PD - 91686 IRG4PSH71UD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • UltraFast switching speed optimized for operating frequencies 8 to 40kHz in hard switching, 200kHz in resonant mode soft switching • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency (minimum switching and conduction losses) than prior generations • Industry-benchmark Super-247 package with higher power handling capability compared to same footprint TO-247 • Creepage distance increased to 5.35mm UltraFast Copack IGBT C VCES = 1200V VCE(on) typ. = 2.52V G @VGE = 15V, IC = 50A E n-channel Benefits • Generation 4 IGBT's offer highest efficiencies available • Maximum power density, twice the power handling of the TO-247, less space than TO-264 • IGBTs optimized for specific application conditions • Cost and space saving in designs that require multiple, paralleled IGBTs • HEXFREDTM antiparallel Diode minimizes switching losses and EMI SUPER - 247 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE IF @ Tc = 100°C IFM PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load current Gate-to-Emitter Voltage Diode Continuous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. c d Max. Units 1200 99 50 200 200 ±20 70 200 350 140 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Recommended Clip Force Weight Min. Typ. Max. Units ––– ––– ––– ––– 20 (2.0) ––– ––– ––– 0.24 ––– 0.36 0.36 ––– 38 °C/W 6 (0.21) ––– N (kgf) g (oz.) 1 5/24/04 IRG4PSH71UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions e Collector-to-Emitter Breakdown Voltage V(BR)CES 1200 — — V VGE = 0V, IC = 250µA V(BR)ECS Emitter-to-Collector Breakdown Voltage 19 — — V VGE = 0V, IC = 1.0A ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.78 — V/°C VGE = 0V, IC = 1mA IC = 70A VGE = 15V — 2.52 2.70 V IC = 140A VCE(on) See Fig.2, 5 Collector-to-Emitter Saturation Voltage — 3.17 — IC = 70A, TJ = 150°C — 2.68 — VCE = VGE, IC = 250µA VGE(th) Gate Threshold Voltage 3.0 — 6.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -9.2 — mV/°C VCE = VGE, IC = 1.0mA 48 72 — S VCE = 100V, IC = 70A gfe Forward Transconductance ICES Zero Gate Voltage Collector Current — — 500 µA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 10V — — 2.0 VGE = 0V, VCE = 1200V, TJ = 150°C — — 5000 VFM Diode Forward Voltage Drop — 2.92 3.9 V IF = 70A See Fig.13 IF = 70A, TJ = 150°C — 2.88 3.7 IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V f Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions IC = 70A See Fig.8 nC VCC = 400V VGE = 15V IC = 70A, VCC = 960V ns VGE = 15V, RG = 5.0Ω Energy losses include "tail" See Fig. 9, 10, 11, 14 Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf ETS LE Cies Coes Cres trr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time — — — — — — — — — — — — — — — — — — — — 380 570 61 24 130 200 46 — 77 — 250 350 220 330 8.8 — 9.4 — 18.2 19.7 43 — 78 — 330 — 480 — 26 — 13 — 6640 — 420 — 60 — 110 170 Irr Diode Peak Reverse Recovery Current — — 180 6.0 270 9.0 A Qrr Diode Reverse Recovery Charge — — 8.9 350 13 530 nC TJ=25°C di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb — — — TJ=125°C 870 1300 150 230 A/µs TJ=25°C TJ=125°C 130 200 2 mJ ns TJ = 150°C, See Fig. 9, 10, 11, 14 IC = 70A, VCC = 960V VGE = 15V, RG = 5.0Ω Energy losses include "tail" mJ nH Measured 5mm from package VGE = 0V See Fig.7 pF VCC = 30V, f = 1.0MHz See Fig ns TJ=25°C TJ=125°C 14 TJ=25°C See Fig TJ=125°C IF = 70A 15 VR = 200V See Fig 16 di/dt = 200A/µs See Fig 17 www.irf.com IRG4PSH71UD 40 Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 58W Load Current ( A ) 30 20 Square wave: 60% of rated voltage 10 Ideal diodes 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 1000.0 IC, Collector-to-Emitter Current (A) IC , Collector-to Emitter Current (A) 1000 100.0 100 T J = 150°C 10 T J = 25°C 1 VGE= 15V < 60µs PULSE WIDTH 1 2 3 4 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 10.0 T J = 25°C 1.0 VCC = 50V < 60µs PULSE WIDTH 0.1 0.1 0 T J = 150°C 5 4 6 8 10 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PSH71UD 4.0 100 VCE , Collector-to Emitter Voltage (V) Maximum DC Collector Current (A) V GE = 15V 80 60 40 20 VGE = 15V 380µs PULSE WIDTH IC = 140A 3.5 3.0 IC = 70A 2.5 IC = 35A 2.0 1.5 0 25 50 75 100 125 -60 -40 -20 150 