IRG4PH40UD2

PD - 94739A
IRG4PH40UD2
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
• UltraFast: Optimized for high operating
frequencies up to 40 kHz in hard switching,
>200 kHz in resonant mode
• New IGBT design provides tighter
parameter distribution and higher efficiency than
previous generations
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-247AC package
UltraFast CoPack IGBT
C
VCES = 1200V
VCE(on) typ. = 1.72V
G
@VGE = 15V, IC = 20A
E
n-channel
D
Benefits
• Higher switching frequency capability than
competitive IGBTs
• Highest efficiency available
• HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing.
Absolute Maximum Ratings
D
G
TO-247AC
G
Gate
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ Tc = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current
Clamped Inductive Load current
c
c
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Storage Temperature Range, for 10 sec.
Mounting Torque, 6-32 or M3 screw
Thermal / Mechanical Characteristics
Parameter
S
D
Drain
S
Source
Max.
Units
1200
40
20
160
160
10
40
±20
160
65
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf in (1.1N m)
y
y
Min.
Typ.
Max.
Units
RθJC
RθJC
RθCS
RθJA
Junction-to-Case- IGBT
Junction-to-Case- Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
–––
–––
–––
–––
–––
–––
0.24
–––
0.77
2.5
–––
40
°C/W
Wt
Weight
–––
6 (0.21)
–––
g (oz.)
www.irf.com
1
01/26/06
IRG4PH40UD2
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
1200
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
—
VGE(th)
Gate Threshold Voltage
3.0
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
11
gfe
Forward Transconductance
—
ICES
Zero Gate Voltage Collector Current
—
—
VFM
Diode Forward Voltage Drop
—
—
IGES
Gate-to-Emitter Leakage Current
—
g
—
0.63
1.72
2.15
1.7
—
-13
18
—
—
—
3.4
3.3
—
Conditions
—
V VGE = 0V, IC = 250µA
—
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 20A, VGE = 15V, TJ = 25°C
2.1
V
IC = 40A, VGE = 15V, TJ = 125°C
—
IC = 20A, VGE = 15V, TJ = 150°C
—
VCE = VGE, IC = 250µA
6.0
— mV/°C VCE = VGE, IC = 250µA
—
S VCE = 100V, IC = 20A
VGE = 0V, VCE = 1200V
250
2.0
µA VGE = 0V, VCE = 10V, TJ = 25°C
VGE = 0V, VCE = 1200V, TJ = 150°C
2500
3.8
V IF = 10A, VGE = 0V
IF = 10A, VGE = 0V, TJ = 150°C
3.7
±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
ETS
LE
Cies
Coes
Cres
trr
Min. Typ. Max. Units
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
110
18
36
23
27
100
280
1440
1410
2850
22
32
190
630
5360
13
2100
99
12
50
130
24
53
—
—
110
340
—
—
3740
—
—
—
—
—
—
—
—
—
76
Irr
Diode Peak Reverse Recovery Current
—
—
72
4.4
110
7.0
A
Qrr
Diode Reverse Recovery Charge
—
—
5.9
130
8.8
200
nC
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
—
—
—
250
210
180
380
—
—
2
nC
ns
µJ
ns
µJ
nH
pF
ns
Conditions
IC = 20A
VCC = 400V
VGE = 15V
IC = 20A, VCC = 600V
VGE = 15V, RG = 10Ω
TJ = 25°C
Energy losses inclued "tail"
IC = 20A, VCC = 600V
VGE = 15V, RG = 10Ω
TJ = 25°C
IC = 20A, VCC = 600V
VGE = 15V, RG = 10Ω, L = 1.0mH
TJ = 150°C
Energy losses inclued "tail"
Measured 5mm froom package
VGE = 0V
VCC = 30V
f = 1.0MHz
TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
A/µs TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
www.irf.com
IRG4PH40UD2
50
Square wave:
45
60% of rated
voltage
40
Load Current ( A )
35
I
30
Ideal diodes
25
20
For both:
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 35W
15
10
5
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
100
TJ = 25°C
TJ = 150°C
10
VGE = 15V
20µs PULSE WIDTH A
1
0.1
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
10
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
1000
100
TJ = 150°C
TJ = 25°C
10
VCC = 10V
5µs PULSE WIDTH A
1
4
6
8
10
12
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH40UD2
2.5
V GE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
40
30
20
10
A
0
25
50
75
100
125
I C = 40A
2.0
IC = 20A
1.5
I C = 10A
A
1.0
-60
150
TC , Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
VGE = 15V
80µs PULSE WIDTH
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
0.02
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
1 2
0.01
0.01
0.00001
1
t2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH40UD2
3500
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
3000
C oes = C ce + C gc
14.0
IC= 20A
VGS, Gate-to-Source Voltage (V)
Capacitance (pF)
4000
Cies
2500
2000
1500
Coes
1000
Cres
500
10.0
8.0
6.0
4.0
2.0
0.0
0
1
10
0
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
40
60
80
100
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
11000
3500
VCE = 600V
VGE = 15V
R G = 10Ω
10000
Total Swiching Losses (mJ)
TJ = 25°C
I C = 20A
3250
20
QG Total Gate Charge (nC)
VCE, Collector-toEmitter-Voltage(V)
Total Swiching Losses (mJ)
VCC = 400V
12.0
3000
2750
VGE = 15V
9000
IC = 40A
8000
7000
6000
IC = 20A
5000
4000
3000
2000
IC = 10A
1000
0
2500
0
10
20
30
40
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
50
-55
-5
45
95
145
T J, Juntion Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH40UD2
1000
7000
VGE
= 20V
GE
TJ = 125°C
R G = 10Ω
Total Swiching Losses (mJ)
5000
I C , Collector-to-Emitter Current (A)
TJ = 150°C
VCE= 600V
VGE = 15V
6000
4000
3000
2000
1000
0
0
10
20
30
IC, Collecto-to-Emitter (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
40
100
SAFE OPERATING AREA
10
1
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH40UD2
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4PH40UD2
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
430µF
80%
of Vce
Ic
D.U.T.
90% Ic
10% Vce
Ic
5% Ic
td(off)
tf
Eoff =
t1+5µS
Vce ic dt
∫ Vce Ic dt
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
+Vg
tx
10% Irr
10% Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vcc
10% Ic
90% Ic
tr
td(on)
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
trr
id dt
tx
∫ Ic dt
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PH40UD2
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 800V
800V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PH40UD2
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/06
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/