IRF IRG4BC15UD

PD - 94082A
IRG4BC15UD
UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• UltraFast: Optimized for high frequencies from10 to
30 kHz in hard switching
• IGBT Co-packaged with ultra-soft-recovery
antiparallel diode
• Industry standard TO-220AB package
VCES = 600V
VCE(on) typ. = 2.02V
G
@VGE = 15V, IC = 7.8A
E
n-ch an nel
Benefits
• Best Value for Appliance and Industrial Applications
• High noise immune "Positive Only" gate driveNegative bias gate drive not necessary
• For Low EMI designs- requires little or no snubbing
• Single Package switch for bridge circuit applications
• Compatible with high voltage Gate Driver IC's
• Allows simpler gate drive
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
14
7.8
42
42
4.0
16
± 20
49
19
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.50
–––
2 (0.07)
2.7
7.0
–––
80
–––
Units
°C/W
g (oz)
1
03/20/01
IRG4BC15UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage –––
VCE(on)
Collector-to-Emitter Saturation Voltage –––
–––
–––
VGE(th)
Gate Threshold Voltage
3.0
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage –––
Forward Transconductance „
4.1
gfe
ICES
Zero Gate Voltage Collector Current
–––
–––
VFM
Diode Forward Voltage Drop
–––
–––
IGES
Gate-to-Emitter Leakage Current
–––
V(BR)CES
Typ.
–––
0.63
2.02
2.56
2.21
–––
-10
6.2
–––
–––
1.5
1.4
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
2.4
IC = 7.8A
VGE = 15V
–––
V
IC = 14A
–––
IC = 7.8A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 250µA
–––
S
VCE = 100V, IC = 7.8A
250
µA
VGE = 0V, VCE = 600V
1400
VGE = 0V, VCE = 600V, TJ = 150°C
1.8
V
IC = 4.0A
1.7
IC = 4.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Irr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
23
4.0
9.6
17
20
160
83
0.24
0.26
0.50
16
21
180
220
0.76
7.5
410
37
5.3
28
38
2.9
3.7
40
70
280
240
Max. Units
Conditions
35
IC = 7.8A
6.0
nC VCC = 400V
14
VGE = 15V
–––
TJ = 25°C
–––
ns
IC = 7.8A, VCC = 480V
240
VGE = 15V, R G = 75Ω
120
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ
0.63
–––
TJ = 150°C,
–––
ns
IC = 7.8A, VCC = 480V
–––
VGE = 15V, R G = 75Ω
–––
Energy losses include "tail" and
–––
mJ diode reverse recovery.
–––
nH Measured 5mm from package
–––
VGE = 0V
–––
pF
VCC = 30V
–––
ƒ = 1.0MHz
42
ns
TJ = 25°C
57
TJ = 125°C
IF = 4.0A
5.2
A
TJ = 25°C
6.7
TJ = 125°C
VR = 200V
60
nC
TJ = 25°C
110
TJ = 125°C
di/dt 200A/µs
––– A/µs TJ = 25°C
–––
TJ = 125°C
IRG4BC15UD
10
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Turn-on losses include effects of
reverse recovery
Power Dissipation = 11W
Load Current ( A )
8
6
60% of rated
voltage
4
2
Ideal diodes
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C , Collector-to-Emitter Current (A)
10
TJ = 150 °C
1
TJ = 25 °C
0.1
0.1
V GE = 15V
20µs PULSE WIDTH
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
10
I C , Collector-to-Emitter Current (A)
100
100
TJ = 150 °C
10
1
0.1
5.0
TJ = 25 °C
V CC = 50V
5µs PULSE WIDTH
10.0
15.0
20.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
IRG4BC15UD
14
VCE , Collector-to Emitter Voltage (V)
4.0
Maximum DC Collector Current(A)
12
10
8
6
4
2
VGE = 15V
80µs PULSE WIDTH
IC = 14A
3.0
IC = 7.8A
2.0
IC = 3.9A
1.0
0
25
50
75
100
125
150
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
0.02
0.01
P DM
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
1
IRG4BC15UD
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
VGE, Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
800
600
C ies
400
C oes
200
C res
