MIXA450PF1200TSF XPT IGBT Module VCES = 2x 1200 V I C25 = 650 A VCE(sat) = 1.8 V Phase leg + free wheeling Diodes + NTC Part number MIXA450PF1200TSF Backside: isolated 5 2 1 8 7 4 3 6 9 10/11 Features / Advantages: Applications: Package: SimBus F ● High level of integration - only one power semiconductor module required for the whole drive ● Rugged XPT design (Xtreme light Punch Through) results in: - short circuit rated for 10 µsec. - very low gate charge - low EMI - square RBSOA @ 3x Ic ● Thin wafer technology combined with the XPT design results in a competitive low VCE(sat) ● Temperature sense included ● SONIC™ diode - fast and soft reverse recovery - low operating forward voltage ● AC motor drives ● Pumps, Fans ● Air-conditioning system ● Inverter and power supplies ● UPS ● Isolation Voltage: 3000 V~ ● Industry standard outline ● RoHS compliant ● Soldering pins for PCB mounting ● Height: 17 mm ● Base plate: Copper internally DCB isolated ● Advanced power cycling IXYS reserves the right to change limits, conditions and dimensions. © 2012 IXYS all rights reserved Data according to IEC 60747and per semiconductor unless otherwise specified 20121026a MIXA450PF1200TSF Ratings IGBT Symbol VCES Definition collector emitter voltage VGES max. DC gate voltage VGEM max. transient gate emitter voltage I C25 collector current Conditions min. TVJ = typ. 25°C TC = 25°C I C80 2.15 V 6.5 V 1 mA gate emitter threshold voltage I C = 18 mA; VGE = VCE TVJ = 25°C I CES collector emitter leakage current VCE = VCES; VGE = 0 V TVJ = 25°C TVJ = 25°C 1.8 5.4 5.9 gate emitter leakage current VGE = ±20 V Q G(on) total gate charge VCE = 600 V; VGE = 15 V; IC = 450 A t d(on) turn-on delay time tr current rise time t d(off) turn-off delay time tf current fall time Eon turn-on energy per pulse Eoff turn-off energy per pulse RBSOA reverse bias safe operating area 1.5 TVJ = 125 °C 600 V; IC = 450 A VGE = ±15 V; R G = 1.6 Ω short circuit duration VCE = 900 V; VGE = ±15 V R G = 1.6 Ω; non-repetitive I SC short circuit current R thJC thermal resistance junction to case R thCH thermal resistance case to heatsink µA 1400 nC 85 ns 80 ns 310 ns 360 ns 22 mJ 68 mJ TVJ = 125 °C VCEmax = 1200 V t SC mA 6 TVJ = 125 °C I GES V 2.15 TVJ = 125 °C VCEmax = 1200 V A A VGE(th) short circuit safe operating area V W I C = 450 A; VGE = 15 V I CM ±30 650 450 collector emitter saturation voltage SCSOA V 2100 VCE(sat) VGE = ±15 V; R G = 1.6 Ω ±20 TC = 25°C total power dissipation VCE = Unit V TC = 80 °C Ptot inductive load max. 1200 TVJ = 125 °C 900 A 10 µs A 1900 0.06 K/W K/W 0.03 Diode VRRM max. repetitive reverse voltage TVJ = 25°C 1200 V I F25 forward current TC = 25°C 380 A TC = 80 °C 265 A TVJ = 25°C 2.30 V * mA I F 80 VF forward voltage I F = 450 A IR reverse current VR = VRRM TVJ = 125°C * not applicable, see Ices value above Q rr reverse recovery charge I RM max. reverse recovery current t rr reverse recovery time E rec reverse recovery energy R thJC thermal resistance junction to case R thCH thermal resistance case to heatsink IXYS reserves the right to change limits, conditions and dimensions. © 2012 IXYS all rights reserved TVJ = 25°C * mA 62 µC 425 A TVJ = 125°C VR = 600 V -di F /dt = 5400 A/µs IF = 450 A; VGE = 0 V TVJ = 125°C V 2.00 360 ns 26 mJ 0.095 K/W 0.04 Data according to IEC 60747and per semiconductor unless otherwise specified K/W 20121026a MIXA450PF1200TSF Package Ratings SimBus F Symbol I RMS Definition Conditions RMS current per terminal min. Tstg storage temperature -40 125 °C T VJ virtual junction temperature -40 150 °C Weight mounting torque MT terminal torque d Spb/Apb VISOL XXX XX-XXXXX UL Part number Ordering Standard 6 3 6 Nm Nm mm terminal to backside 10.0 mm 3000 V 50/60 Hz, RMS; IISOL ≤ 1 mA 2D Data Matrix Logo 3 2500 V 0.65 V = VCEsat + 2·R·IC resp. V = VF + 2·R·IF resistance pin to chip g 12.7 t = 1 second t = 1 minute Unit A terminal to terminal creepage distance on surface | striking distance through air isolation voltage R pin-chip max. 350 MD d Spp/App typ. mΩ Part number M I X A 450 PF 1200 T SF YYWWx Date Code Location Part Number MIXA450PF1200TSF = = = = = = = = = Module