IRF IRG7PH50UPBF

PD - 97549
IRG7PH50UPbF
IRG7PH50U-EP
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
C
Low VCE (ON) trench IGBT technology
Low switching losses
Maximum junction temperature 175 °C
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) temperature co-efficient
Tight parameter distribution
Lead -Free
VCES = 1200V
IC = 90A, TC = 100°C
G
TJ(max) =175°C
E
VCE(on) typ. = 1.7V
n-channel
Benefits
• High efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
low VCE (ON) and low switching losses
• Rugged transient performance for increased reliability
• Excellent current sharing in parallel operation
C
C
GC
Applications
•
•
•
•
E
TO-247AC
IRG7PH50UPbF
U.P.S
Welding
Solar inverter
Induction heating
G
Gate
E
GC
TO-247AD
IRG7PH50U-EP
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
1200
V
IC @ TC = 25°C
Continuous Collector Current (Silicon Limited)
140
IC @ TC = 100°C
Continuous Collector Current (Silicon Limited)
90
INOMINAL
ICM
Nominal Current
Pulse Collector Current, VGE = 15V
150
A
50
c
ILM
Clamped Inductive Load Current, VGE = 20V
VGE
Continuous Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
556
PD @ TC = 100°C
Maximum Power Dissipation
278
TJ
Operating Junction and
TSTG
Storage Temperature Range
200
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
f
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
1
f
Min.
Typ.
Max.
–––
–––
0.27
–––
0.24
–––
–––
40
–––
Units
°C/W
www.irf.com
07/28/2010
IRG7PH50UPbF/IRG7PH50U-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Min.
Typ.
1200
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
Max. Units
—
1.0
—
—
1.7
2.0
—
2.0
—
2.1
—
VGE(th)
Gate Threshold Voltage
3.0
—
6.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-17
—
gfe
ICES
Forward Transconductance
—
55
—
Collector-to-Emitter Leakage Current
—
2.0
100
—
1700
—
—
—
±200
IGES
Gate-to-Emitter Leakage Current
V
Conditions
VGE = 0V, IC = 100µA
e
e
d
= 150°C d
= 175°C d
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 50A, VGE = 15V, TJ = 25°C
V
IC = 50A, VGE = 15V, TJ
IC = 50A, VGE = 15V, TJ
V
VCE = VGE, IC = 2.0mA
mV/°C VCE = VGE, IC = 1mA (25°C - 175°C)
S VCE = 50V, IC = 50A, PW = 80µs
µA
nA
VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 175°C
VGE = ±30V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
290
Max. Units
IC = 50A
440
d
Conditions
Qge
Gate-to-Emitter Charge (turn-on)
—
40
60
Qgc
Gate-to-Collector Charge (turn-on)
—
110
170
VCC = 600V
Eon
Turn-On Switching Loss
—
3600
4600
IC = 50A, VCC = 600V, VGE = 15V
RG = 5.0Ω, L = 200µH,TJ = 25°C
nC
VGE = 15V
Eoff
Turn-Off Switching Loss
—
2200
3200
Etotal
Total Switching Loss
—
5800
7800
td(on)
Turn-On delay time
—
35
55
tr
Rise time
—
40
60
td(off)
Turn-Off delay time
—
430
500
tf
Fall time
—
45
65
Eon
Turn-On Switching Loss
—
5600
—
Eoff
Turn-Off Switching Loss
—
3900
—
Etotal
Total Switching Loss
—
9500
—
td(on)
Turn-On delay time
—
30
—
tr
Rise time
—
45
—
td(off)
Turn-Off delay time
—
500
—
tf
Fall time
—
210
—
Cies
Input Capacitance
—
6000
—
Coes
Output Capacitance
—
190
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
130
—
f = 1.0Mhz
IC = 200A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
µJ
d
Energy losses include tail & diode reverse recovery
Diode clamp the same as IRG7PH50UDPbF
ns
d
IC = 50A, VCC = 600V, VGE=15V
µJ
RG=5.0Ω, L=200µH, TJ = 175°C
Energy losses include tail & diode reverse recovery
Diode clamp the same as IRG7PH50UDPbF
ns
pF
VGE = 0V
VCC = 960V, Vp =1200V
Rg = 5.0Ω, VGE = +20V to 0V, TJ =175°C
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 5.0Ω.
‚ Pulse width ≤ 400µs; duty cycle ≤ 2%.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ Rθ is measured at TJ of approximately 90°C.
