IRF IRG4PH40UD2PBF

PD - 95570
IRG4PH40UD2PbF
UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
C
• UltraFast: Optimized for high operating
frequencies up to 40 kHz in hard switching,
>200 kHz in resonant mode
• New IGBT design provides tighter
parameter distribution and higher efficiency than
previous generations
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-247AC package
• Lead-Free
VCES = 600V
VCE(on) typ. = 1.72V
G
@VGE = 15V, IC = 20A
E
n-channel
Benefits
• Higher switching frequency capability than
competitive IGBTs
• Highest efficiency available
• HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing.
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ Tc = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current
Clamped Inductive Load current
c
c
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Storage Temperature Range, for 10 sec.
Mounting Torque, 6-32 or M3 screw
Units
600
40
20
160
160
10
40
±20
160
65
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf in (1.1N m)
y
Thermal / Mechanical Characteristics
Parameter
Max.
y
Min.
Typ.
Max.
Units
RθJC
RθJC
RθCS
RθJA
Junction-to-Case- IGBT
Junction-to-Case- Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
–––
–––
–––
–––
–––
–––
0.24
–––
0.77
2.5
–––
40
°C/W
Wt
Weight
–––
6 (0.21)
–––
g (oz.)
www.irf.com
1
07/19/04
IRG4PH40UD2PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
—
VGE(th)
Gate Threshold Voltage
3.0
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
11
gfe
Forward Transconductance
—
ICES
Zero Gate Voltage Collector Current
—
—
VFM
Diode Forward Voltage Drop
—
—
IGES
Gate-to-Emitter Leakage Current
—
g
—
0.63
1.72
2.15
1.7
—
-13
18
—
—
—
3.4
3.3
—
Conditions
—
V VGE = 0V, IC = 250µA
—
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 20A, VGE = 15V, TJ = 25°C
2.1
V
IC = 40A, VGE = 15V, TJ = 125°C
—
IC = 20A, VGE = 15V, TJ = 150°C
—
VCE = VGE, IC = 250µA
6.0
— mV/°C VCE = VGE, IC = 250µA
—
S VCE = 100V, IC = 20A
VGE = 0V, VCE = 600V
250
2.0
µA VGE = 0V, VCE = 10V, TJ = 25°C
VGE = 0V, VCE = 600V, TJ = 150°C
2500
3.8
V IF = 10A, VGE = 0V
IF = 10A, VGE = 0V, TJ = 150°C
3.7
±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
ETS
LE
Cies
Coes
Cres
trr
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
110
18
36
23
27
100
280
1440
1410
2850
22
32
190
630
5360
13
2100
99
12
50
130
24
53
—
—
110
340
—
—
3740
—
—
—
—
—
—
—
—
—
76
Irr
Diode Peak Reverse Recovery Current
—
—
72
4.4
110
7.0
A
Qrr
Diode Reverse Recovery Charge
—
—
5.9
130
8.8
200
nC
Diode Peak Rate of Fall of Recovery
During tb
—
—
—
250
210
180
380
—
—
di(rec)M/dt
2
nC
ns
µJ
ns
µJ
nH
pF
ns
Conditions
IC = 20A
VCC = 400V
VGE = 15V
IC = 20A, VCC = 600V
VGE = 15V, RG = 10Ω
TJ = 25°C
Energy losses inclued "tail"
IC = 20A, VCC = 600V
VGE = 15V, RG = 10Ω
TJ = 25°C
IC = 20A, VCC = 600V
VGE = 15V, RG = 10Ω, L = 1.0mH
TJ = 150°C
Energy losses inclued "tail"
Measured 5mm froom package
VGE = 0V
VCC = 30V
f = 1.0MHz
TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
A/µs TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs
www.irf.com
IRG4PH40UD2PbF
50
Square wave:
45
60% of rated
voltage
40
Load Current ( A )
35
I
30
Ideal diodes
25
20
For both:
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 35W
15
10
5
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
100
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
1000
TJ = 25°C
TJ = 150°C
10
VGE = 15V
20µs PULSE WIDTH A
1
0.1
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
10
100
TJ = 150°C
TJ = 25°C
10
VCC = 10V
5µs PULSE WIDTH A
1
4
6
8
10
12
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH40UD2PbF
2.5
V GE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
40
30
20
10
A
0
25
50
75
100
125
I C = 40A
2.0
IC = 20A
1.5
I C = 10A
A
1.0
-60
150
TC , Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
VGE = 15V
80µs PULSE WIDTH
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
0.02
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
1 2
0.01
0.01
0.00001
1
t2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH40UD2PbF
3500
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
3000
C oes = C ce + C gc
14.0
IC= 20A
VGS, Gate-to-Source Voltage (V)
Capacitance (pF)
4000
Cies
2500
2000
1500
Coes
1000
Cres
500
VCC = 400V
12.0
10.0
8.0
6.0
4.0
2.0
0.0
0
1
10
0
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
60
80
100
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
11000
3500
VCE = 600V
VGE = 15V
R G = 10Ω
10000
TJ = 25°C
I C = 20A
Total Swiching Losses (mJ)
Total Swiching Losses (mJ)
40
QG Total Gate Charge (nC)
VCE, Collector-toEmitter-Voltage(V)
3250
20
3000
2750
VGE = 15V
9000
IC = 40A
8000
7000
6000
IC = 20A
5000
4000
3000
2000
1000
IC = 10A
0
2500
0
10
20
30
40
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
50
-55
-5
45
95
145
T J, Juntion Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH40UD2PbF
1000
7000
VGE
= 20V
GE
TJ = 125°C
R G = 10Ω
Total Swiching Losses (mJ)
5000
I C , Collector-to-Emitter Current (A)
TJ = 150°C
VCE= 600V
VGE = 15V
6000
4000
3000
2000
1000
100
SAFE OPERATING AREA
10
0
0
10
20
30
IC, Collecto-to-Emitter (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
40
1
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH40UD2PbF
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4PH40UD2PbF
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
430µF
80%
of Vce
Ic
D.U.T.
90% Ic
10% Vce
Ic
5% Ic
td(off)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
∫ Vce Ic dt
t1+5µS
Vce ic dt
t1
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Qrr =
Ic
∫ Ic dt
trr
id dt
tx
+Vg
tx
10% Irr
10% Vcc
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
90% Ic
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PH40UD2PbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 800V
800V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PH40UD2PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30
WIT H ASS EMBLY
LOT CODE 5657
ASS EMBLED ON WW 35, 2000
IN THE ASS EMBLY LINE "H"
PART NUMBER
INT ERNATIONAL
RECT IFIER
LOGO
IRFPE30
56
Note: "P" in assembly line
position indicates "Lead-Free"
035H
57
AS S EMBLY
LOT CODE
DATE CODE
YEAR 0 = 2000
WEEK 35
LINE H
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19)
ƒPulse width ≤ 80µs; duty factor ≤ 0.1%.
„Pulse width 5.0µs, single shot.
TO-247AC package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/04
10
www.irf.com