IRG4IBC20UD

PD -91752A
IRG4IBC20UD
UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
C
• 2.5kV, 60s insulation voltage …
• 4.8 mm creapage distance to heatsink
• UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• IGBT co-packaged with HEXFREDTM ultrafast,
ultrasoft recovery antiparallel diodes
• Tighter parameter distribution
• Industry standard Isolated TO-220 FullpakTM
outline
VCES = 600V
VCE(on) typ. = 1.85V
G
@VGE = 15V, IC = 6.5A
E
n-channel
Benefits
• Simplified assembly
• Highest efficiency and power density
• HEXFREDTM antiparallel Diode minimizes
switching losses and EMI
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
Visol
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
RMS Isolation Voltage, Terminal to Case…
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
11.4
6.0
52
52
6.5
52
2500
± 20
34
14
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
–––
–––
2.0 (0.07)
3.7
5.1
65
–––
Units
°C/W
g (oz)
1
6/27/03
IRG4IBC20UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage –––
VCE(on)
Collector-to-Emitter Saturation Voltage –––
–––
–––
Gate Threshold Voltage
3.0
VGE(th)
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage –––
gfe
Forward Transconductance „
1.4
ICES
Zero Gate Voltage Collector Current
–––
–––
VFM
Diode Forward Voltage Drop
–––
–––
IGES
Gate-to-Emitter Leakage Current
–––
V(BR)CES
Typ.
–––
0.69
1.85
2.27
1.87
–––
-11
4.3
–––
–––
1.4
1.3
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
2.1
IC = 6.5A
VGE = 15V
–––
V
IC = 13A
See Fig. 2, 5
–––
IC = 6.5A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 250µA
–––
S
VCE = 100V, IC = 6.5A
250
µA
VGE = 0V, VCE = 600V
1700
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 8.0A
See Fig. 13
1.6
IC = 8.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
27
4.5
10
39
15
93
110
0.16
0.13
0.29
38
17
100
220
0.49
7.5
530
39
7.4
37
55
3.5
4.5
65
124
240
210
Max. Units
Conditions
41
IC = 6.5A
6.8
nC VCC = 400V
See Fig. 8
16
VGE = 15V
–––
TJ = 25°C
–––
ns
IC = 6.5A, VCC = 480V
140
VGE = 15V, RG = 50Ω
170
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ See Fig. 9, 10, 11, 18
0.37
–––
TJ = 150°C, See Fig. 9, 10, 11, 18
–––
ns
IC = 6.5A, VCC = 480V
–––
VGE = 15V, RG = 50Ω
–––
Energy losses include "tail" and
–––
mJ diode reverse recovery.
–––
nH Measured 5mm from package
–––
VGE = 0V
–––
pF
VCC = 30V
See Fig. 7
–––
ƒ = 1.0MHz
55
ns
TJ = 25°C See Fig.
90
TJ = 125°C
14
IF = 8.0A
5.0
A
TJ = 25°C See Fig.
8.0
TJ = 125°C
15
VR = 200V
138
nC TJ = 25°C See Fig.
360
TJ = 125°C
16
di/dt 200A/µs
––– A/µs TJ = 25°C See Fig.
–––
TJ = 125°C
17
www.irf.com
IRG4IBC20UD
10.0
For both:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
LOAD CURRENT (A)
8.0
Power Dissipation = 9.5 W
6.0
Square wave:
60% of rated
voltage
4.0
I
2.0
Ideal diodes
0.0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25°C
TJ = 150°C
10
1
VGE = 15V
20µs PULSE WIDTH
0.1
0.1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
A
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
100
TJ = 150°C
10
TJ = 25°C
1
V CC = 10V
5µs PULSE WIDTH A
0.1
4
6
8
10
12
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4IBC20UD
2.6
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current(A)
12
10
8
6
4
2
0
25
50
75
100
125
VGE = 15V
80µs PULSE WIDTH
IC = 13A
2.2
1.8
IC = 6.5A
1.4
I C = 3.3A
A
1.0
150
-60
TC , Case Temperature ( ° C)
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
PDM
0.02
0.1
0.01
0.01
0.00001
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC20UD
800
Cies
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
1000
600
Coes
400
Cres
200
A
0
1
10
VCE = 400V
I C = 6.5A
16
12
8
4
A
0
100
0
5
VCE, Collector-to-Emitter Voltage (V)
10
= 480V
= 15V
= 25°C
= 6.5A
0.31
0.30
A
0.29
0
10
20
30
40
50
R G , Gate Resistance ( Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
20
25
30
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC
VGE
TJ
IC
15
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.32
10
60
R G = 50 Ω
V GE = 15V
V CC = 480V
IC = 13A
1
IC = 6.5A
I C = 3.3A
A
0.1
-60
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4IBC20UD
100
= 50 Ω
= 150°C
= 480V
= 15V
I C , Collector Current (A)
RG
TJ
V CC
V GE
0.9
0.6
0.3
A
0.0
0
2
4
6
8
10
12
VGE = 20V
T J = 125 oC
10
1
0.1
14
SAFE OPERATING AREA
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
IC , Collector-to-Emitter Current (A)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
Instantaneous Forward Current - I F (A)
Total Switching Losses (mJ)
1.2
10
TJ = 150°C
TJ = 125°C
TJ = 25°C
1
0.1
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC20UD
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
80
I F = 8.0A
40
I IRRM - (A)
t rr - (ns)
IF = 16A
60
I F = 16A
10
IF = 8.0A
I F = 4.0A
I F = 4.0A
20
0
100
1
100
1000
di f /dt - (A/µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
500
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
400
300
I F = 16A
200
I F = 8.0A
1000
IF = 4.0A
IF = 8.0A
I F = 16A
100
IF = 4.0A
0
100
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4IBC20UD
Same type
device as
D.U.T.
90%
10%
Vge
430µF
80%
of Vce
VC
D.U.T.
90%
td(off)
10%
IC 5%
tf
tr
t d(on)
t=5µs
Eon
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eoff
Ets= (Eon +Eoff )
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
Ipk
Vpk
10% Irr
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
t2
Eon = Vce ie dt
t1
∫
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
tx
10% Vcc
Vcc
trr
id dt
tx
t4
Erec = Vd id dt
t3
∫
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4IBC20UD
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
R L=
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4IBC20UD
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
… t = 60s, f = 60Hz
Case Outline — TO-220 FULLPAK
10.60 (.417)
10.40 (.409)
ø
3.40 (.133)
3.10 (.123)
4.80 (.189)
4.60 (.181)
-A3.70 (.145)
3.20 (.126)
16.00 (.630)
15.80 (.622)
2.80 (.110)
2.60 (.102)
LEAD ASSIGNMENTS
LEAD ASSIGMENTS
1 - GATE
1- GATE
2 - DRAIN
2- COLLECTOR
3 - SOURCE
3- EMITTER
7.10 (.280)
6.70 (.263)
1.15 (.045)
MIN.
1
2
NOTES:
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982
3
2 CONTROLLING DIMENSION: INCH.
3.30 (.130)
3.10 (.122)
-B-
13.70 (.540)
13.50 (.530)
C
1.40 (.055)
3X
1.05 (.042)
2.54 (.100)
2X
3X
0.90 (.035)
0.70 (.028)
0.25 (.010)
3X
M A M
B
0.48 (.019)
0.44 (.017)
2.85 (.112)
2.65 (.104)
A
D
B
MINIMUM CREEPAGE
DISTANCE BETWEEN
A-B-C-D = 4.80 (.189)
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 6/03
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/