
A
B
D
Do not read the white balance data and the
AF read data within the 1H period from the
start of the V blanking.
• Type R2
Transfer
specification
Pulse Timing
A = 100 ns or more
B = 100 ns or more
SLD
(Pin 7)
R2
Conditions
SDCK
(Pin 6)
A
D {1 / fs × (32 + 5)
+ 400 ns} or more
B
D
fs Sensor clock
270,000
pixels
4.1 µs
or more
410,000
pixels
2.99 µs
or more
100 ns
70 ns
21
HD49815TF
Note:
2 to 9.
Function addresses
The following table shows the function addresses for each function block (during state data
transfer) and the data to be transferred from the microcomputer.
Table 2 Function Addresses for each Function Block and State Data
List of Data Transferred
2
Function Address
STAH
STAL
STD1
STD2
Signal D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1
processing
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(Setting
example) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 D8 D7 D6 D5 D4 D3 D2 D1        D9
3
Function Address
STAH
STAL
STD1
STD2
TM write D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1
0 0 0 0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(Setting
example) 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 D8 D7 D6 D5 D4 D3 D2 D1        
Function Address
4
TM read D8 D7 D6 D5 D4 D3 D2 D1
Data read for automatic phase adjustment for SP1, SP2, and RG
0 0 0 0 1 0 0 1
Function Address ADATA
STAH
STAL
STD1
STD2
D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1
0 0 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
5 0 0 0 1 0 1 0 0      D3 D2 D1         0 0 0 0 0 0 0 0
STAH
STAL
STD1
STD2
W Function Address ADATA
AE
D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1
0 0 0 0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0    D5 D4 D3 D2 D1 0 0 0 0 0 0 0 0
Function Address
STAH
STAL
6 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1
Read area setting by STAL (4 bits)
R
0 0 0 1 1 0 0 0  ∗ ∗ ∗ ∗
Function Address ADATA
STAH
STAL
STD1
STD2
D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1
0 0 1 0 0  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
7 0 0 1 0 0       0 0 0 0 1   D6 D5 D4 D3 D2 D1 0 0 0 0 0 0 0 0
W Function Address ADATA
STAH
STAL
STD1
Window setting
AWB
D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1
for white balance
WB detection
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗
axis phase setting
0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 D8 D7 D6 D5 D4 D3 D2 D1
Function Address
8 D8 D7 D6 D5 D4 D3 D2 D1
White balance read
R
0 0 1 0 1 0 0 0
Function Address ADATA
STAH
STAL
HPF bandwidth selection
D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1
0 0 1 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Base-clip quantity setting, etc.
9 0 0 1 1 0 0 0 0     D4 D3 D2 D1
STAH
STAL
STD1
W Function Address ADATA
AF
D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 D8 D7 D6 D5 D4 D3 D2 D1 Setting for integration
and display gate
0 0 0 0 0 0 0 1 1 1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 D8 D7 D6 D5 D4 D3 D2 D1
Function Address
10 D8 D7 D6 D5 D4 D3 D2 D1
Vf fetch address (read_cycle)
R
0 0 1 1 1 ∗ ∗ ∗
Header
Data 1
Data 2
Data 3
D8 D7 D6 D5 D4 D3 D2 D1
1 0 1 1 0 ∗ ∗ ∗
ZOOM W
Data 4
Data 5
Data 6
Remarks
This example
is related to
SP-A0[9].
This example
is related to
TM-A0 [14].
This example
is related to
the IRIS peak
detection area.
This example
is related to
the window
H count 3.
This example
is related to
the offset R-B.
This example
is related to
the V count 2.
This example
is related to
the HRF
bandwidth
selection.
This example
is related to
the differential
gate of V-end.
Note: For the ZOOM, the transfer of in total of seven bytes is required for the header and data 1 to 6.
22
HD49815TF
Digital Interface Timing
• The output specification and timing of the digital interface output (Y, R-Y, B-Y)
NRYBY
DICK
4 : 2 : 2 output timing
CPO (1 to 8)
R-Y0
B-Y0
R-Y2
B-Y1
R-Y4
B-Y4
YPO (1 to 8)
Y0
Y1
Y2
Y3
Y4
Y5
• Detailed specifications of digital interface timing
X’tal CLK
35 nsec
70 nsec
DICK output
2 to 15 nsec
CPO, YPO
10 to 50 nsec
CPI, YPI
20 to 35 nsec
NRYBY
(Reference)
NRYBY
DICK
CPO, YPO
CPI, YPI
: R-Y/B-Y determination pulse
: Clock dedicated to the digital interface (The clock generated from the external X’tal.)
: Digital interface output terminal
: Digital interface input terminal
23
HD49815TF
Package Dimensions
Unit: mm
16.0 ± 0.2
14
90
61
60
120
31
0.10
*Dimension including the plating thickness
Base material dimension
24
*0.17 ± 0.05
0.15 ± 0.04
0.07 M
1.2
1.00
30
0.10 ± 0.10
1
*0.17 ± 0.05
0.15 ± 0.04
1.20 Max
0.4
16.0 ± 0.2
91
1.0
0° – 8°
0.5 ± 0.1
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
TFP-120
—
Conforms
0.5 g
HD49815TF
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Straβe 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.
25