2
www.irf.com
IRG7PH50UPbF/IRG7PH50U-EP
120
Duty cycle : 50%
Tj = 150°C
Tc = 100°C
Vcc = 600V
Gate drive as specified
Power Dissipation = 183W
100
Load Current ( A )
80
Square Wave:
VCC
60
I
40
20
Diode as specified
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
140
600
120
500
400
80
Ptot (W)
IC (A)
100
60
300
200
40
100
20
0
0
25
50
75
100
125
150
175
25
50
75
100
125
150
175
T C (°C)
T C (°C)
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
Fig. 3 - Power Dissipation vs. Case
Temperature
1000
1000
100
10µsec
IC (A)
100µsec
1msec
1
10
DC
0.1
IC (A)
100
10
Tc = 25°C
Tj = 175°C
Single Pulse
1
0.01
1
10
100
1000
VCE (V)
Fig. 4 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
www.irf.com
10000
10
100
1000
10000
VCE (V)
Fig. 5 - Reverse Bias SOA
TJ = 175°C; VGE =20V
3
200
200
150
150
ICE (A)
ICE (A)
IRG7PH50UPbF/IRG7PH50U-EP
100
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
50
100
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
50
VGE = 8.0V
VGE = 8.0V
0
0
0
2
4
6
8
0
10
2
4
6
8
10
VCE (V)
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 30µs
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 30µs
12
200
10
150
VCE (V)
ICE (A)
8
VGE = 18V
VGE = 15V
100
VGE = 12V
VGE = 10V
50
2
0
2
4
6
8
6
4
VGE = 8.0V
0
0
10
0
VCE (V)
12
10
10
8
ICE = 50A
VCE (V)
VCE (V)
ICE = 25A
ICE = 100A
15
20
ICE = 25A
ICE = 50A
ICE = 100A
6
4
4
2
2
0
0
0
5
10
15
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
4
10
VGE (V)
12
6
5
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 30µs
8
ICE = 25A
ICE = 50A
ICE = 100A
20
0
5
10
15
20
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
www.irf.com
IRG7PH50UPbF/IRG7PH50U-EP
12000
ICE, Collector-to-Emitter Current (A)
200
10000
150
Energy (µJ)
8000
T J = 25°C
T J = 175°C
100
EON
6000
4000
EOFF
50
2000
0
0
0
2
4
6
8
0
10
20
40
Fig. 12- Typ. Transfer Characteristics
VCE = 50V; tp = 30µs
1000
60
80
100
IC (A)
VGE, Gate-to-Emitter Voltage (V)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200µH; VCE = 600V, RG = 5.0Ω; VGE = 15V
16000
tdOFF
14000
EOFF
Energy (µJ)
Swiching Time (ns)
12000
tF
100
tdON
10000
EON
8000
6000
4000
2000
tR
0
10
0
20
40
60
80
0
100
20
40
IC (A)
60
80
100
Rg (Ω)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200µH; VCE = 600V, RG = 5.0Ω; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200µH; VCE = 600V, ICE = 50A; VGE = 15V
Swiching Time (ns)
10000
tdOFF
1000
tF
100
tR
tdON
10
0
20
40
60
80
100
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200µH; VCE = 600V, ICE = 50A; VGE = 15V
www.irf.com
5
IRG7PH50UPbF/IRG7PH50U-EP
10000
16
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
Cies
1000
Coes
100
Cres
14
VCES = 600V
VCES = 400V
12
10
10
8
6
4
2
0
0
100
200
300
400
500
600
0
50
VCE (V)
100
150
200
250
300
Q G, Total Gate Charge (nC)
Fig. 18- Typical Gate Charge vs. VGE
ICE = 50A
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Thermal Response ( Z thJC )
1
0.1
D = 0.50
0.20
0.10
0.01
0.05
0.02
0.01
τJ
0.001
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
1E-005
τ4
τ4
τi (sec)
0.00296
0.000009
0.08150
0.000180
0.11707
0.003342
0.06917
0.017016
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
Ri (°C/W)
R4
R4
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC
6
www.irf.com
IRG7PH50UPbF/IRG7PH50U-EP
L
L
DUT
0
80 V +
VCC
-
1K
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
R=
diode clamp /
DUT
VCC
ICM
L
DUT
-5V
DUT /
DRIVER
VCC
Rg
VCC
Rg
Fig.C.T.3 - Switching Loss Circuit
Fig.C.T.4 - Resistive Load Circuit
C force
100K
D1
22K
C sense
G force
DUT
0.0075µF
E sense
E force
Fig.C.T.5 - BVCES Filter Circuit
www.irf.com
7
IRG7PH50UPbF/IRG7PH50U-EP
1200
120
tf
1000
800
80
800
VCE (V)
60
90% ICE
400
40
VCE (V)
100
I CE (A)
1000
600
400
200
20
5% ICE
0
0
E off Los s
0
0.5
1
-20
1.5
2
time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
8
100
TEST
CURRENT
80
90% tes t
current
600
5% V CE
-200
-0.5
120
tr
60
40
10% test
current
I CE (A)
1200
5% V CE
200
20
0
0
E on L os s
-200
-3
-2
-1
0
1
2
3
4
-20
5
time (µs)
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
www.irf.com
IRG7PH50UPbF/IRG7PH50U-EP
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRG7PH50UPbF/IRG7PH50U-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
10
www.irf.com