IGBT XPT IGBT Gen 1 / std Current Rating [A] Phase leg + free wheeling Diodes Reverse Voltage [V] Thermistor \ Temperature sensor SimBus F Marking on Product MIXA450PF1200TSF Delivery Mode Box Quantity 3 Code No. 511202 105 Temperature Sensor NTC Symbol Definition Conditions R 25 resistance TVJ = 25° B 25/50 temperature coefficient typ. min. 5 4.75 max. Unit 5.25 kΩ 3375 K 104 R [ ] 103 Equivalent Circuits for Simulation I V0 R0 T VJ = 150 °C * on die level IGBT Diode 102 0 V 0 max threshold voltage 1.1 1.25 V R 0 max slope resistance * 3.1 1.9 mΩ IXYS reserves the right to change limits, conditions and dimensions. © 2012 IXYS all rights reserved 25 50 75 100 TC [°C] 125 150 Typ. NTC resistance vs. temperature Data according to IEC 60747and per semiconductor unless otherwise specified 20121026a MIXA450PF1200TSF Outlines SimBus F 9 0,46 0 3,75 65 87 4 R2,5 50 22 57,5 10 62 0,8 11,06 7,25 0 7,75 37,73 33,92 87,26 64,4 60,59 17 20,5 1,2 3 11 12 57,96 94,5 110 122 137 152 5 2 1 8 IXYS reserves the right to change limits, conditions and dimensions. © 2012 IXYS all rights reserved 9 4 3 6 7 10/11 Data according to IEC 60747and per semiconductor unless otherwise specified 20121026a MIXA450PF1200TSF IGBT VGE = 15 V 13 V VGE = 15 V 17 V 19 V 800 800 800 11 V 600 600 IC 600 IC TVJ = 25°C 400 TVJ = 125°C [A] IC 400 400 9V [A] [A] TVJ = 125°C 200 200 200 TVJ = 125°C TVJ = 25°C 0 0 0 1 2 0 0 3 1 2 3 4 5 70 20 15 tr 150 E 40 75t [ns] 20 E t 80 0 1600 200 400 600 800 0 1000 250 IC = 450 A VCE = 600 V 80 VGE = ±15 V TVJ = 125°C 0.06 ZthJC E 0.04 [K/W] 0.00 0.001 [mJ] Ri 0.0093 0.0095 0.02 0.0212 0.1 ti 0.002 0.03 0.03 0.08 1 40 Fig. 7 Typ. trans. therm. impedance 150 2 1000 700 Eoff t [mJ] 50 4 6 8 0 10 600 td(off) IC = 450 A VCE = 600 V VGE = ±15 V TVJ = 125°C Eoff 100 [ns] Eon 0 800 80 40 Erec(on) 10 600 60 tr 20 400 Fig. 6 Typ. switching energy versus gate resistance 200 60 t 500 [ns] 20 400 tf 0 300 0 2 4 6 8 10 RG [ ] RG [ ] Fig. 8 Typ. turn-on energy, switching times vs. gate resistor, inductive switching Fig.9 Typ. turn-off energy, switching times vs. gate resistor, inductive switching t [s] IXYS reserves the right to change limits, conditions and dimensions. © 2012 IXYS all rights reserved 200 td(on) 0 0.01 0 0 IC [A] 100 0.02 0 Fig. 5 Typ. turn-on energy & switching times vs. collector current, inductive switching single pulse 200 tf IC [A] QG [nC] Fig. 4 Typ. turn-on gate charge [ns] Eoff 0 1200 td(off) 25 Erec (off) 800 400 40 10 0 600 [mJ] 50 Eon 800 120 100 [mJ] 30 5 10 11 12 13 RG = 1.6 VCE = 600 V VGE = ±15 V TVJ = 125°C 160 125 10 [V] 9 Fig. 3 Typ. transfer characteristics td(on) VGE 8 175 RG = 1.6 VCE = 600 V 60 VGE = ±15 V 50 TVJ = 125°C IC = 450 A VCE = 600 V 400 7 VGE [V] Fig. 2 Typ. output characteristics Fig. 1 Typ. output characteristics 0 6 VCE [V] VCE [V] Data according to IEC 60747and per semiconductor unless otherwise specified 20121026a MIXA450PF1200TSF Diode 500 550 If = 450 A VR = 600 V TVJ = 125°C 800 If = 450 A VR = 600 V TVJ = 125°C 10 1.6 500 400 600 Irr IF [A] [ns] 300 TJ = 125°C 200 4.7 450 4.7 [A] 400 trr 3.3 10 3.3 400 TJ = 25°C 0 0.0 0.5 1.0 1.5 2.0 2.5 200 3000 3.0 VF [V] 4000 5000 6000 350 3000 diF /dt [A/μs] 100 If = 450 A VR = 600 V 26 T = 125°C VJ 400 Qrr 24 Erec 60 Irr 22 [A] 40 6000 28 Rg = 1.6 VR = 600 V TVJ = 125°C [μC] 5000 diF /dt [A/μs] 500 Rg = 1.6 VR = 600 V TVJ = 125°C 80 4000 Fig. 3 Typ. reverse recovery characteristics Fig. 2 Typ. reverse recovery characteristics Fig. 1 Typ. Forward current versus VF 1.6 [mJ] 300 20 20 18 0 200 0 200 400 600 800 0 200 400 IF [A] 600 16 3000 800 Fig. 5 Typ. reverse recovery characteristics Fig. 4 Typ. reverse recovery characteristics 4000 5000 diF /dt [A/μs] IF [A] Fig. 6 Typ. recovery energy Erec versus -di/dt 0.10 0.08 ZthJC 0.06 single pulse [K/W] 0.04 Ri 0.018 0.017 0.032 0.028 0.02 0.00 0.001 0.01 0.1 1 ti 0.002 0.03 0.03 0.08 10 t [s] Fig. 7 Typ. transient thermal impedance junction to case IXYS reserves the right to change limits, conditions and dimensions. © 2012 IXYS all rights reserved Data according to IEC 60747and per semiconductor unless otherwise specified 20121026a