16
12
8
4
0
0
1
10
0
100
5
10
15
20
25
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
0.48
10
VCC = 480V
VGE = 15V
TJ = 25°C
I C = 7.8A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC = 400V
I C = 7.8A
0.46
0.44
0.42
RG = 75Ω
VGE = 15V
VCC = 480V
IC = 14A
1
IC = 7.8A
IC = 3.9A
0.1
0
10
20
30
40
R G, Gate Resistance ( Ω )
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
50
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
IRG4BC15UD
100
VGE = 20V
TJ = 125°
RG = 75Ω
TJ = 150°C
VGE = 15V
1.6
VCC = 480V
C, Capacitance(pF)
Total Switching Losses (mJ)
2.0
1.2
0.8
SAFE OPERATING AREA
10
0.4
0.0
1
2
4
6
8
10
12
14
16
1
10
IC , Collector Current (A)
100
VDS , Drain-to-Source Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
TJ = 150°C
10
TJ = 125°C
T = 25°C
J
1
0.1
0.0
1.0
2.0
3.0
4.0
5.0
6.0
F orward V oltage D rop - V F M(V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
IRG4BC15UD
50
14
I F = 8.0A
45
12
I F = 4.0A
VR = 20 0V
T J = 1 25 °C
T J = 2 5°C
I F = 8.0A
10
I F = 4.0A
Irr- ( A)
trr- (nC)
40
35
8
6
30
4
25
2
VR = 2 00 V
T J = 1 2 5°C
T J = 2 5 °C
20
100
di f /dt - (A/µ s)
0
100
1000
1000
di f /dt - (A/µ s)
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
200
1000
VR = 2 00 V
T J = 1 25°C
T J = 2 5°C
VR = 20 0V
T J = 1 25 °C
T J = 2 5°C
160
I F = 8.0A
di (rec) M/dt- (A /µs)
I F = 4.0A
Qrr- (nC)
120
I F = 8.0A
80
I F = 4.0A
40
0
100
di f /dt - (A/µ s)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
A
100
100
1000
di f /dt - (A/µ s )
Fig. 17 - Typical di(rec)M/dt vs. dif/dt,
IRG4BC15UD
90% Vge
Same ty pe
device as
D .U.T.
+Vge
V ce
430µF
80%
of Vce
D .U .T.
Ic
9 0 % Ic
10% Vce
Ic
5 % Ic
td (o ff)
tf
E o ff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1 + 5 µ S
V c e icIcd tdt
Vce
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
∫
trr
id
t
Icddt
tx
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
ce ieIcd t dt
E o n = VVce
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
∫
t4
VVd
d idIc
d t dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
IRG4BC15UD
V g G AT E SIG NA L
DE VIC E U ND E R T E ST
CU R RE NT D .U .T.
VO L TA G E IN D.U .T.
CU R RE NT IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
480V
4 X I C @25°C
0 - 480V
50V
600 0µF
100V
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current
Test Circuit
IRG4BC15UD
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 75Ω
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
Case Outline — TO-220AB
2 .8 7 (.1 1 3 )
2 .6 2 (.1 0 3 )
1 0 .5 4 (.41 5 )
1 0 .2 9 (.40 5 )
4
3.78 (.149)
3.54 (.139)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255 )
6.10 (.240 )
1 5 .2 4 (.6 0 0 )
1 4 .8 4 (.5 8 4 )
1.15 (.045)
M IN
1
2
1 4 .0 9 (.5 5 5 )
1 3 .4 7 (.5 3 0 )
N O TE S :
1 D IM E N S IO N S & T O L E R A N C IN G
P E R A N S I Y 14 .5 M , 1 9 8 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 D IM E N S IO N S A R E S H O W N
M ILL IM E T E R S (IN C H E S ).
4 C O N F O R M S T O JE D E C O U T L IN E
T O -2 2 0 A B .
LEAD
1234-
3
3X
1 .4 0 (.0 5 5 )
3 X 1 .1 5 (.0 4 5 )
-B -
4.69 (.185)
4.20 (.165)
3.96 (.160)
3.55 (.140)
A S S IG N M E N T S
GA TE
C O L LE C T O R
E M IT T E R
C O L LE C T O R
4.06 (.160 )
3.55 (.140 )
3X
0.93 (.037)
0.69 (.027)
0 .3 6 (.01 4 )
M B A M
2 .5 4 (.1 0 0)
3X
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2X
CONFORMS TO JEDEC OUTLINE TO-220AB
D im e ns io ns in M illim e ters a nd (In c he s )
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/01