PD - 94905 IRG4BC10UDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features UltraFast: Optimized for high operating up to 80 kHz in hard switching, >200 kHz in resonant mode Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous Generation IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations Industry standard TO-220AB package Lead-Free UltraFast CoPack IGBT C VCES = 600V VCE(on) typ. = 2.15V G @VGE = 15V, IC = 5.0A E tf (typ.) = 140ns n-channel Benefits Generation 4 IGBT's offer highest efficiencies available IGBT's optimized for specific application conditions HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing TO-220AB Absolute Maximum Ratings Parameter V CES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 8.5 5.0 34 34 4.0 16 ± 20 38 15 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbfin (1.1 Nm) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. 0.50 2 (0.07) 3.3 7.0 80 Units °C/W g (oz) 1 12/23/03 IRG4BC10UDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage 0.54 VCE(on) Collector-to-Emitter Saturation Voltage 2.15 2.61 2.30 VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th) /∆TJ Temperature Coeff. of Threshold Voltage -8.7 gfe Forward Transconductance 2.8 4.2 ICES Zero Gate Voltage Collector Current V FM Diode Forward Voltage Drop 1.5 1.4 IGES Gate-to-Emitter Leakage Current V(BR)CES Max. Units Conditions V VGE = 0V, IC = 250µA V/°C VGE = 0V, IC = 1.0mA 2.6 IC = 5.0A VGE = 15V V IC = 8.5A See Fig. 2, 5 IC = 5.0A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 5.0A 250 µA VGE = 0V, VCE = 600V 1000 VGE = 0V, VCE = 600V, T J = 150°C 1.8 V IC = 4.0A See Fig. 13 1.7 IC = 4.0A, TJ = 125°C ±100 n A VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Q rr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb Details of note through are on the last page 2 Min. Typ. 15 2.6 5.8 40 16 87 140 0.14 0.12 0.26 38 18 95 250 0.45 7.5 270 21 3.5 28 38 2.9 3.7 40 70 280 235 Max. Units Conditions 22 IC = 5.0A 4.0 nC VCC = 400V See Fig. 8 8.7 VGE = 15V TJ = 25°C ns IC = 5.0A, VCC = 480V 130 VGE = 15V, RG = 100Ω 210 Energy losses include "tail" and diode reverse recovery. mJ See Fig. 9, 10, 18 0.33 TJ = 150°C, See Fig. 11, 18 ns IC = 5.0A, VCC = 480V VGE = 15V, RG = 100Ω Energy losses include "tail" and mJ diode reverse recovery. nH Measured 5mm from package VGE = 0V pF VCC = 30V See Fig. 7 = 1.0MHz 42 ns TJ = 25°C See Fig. 57 TJ = 125°C 14 IF = 4.0A 5.2 A TJ = 25°C See Fig. 6.7 TJ = 125°C 15 VR = 200V 60 nC TJ = 25°C See Fig. 105 TJ = 125°C 16 di/dt = 200A/µs A/µs TJ = 25°C See Fig. TJ = 125°C 17 www.irf.com IRG4BC10UDPbF 7 For both: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified LOAD CURRENT (A) 6 5 Power Dissipation = 9.2 W 4 Square wave: 60% of rated voltage 3 I 2 Ideal diodes 1 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 oC 10 TJ = 150 oC 1 0.1 V GE = 15V 20µs PULSE WIDTH 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C, Collector-to-Emitter Current (A) I C, Collector-to-Emitter Current (A) 100 10 TJ = 150 o C TJ = 25 oC 1 V CC = 50V 5µs PULSE WIDTH 5 6 7 8 9 10 11 12 13 14 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC10UDPbF 5.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 10 8 6 4 2 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) VGE = 15V 80 us PULSE WIDTH IC = 10 A 4.0 3.0 IC = 5.05 A IC = 2.5 A 2.0 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 0.02 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC10UDPbF 500 VGE , Gate-to-Emitter Voltage (V) 400 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 300 200 Coes 100 Cres 0 1 10 16 12 8 4 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 10 V CC = 480V V GE = 15V TJ = 25 ° C I C = 5.0A 50 60 70 80 90 , Gate Resistance(Ohm) (Ω) RG R, GGate Resistance Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 4 8 12 16 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 0.25 0.20 0 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.30 VCC = 400V I C = 5.0A 100 100 Ω RG = Ohm VGE = 15V VCC = 480V IC = 10 A 1 IC = 5.0A 5A IC = 2.5 A 0.1 0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC10UDPbF 100 = 100Ω Ohm = 150° C = 480V = 15V I C , Collector-to-Emitter Current (A) RG TJ 1.2 VCC VGE 1.0 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 VGE = 20V T J = 125 oC 10 1 10 SAFE OPERATING AREA 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 Instantaneous Forward Current ( A ) Total Switching Losses (mJ) 1.4 TJ = 150°C 10 T = 125°C J T = 25°C J 1 0.1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Forward Forward Voltage Voltage Drop Drop -- VVFM ((V) V) FM 6 Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current www.irf.com IRG4BC10UDPbF 50 14 I F = 8.0A 45 12 I F = 4.0A 10 I F = 8.0A I F = 4.0A Irr- ( A) trr- (nC) 40 VR = 200V TJ = 125°C TJ = 25°C 35 8 6 30 4 25 2 VR = 200V TJ = 125°C TJ = 25°C 20 100 di f /dt - (A/µs) 0 100 1000 di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 200 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 160 120 I F = 8.0A di (rec) M/dt- (A /µs) Qrr- (nC) I F = 8.0A I F = 4.0A 80 I F = 4.0A 40 0 100 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 A di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt, 7 IRG4BC10UDPbF 90% Vge Same type device as D.U.T. +Vge Vce 430µF 80% of Vce D.U.T. Ic 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = Fig. 18a - Test Circuit for Measurement of ∫ t1+5µS Vce icIcdtdt Vce t1 ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ +Vg 10% Vcc Vcc trr id Ic dtdt tx ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC10UDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 480V 480V 4 X I C @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC10UDPbF Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 100Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-220AB Package Outline 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) L E A D A S S IG N M E N T S 1.15 (.045) MIN 1 2 3 4- D R A IN 14.09 (.555) 13.47 (.530) 4 - C O LL E C T O R 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IG B Ts, C oP A C K 1 - GATE 1- G A T2E- DRAIN 1- GATE - SOURCE 2 - C O LL E C T O R 2- D R A3IN 3- S O U4R- CDRAIN E 3 - E M ITT E R H EXFET 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E X AM P L E : T H IS IS AN IR F 1 0 10 L OT COD E 17 8 9 AS S E MB L E D O N W W 1 9, 1 9 9 7 I N T H E AS S E M B L Y L I N E "C " N o te : "P " in as se m b ly lin e p o sitio n ind ic a te s "L e a d -F re e" I N T E R N AT IO N AL R E CT IF IE R L OGO AS S E M B L Y L O T CO D E P AR T N U M B E R D AT E COD E Y E AR 7 = 1 9 9 7 WE E K 19 L IN E C IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/03 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/