PD - 95570 IRG4PH40UD2PbF UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching, >200 kHz in resonant mode New IGBT design provides tighter parameter distribution and higher efficiency than previous generations IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations Industry standard TO-247AC package Lead-Free VCES = 600V VCE(on) typ. = 1.72V G @VGE = 15V, IC = 20A E n-channel Benefits Higher switching frequency capability than competitive IGBTs Highest efficiency available HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing. TO-247AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ Tc = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load current c c Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. Mounting Torque, 6-32 or M3 screw Units 600 40 20 160 160 10 40 ±20 160 65 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf in (1.1N m) y Thermal / Mechanical Characteristics Parameter Max. y Min. Typ. Max. Units RθJC RθJC RθCS RθJA Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount ––– ––– ––– ––– ––– ––– 0.24 ––– 0.77 2.5 ––– 40 °C/W Wt Weight ––– 6 (0.21) ––– g (oz.) www.irf.com 1 07/19/04 IRG4PH40UD2PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — — VCE(on) Collector-to-Emitter Saturation Voltage — — VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — 11 gfe Forward Transconductance — ICES Zero Gate Voltage Collector Current — — VFM Diode Forward Voltage Drop — — IGES Gate-to-Emitter Leakage Current — g — 0.63 1.72 2.15 1.7 — -13 18 — — — 3.4 3.3 — Conditions — V VGE = 0V, IC = 250µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 20A, VGE = 15V, TJ = 25°C 2.1 V IC = 40A, VGE = 15V, TJ = 125°C — IC = 20A, VGE = 15V, TJ = 150°C — VCE = VGE, IC = 250µA 6.0 — mV/°C VCE = VGE, IC = 250µA — S VCE = 100V, IC = 20A VGE = 0V, VCE = 600V 250 2.0 µA VGE = 0V, VCE = 10V, TJ = 25°C VGE = 0V, VCE = 600V, TJ = 150°C 2500 3.8 V IF = 10A, VGE = 0V IF = 10A, VGE = 0V, TJ = 150°C 3.7 ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf ETS LE Cies Coes Cres trr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time — — — — — — — — — — — — — — — — — — — — 110 18 36 23 27 100 280 1440 1410 2850 22 32 190 630 5360 13 2100 99 12 50 130 24 53 — — 110 340 — — 3740 — — — — — — — — — 76 Irr Diode Peak Reverse Recovery Current — — 72 4.4 110 7.0 A Qrr Diode Reverse Recovery Charge — — 5.9 130 8.8 200 nC Diode Peak Rate of Fall of Recovery During tb — — — 250 210 180 380 — — di(rec)M/dt 2 nC ns µJ ns µJ nH pF ns Conditions IC = 20A VCC = 400V VGE = 15V IC = 20A, VCC = 600V VGE = 15V, RG = 10Ω TJ = 25°C Energy losses inclued "tail" IC = 20A, VCC = 600V VGE = 15V, RG = 10Ω TJ = 25°C IC = 20A, VCC = 600V VGE = 15V, RG = 10Ω, L = 1.0mH TJ = 150°C Energy losses inclued "tail" Measured 5mm froom package VGE = 0V VCC = 30V f = 1.0MHz TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs A/µs TJ=25°C, VCC = 200V, IF = 10A, di/dt = 200A/µs TJ=125°C, VCC = 200V, IF = 10A, di/dt = 200A/µs www.irf.com IRG4PH40UD2PbF 50 Square wave: 45 60% of rated voltage 40 Load Current ( A ) 35 I 30 Ideal diodes 25 20 For both: Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 35W 15 10 5 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 1000 100 IC , Collector-to-Emitter Current (A) IC , Collector-to-Emitter Current (A) 1000 TJ = 25°C TJ = 150°C 10 VGE = 15V 20µs PULSE WIDTH A 1 0.1 1 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 10 100 TJ = 150°C TJ = 25°C 10 VCC = 10V 5µs PULSE WIDTH A 1 4 6 8 10 12 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PH40UD2PbF 2.5 V GE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 40 30 20 10 A 0 25 50 75 100 125 I C = 40A 2.0 IC = 20A 1.5 I C = 10A A 1.0 -60 150 TC , Case Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature VGE = 15V 80µs PULSE WIDTH -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 0.02 t SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t / t 1 2 0.01 0.01 0.00001 1 t2 2. Peak TJ = PDM x Z thJC + T C 0.0001 0.001 0.01 0.1 1 10 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH40UD2PbF 3500 VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc 3000 C oes = C ce + C gc 14.0 IC= 20A VGS, Gate-to-Source Voltage (V) Capacitance (pF) 4000 Cies 2500 2000 1500 Coes 1000 Cres 500 VCC = 400V 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0 1 10 0 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 60 80 100 120 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 11000 3500 VCE = 600V VGE = 15V R G = 10Ω 10000 TJ = 25°C I C = 20A Total Swiching Losses (mJ) Total Swiching Losses (mJ) 40 QG Total Gate Charge (nC) VCE, Collector-toEmitter-Voltage(V) 3250 20 3000 2750 VGE = 15V 9000 IC = 40A 8000 7000 6000 IC = 20A 5000 4000 3000 2000 1000 IC = 10A 0 2500 0 10 20 30 40 RG, Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 50 -55 -5 45 95 145 T J, Juntion Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PH40UD2PbF 1000 7000 VGE = 20V GE TJ = 125°C R G = 10Ω Total Swiching Losses (mJ) 5000 I C , Collector-to-Emitter Current (A) TJ = 150°C VCE= 600V VGE = 15V 6000 4000 3000 2000 1000 100 SAFE OPERATING AREA 10 0 0 10 20 30 IC, Collecto-to-Emitter (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 40 1 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PH40UD2PbF Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di(rec)M/dt vs. dif/dt www.irf.com 7 IRG4PH40UD2PbF 90% Vge +Vge Same type device as D.U.T. Vce 430µF 80% of Vce Ic D.U.T. 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = Fig. 18a - Test Circuit for Measurement of ∫ Vce Ic dt t1+5µS Vce ic dt t1 ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Qrr = Ic ∫ Ic dt trr id dt tx +Vg tx 10% Irr 10% Vcc Vcc DUT VOLTAGE AND CURRENT Vce Vpk Irr Vcc 10% Ic 90% Ic Ipk Ic DIODE RECOVERY WAVEFORMS tr td(on) 5% Vce t1 ∫ t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PH40UD2PbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 800V 800V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PH40UD2PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WIT H ASS EMBLY LOT CODE 5657 ASS EMBLED ON WW 35, 2000 IN THE ASS EMBLY LINE "H" PART NUMBER INT ERNATIONAL RECT IFIER LOGO IRFPE30 56 Note: "P" in assembly line position indicates "Lead-Free" 035H 57 AS S EMBLY LOT CODE DATE CODE YEAR 0 = 2000 WEEK 35 LINE H Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/04 10 www.irf.com