IRGP4266PbF IRGP4266-EPbF Insulated Gate Bipolar Transistor VCES = 650V C IC = 90A, TC =100°C tSC 5.5µs, TJ(max) = 175°C G VCE(ON) typ. = 1.7V @ IC = 75A G E G Gate Low VCE(ON) and switching Losses Square RBSOA and Maximum Junction Temperature 175°C Positive VCE (ON) Temperature Coefficient 5.5µs short circuit SOA Lead-Free, RoHS compliant Base part number Package Type IRGP4266PbF IRGP4266-EPbF TO-247AC TO-247AD C G C Collector Features E IRGP4266PbF TO-247AC n-channel Applications Industrial Motor Drive Inverters UPS Welding C E IRGP4266-EPbF TO-247AD E Emitter Benefits High efficiency in a wide range of applications and switching frequencies Improved reliability due to rugged hard switching performance and higher power capability Excellent current sharing in parallel operation Enables short circuit protection scheme Environmentally friendly Standard Pack Form Quantity Tube Tube Orderable Part Number 25 25 IRGP4266PbF IRGP4266-EPbF Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current, VGE=20V Clamped Inductive Load Current, VGE=20V Continuous Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw Max. 650 140 90 300 300 ±20 455 230 -40 to +175 Units V A V W 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) °C Thermal Resistance RJC RCS RJA 1 Parameter Thermal Resistance Junction-to-Case Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) www.irf.com © 2014 International Rectifier Min. ––– ––– ––– Typ. ––– 0.24 40 Submit Datasheet Feedback Max. 0.33 ––– ––– Units °C/W August 22, 2014 IRGP4266PbF/IRGP4266-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage V(BR)CES/TJ Min. Typ. Max. Units 650 — — V — 570 — mV/°C — 1.7 2.1 V VCE(on) Collector-to-Emitter Saturation Voltage — 2.1 — VGE(th) Gate Threshold Voltage 5.5 — 7.7 V Threshold Voltage temp. coefficient — -22 — mV/°C VGE(th)/TJ gfe Forward Transconductance — 43 — S — 1.0 25 µA ICES Collector-to-Emitter Leakage Current mA — 1.1 — IGES Gate-to-Emitter Leakage Current — — ±100 nA Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Qg Total Gate Charge (turn-on) — 140 210 Qge Gate-to-Emitter Charge (turn-on) — 40 60 nC Gate-to-Collector Charge (turn-on) — 60 90 Qgc Turn-On Switching Loss — 3.2 4.2 Eon Eoff Turn-Off Switching Loss — 1.7 2.6 mJ Total Switching Loss — 4.9 6.8 Etotal td(on) Turn-On delay time — 80 95 tr Rise time — 85 105 ns td(off) Turn-Off delay time — 200 220 tf Fall time — 40 55 Eon Turn-On Switching Loss — 4.6 — Eoff Turn-Off Switching Loss — 2.4 — mJ Etotal Total Switching Loss — 7.0 — td(on) Turn-On delay time — 60 — tr Rise time — 95 — ns td(off) Turn-Off delay time — 205 — tf Fall time — 60 — Cies Input Capacitance — 4300 — Coes Output Capacitance — 230 — pF Reverse Transfer Capacitance — 120 — Cres RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5.5 — — µs Conditions VGE = 0V, IC = 100µA VGE = 0V, IC = 1.0mA (25°C-175°C) IC = 75A, VGE = 15V, TJ = 25°C IC = 75A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 2.1mA VCE=VGE, IC = 2.1mA (25°C - 175°C) VCE = 50V, IC = 75A, PW = 20µs VGE = 0V, VCE = 650V VGE = 0V, VCE = 650V, TJ = 175°C VGE = ±20V Conditions IC = 75A VGE = 15V VCC = 400V IC = 75A, VCC = 400V, VGE = 15V RG = 10, L = 200µH, TJ = 25°C Energy losses include tail & diode reverse recovery IC = 75A, VCC = 400V, VGE=15V RG=10, L=200µH,TJ = 175°C Energy losses include tail & diode reverse recovery VGE = 0V VCC = 30V f = 1.0Mhz TJ = 175°C, IC = 300A VCC = 520V, Vp ≤ 650V Rg = 50, VGE = +20V to 0V TJ = 150°C,VCC = 400V, Vp ≤600V Rg = 50, VGE = +15V to 0V Notes: VCC = 80% (VCES), VGE = 20V, L = 50µH, RG = 50. R is measured at TJ of approximately 90°C. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Maximum limits are based on statistical sample size characterization. Pulse width limited by max. junction temperature. Values influenced by parasitic L and C in measurement. 2 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF 140 For both: Duty cycle : 50% Tj = 175°C Tcase = 100°C Gate drive as specified Power Dissipation = 245W Load Current ( A ) 120 100 80 Square Wave: VCC 60 I Diode as specified 40 20 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current= IRMS of fundamental) 500 160 140 400 120 300 Ptot (W) IC (A) 100 80 200 60 40 100 20 0 0 25 50 75 100 125 150 25 175 100 125 150 175 Fig. 3 - Power Dissipation vs. Case Temperature Fig. 2 - Maximum DC Collector Current vs. Case Temperature 1000 1000 OPERATION IN THIS AREA LIMITED BY VCE(on) 100 1msec 100µsec 100 10 IC (A) IC, Collector-to -Emitter Current (A) 75 TC (°C) TC (°C) 10msec 1 10 0.1 Tc = 25°C Tj = 175°C Single Pulse DC 1 0.01 1 10 100 1000 VCE, Collector-to-Emitter Voltage (V) Fig. 4 - Forward SOA 3 50 www.irf.com © 2014 International Rectifier 10 100 