IRF IRG4BC10UDPBF

PD - 94905
IRG4BC10UDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
• UltraFast: Optimized for high operating
up to 80 kHz in hard switching, >200 kHz in
resonant mode
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
previous Generation
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-220AB package
• Lead-Free
UltraFast CoPack IGBT
C
VCES = 600V
VCE(on) typ. = 2.15V
G
@VGE = 15V, IC = 5.0A
E
tf (typ.) = 140ns
n-channel
Benefits
• Generation 4 IGBT's offer highest efficiencies
available
• IGBT's optimized for specific application conditions
• HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing
TO-220AB
Absolute Maximum Ratings
Parameter
V CES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
8.5
5.0
34
34
4.0
16
± 20
38
15
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
—
—
—
—
—
—
—
0.50
—
2 (0.07)
3.3
7.0
—
80
—
Units
°C/W
g (oz)
1
12/23/03
IRG4BC10UDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltageƒ 600 —
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
0.54
VCE(on)
Collector-to-Emitter Saturation Voltage
— 2.15
— 2.61
— 2.30
VGE(th)
Gate Threshold Voltage
3.0
—
∆VGE(th) /∆TJ Temperature Coeff. of Threshold Voltage
— -8.7
gfe
Forward Transconductance „
2.8 4.2
ICES
Zero Gate Voltage Collector Current
—
—
—
—
V FM
Diode Forward Voltage Drop
—
1.5
—
1.4
IGES
Gate-to-Emitter Leakage Current
—
—
V(BR)CES
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V/°C VGE = 0V, IC = 1.0mA
2.6
IC = 5.0A
VGE = 15V
—
V
IC = 8.5A
See Fig. 2, 5
—
IC = 5.0A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100V, IC = 5.0A
250
µA
VGE = 0V, VCE = 600V
1000
VGE = 0V, VCE = 600V, T J = 150°C
1.8
V
IC = 4.0A
See Fig. 13
1.7
IC = 4.0A, TJ = 125°C
±100 n A
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Q rr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Details of note  through „ are on the last page
2
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
15
2.6
5.8
40
16
87
140
0.14
0.12
0.26
38
18
95
250
0.45
7.5
270
21
3.5
28
38
2.9
3.7
40
70
280
235
Max. Units
Conditions
22
IC = 5.0A
4.0
nC
VCC = 400V
See Fig. 8
8.7
VGE = 15V
—
TJ = 25°C
—
ns
IC = 5.0A, VCC = 480V
130
VGE = 15V, RG = 100Ω
210
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ
See Fig. 9, 10, 18
0.33
—
TJ = 150°C, See Fig. 11, 18
—
ns
IC = 5.0A, VCC = 480V
—
VGE = 15V, RG = 100Ω
—
Energy losses include "tail" and
—
mJ
diode reverse recovery.
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
42
ns
TJ = 25°C See Fig.
57
TJ = 125°C
14
IF = 4.0A
5.2
A
TJ = 25°C See Fig.
6.7
TJ = 125°C
15
VR = 200V
60
nC
TJ = 25°C See Fig.
105
TJ = 125°C
16
di/dt = 200A/µs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
www.irf.com
IRG4BC10UDPbF
7
For both:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
LOAD CURRENT (A)
6
5
Power Dissipation = 9.2 W
4
Square wave:
60% of rated
voltage
3
I
2
Ideal diodes
1
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 oC
10
TJ = 150 oC
1
0.1
V GE = 15V
20µs PULSE WIDTH
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C, Collector-to-Emitter Current (A)
I C, Collector-to-Emitter Current (A)
100
10
TJ = 150 o C
TJ = 25 oC
1
V CC = 50V
5µs PULSE WIDTH
5
6
7
8
9
10
11
12
13
14
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC10UDPbF
5.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
10
8
6
4
2
0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
VGE = 15V
80 us PULSE WIDTH
IC = 10 A
4.0
3.0
IC = 5.05 A
IC = 2.5 A
2.0
1.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
0.02
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC10UDPbF
500
VGE , Gate-to-Emitter Voltage (V)
400
C, Capacitance (pF)
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
300
200
Coes
100
Cres
0
1
10
16
12
8
4
0
100
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
V CC = 480V
V GE = 15V
TJ = 25 ° C
I C = 5.0A
50
60
70
80
90
, Gate
Resistance(Ohm)
(Ω)
RG R, GGate
Resistance
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
4
8
12
16
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
0.25
0.20
0
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.30
VCC = 400V
I C = 5.0A
100
100 Ω
RG = Ohm
VGE = 15V
VCC = 480V
IC = 10 A
1
IC = 5.0A
5A
IC = 2.5 A
0.1
0.01
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC10UDPbF
100
= 100Ω
Ohm
= 150° C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
RG
TJ
1.2 VCC
VGE
1.0
0.8
0.6
0.4
0.2
0.0
0
2
4
6
8
VGE = 20V
T J = 125 oC
10
1
10
SAFE OPERATING AREA
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Instantaneous Forward Current ( A )
Total Switching Losses (mJ)
1.4
TJ = 150°C
10
T = 125°C
J
T = 25°C
J
1
0.1
0.0
1.0
2.0
3.0
4.0
5.0
6.0
Forward
Forward Voltage
Voltage Drop
Drop -- VVFM
((V)
V)
FM
6
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
www.irf.com
IRG4BC10UDPbF
50
14
I F = 8.0A
45
12
I F = 4.0A
10
I F = 8.0A
I F = 4.0A
Irr- ( A)
trr- (nC)
40
VR = 200V
TJ = 125°C
TJ = 25°C
35
8
6
30
4
25
2
VR = 200V
TJ = 125°C
TJ = 25°C
20
100
di f /dt - (A/µs)
0
100
1000
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
200
1000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
160
120
I F = 8.0A
di (rec) M/dt- (A /µs)
Qrr- (nC)
I F = 8.0A
I F = 4.0A
80
I F = 4.0A
40
0
100
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
A
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt,
7
IRG4BC10UDPbF
90% Vge
Same type
device as
D.U.T.
+Vge
Vce
430µF
80%
of Vce
D.U.T.
Ic
90% Ic
10% Vce
Ic
5% Ic
td(off)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
∫
t1+5µS
Vce icIcdtdt
Vce
t1
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
tx
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
10% Irr
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
10% Vcc
Vcc
trr
id
Ic dtdt
tx
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4BC10UDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 480V
480V
4 X I C @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4BC10UDPbF
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 100Ω (figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
TO-220AB Package Outline
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
L E A D A S S IG N M E N T S
1.15 (.045)
MIN
1
2
3
4- D R A IN
14.09 (.555)
13.47 (.530)
4 - C O LL E C T O R
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IG B Ts, C oP A C K
1 - GATE
1- G A T2E- DRAIN
1- GATE
- SOURCE 2 - C O LL E C T O R
2- D R A3IN
3- S O U4R- CDRAIN
E
3 - E M ITT E R
H EXFET
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B
A
M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E X AM P L E :
T H IS IS AN IR F 1 0 10
L OT COD E 17 8 9
AS S E MB L E D O N W W 1 9, 1 9 9 7
I N T H E AS S E M B L Y L I N E "C "
N o te : "P " in as se m b ly lin e
p o sitio n ind ic a te s "L e a d -F re e"
I N T E R N AT IO N AL
R E CT IF IE R
L OGO
AS S E M B L Y
L O T CO D E
P AR T N U M B E R
D AT E COD E
Y E AR 7 = 1 9 9 7
WE E K 19
L IN E C
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 12/03
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/