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) T J , Junction Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 τJ 0.001 0.0001 SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 R2 R2 τ2 τ1 τC τ τ2 Ri (°C/W) τi (sec) 0.253 0.009159 0.1057 0.038041 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-005 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PSH71UD VGE = 0V, f = 1 MHZ C ies = C ge + Cgc , C ce C res = C gc C, Capacitance (pF) 12000 20 C oes = C ce + C gc 10000 Cies 8000 6000 Coes 4000 Cres 2000 VCC = 400V IC = 70A SHORTED VGE, Gate-to-Emitter Voltage (V) 14000 0 16 12 8 4 0 1 10 100 1000 0 100 VCE, Collector-to-Emitter Voltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 300 400 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 1000 22 RG = 5.0Ω VGE = 15V VCC = 960V VCC = 960V VGE = 15V Total Switching Losses (mJ) T J = 25°C Switching Losses (mJ) 200 QG, Total Gate Charge (nC) I C = 70A 20 18 100 I C = 140A I C = 70A 10 I C = 35A 1 16 0 10 20 30 RG, Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 40 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J, Junction Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PSH71UD 1000 70 VGE = 20V TJ = 125° RG = 5.0Ω Total Switching Losses (mJ) 60 IC, Collector-to-Emitter Current (A) TJ = 150°C VGE = 15V VCC = 960V 50 40 30 20 10 100 SAFE OPERATING AREA 10 1 0 20 40 60 80 100 120 140 160 1 10 100 1000 10000 VCE, Collector-to-Emitter Voltage (V) IC, Collector Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Instantaneous Forward Current - I F ( A ) 1000 100 10 T J = 150°C T J = 25°C 1 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Forward Voltage Drop - V F ( V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PSH71UD 400 100 IF = 140A IF = 70A IF = 35A 80 IRRM - (A) trr - (ns) 300 200 60 IF = 140A IF = 70A IF = 35A 40 100 VR = 200V TJ = 125°C 20 VR = 200V TJ = 125°C TJ = 25°C TJ = 25°C 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt dif / dt - (A / µs) Fig. 15 - Typical Recovery Current vs. dif/dt 12000 10000 IF = 140A 1700 IF = 70A IF = 35A IF = 140A IF = 70A di(rec)M/dt - (A) Qrr - (nC) 8000 6000 1300 IF = 35A 900 4000 500 2000 VR = 200V T J = 125°C VR = 200V T J = 125°C T J = 25°C 0 T J = 25°C 100 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4PSH71UD Same type device as D.U.T. 90% 80% of Vce 10% Vge 430µF VC D.U.T. 90% td(off) 10% IC 5% tf tr t d(on) t=5µs Eon Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf Eoff Ets= (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) Ipk Vpk 10% Irr Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 t2 Eon = Vce ie dt t1 ∫ t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ +Vg tx 10% Vcc Vcc trr id dt tx t4 Erec = Vd id dt t3 ∫ t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PSH71UD Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 480V 480V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PSH71UD Super-247™ (TO-274AA) Package Outline 0.13 [.005] 16.10 [.632] 15.10 [.595] 2X R 3.00 [.118] 2.00 [.079] 5.50 [.216] 4.50 [.178] A 0.25 [.010] B A 13.90 [.547] 13.30 [.524] 2.15 [.084] 1.45 [.058] 1.30 [.051] 0.70 [.028] 4 20.80 [.818] 19.80 [.780] 16.10 [.633] 15.50 [.611] 4 C 1 2 3 B 14.80 [.582] 13.80 [.544] 5.45 [.215] 2X Ø 1.60 [.063] MAX. 4.25 [.167] 3.85 [.152] 3X 1.60 [.062] 1.45 [.058] 0.25 [.010] B A 3X E E 1.30 [.051] 1.10 [.044] 2.35 [.092] 1.65 [.065] S ECT ION E-E NOT ES: 1. DIMENS IONING AND T OLERANCING PER AS ME Y14.5M-1994. 2. DIMENSIONS ARE SHOWN IN MILLIMET ERS [INCHES ] 3. CONT ROLLING DIMENS ION: MILLIMET ER 4. OUT LINE CONFORMS T O JEDEC OUT LINE T O-274AA LEAD AS SIGNMENT S MOSFET 1 - GAT E 2 - DRAIN 3 - S OURCE 4 - DRAIN Super-247™ (TO-274AA) Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE A8B9 INTERNATIONAL RECTIFIER LOGO IGBT 1 - GAT E 2 - COLLECT OR 3 - EMIT T ER 4 - COLLECT OR PART NUMBER IRFPS37N50A A8B9 0020 ASSEMBLY LOT CODE TOP DATE CODE (YYWW) YY = YEAR WW = WEEK Super TO-247™ package is not recommended for Surface Mount Application. Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0 Ω (figure 13a) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Repetitive rating; pulse width limited by maximumjunction temperature. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.5/04 10 www.irf.com