1000 V CE (V) Fig. 5 - Reverse Bias SOA TJ = 175°C; VGE = 20V Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF 300 300 VGE = 18V 250 VGE = 15V 250 VGE = 12V ICE (A) ICE (A) VGE = 8.0V 150 100 50 50 0 0 2 4 6 8 V GE = 15V V GE = 12V 150 100 0 V GE = 18V 200 VGE = 10V 200 V GE = 10V V GE = 8.0V 0 10 2 4 6 8 10 V CE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 20µs Fig. 6 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 20µs 10 300 VGE = 18V VGE = 15V 250 8 VGE = 12V VGE = 10V VGE = 8.0V V CE (V) ICE (A) 200 150 ICE = 38A ICE = 75A 6 ICE = 150A 4 100 2 50 0 0 0 2 4 6 8 6 10 8 10 10 10 8 8 ICE = 38A ICE = 75A V CE (V) V CE (V) Fig. 8 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 20µs ICE = 150A 4 16 18 20 Fig. 9 - Typical VCE vs. VGE TJ = -40°C ICE = 38A ICE = 75A 6 ICE = 150A 4 2 2 0 0 8 10 12 14 16 18 20 V GE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C 4 14 V GE (V) VCE (V) 6 12 www.irf.com © 2014 International Rectifier 6 8 10 12 14 16 18 20 V GE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF 18000 300 IC, Collector-to-Emitter Current(A) 16000 250 14000 TJ = 25°C TJ = 175°C 12000 Energy (µJ) 200 150 EON 10000 100 8000 6000 EOFF 4000 50 2000 0 0 4 6 8 10 12 14 20 16 40 60 80 100 120 140 160 IC (A) VGE, Gate-to-Emitter Voltage (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 20µs Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V 12000 1000 8000 Energy (µJ) Swiching Time (ns) tdOFF 100 tdON EON EOFF 4000 tF tR 0 10 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 IC (A) RG ( ) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 75A; VGE = 15V 10000 20 400 Isc 15 300 10 200 5 100 tdOFF tR tF 100 Time (µs) 1000 Current (A) Swiching Time (ns) Tsc tdON 10 0 0 20 40 60 80 100 RG ( ) Fig. 16 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 75A; VGE = 15V 5 www.irf.com © 2014 International Rectifier 0 8 10 12 14 16 V GE (V) Fig. 17 - VGE vs. Short Circuit Time VCC = 400V; TC = 150°C Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF 10000 16 V GE, Gate-to-Emitter Voltage (V) Capacitance (pF) Cies 1000 Coes 100 Cres 100 200 300 400 V CES = 300V 12 10 8 6 4 2 10 0 V CES = 400V 14 0 500 0 20 V CE (V) 40 60 80 100 120 140 160 Q G, Total Gate Charge (nC) Fig. 18 - Typ. Capacitance vs. VCE Fig. 19 - Typical Gate Charge vs. VGE Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 Ri (°C/W) 0.10 0.05 0.01 0.001 J 0.02 0.01 R1 R1 J 1 R2 R2 R3 R3 R4 R4 C 2 1 2 3 4 3 Ci= iRi Ci= iRi SINGLE PULSE ( THERMAL RESPONSE ) 4 C i (sec) 0.00738 0.000009 0.09441 0.000179 0.13424 0.002834 0.09294 0.0182 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case 6 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF L L VCC DUT 0 80 V + - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L -5V DUT / DRIVER VCC Rg Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R = VCC ICM 100K D1 DUT 22K C sense VCC G force Rg DUT 0.0075µF E sense Resistive Load Fig.C.T.5 - Resistive Load Circuit 7 www.irf.com © 2014 International Rectifier E force Fig.C.T.6 - BVCES Filter Circuit Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF 600 120 600 500 100 500 80 400 300 60 300 200 40 120 TEST CURRENT tf 400 tr 100 80 100 90% test current 200 100 0 20 5% VCE 5% ICE 0 40 10% test current 20 5% VCE 60 ICE (A) VCE (V) ICE (A) VCE (V) 90% ICE 0 0 Eon Loss Eoff Loss -1.35 time(µs) -20 -1.25 -1.3 -100 -0.55 -0.5 -0.45 -0.4 -20 -0.35 time (µs) Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.3 450 400 400 350 350 300 300 ICE 250 Vce (V) 450 VCE 250 200 200 150 150 100 100 50 50 0 0 -50 Ice (A) -100 -1.4 -50 -10 -8 -6 -4 -2 0 2 Time (uS) 4 6 8 Fig. WF3 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3 8 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPE30 56 135H 57 ASSEMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information E X A M P L E : T H IS IS A N IR G P 3 0 B 1 2 0 K D - E W IT H A S S E M B L Y LO T C O D E 5657 ASSEM BLED O N W W 35, 2000 IN T H E A S S E M B L Y L IN E "H " N o te : "P " in a s s e m b ly lin e p o s itio n in d ic a te s "L e a d - F re e " PART N U M BER IN T E R N A T IO N A L R E C T IF IE R LO G O 56 035H 57 ASSEM B LY LO T C O D E D A TE C O D E YE A R 0 = 2 0 0 0 W EEK 35 L IN E H TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 22, 2014 IRGP4266PbF/IRGP4266-EPbF Qualification Information† Industrial† (per JEDEC JESD47F) †† Qualification Level TO-247AC Moisture Sensitivity Level N/A TO-247AD Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. Revision History Date 8/22/2014 Comments Updated IC vs. TC graph Fig.2 to match page1 spec data on page 3. Updated package outline on page 9. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback August 22, 2014