Advance Technical Information High Voltage, High Gain BIMOSFETTM Monolithic Bipolar MOS Transistor IXBT20N360HV IXBH20N360HV VCES = 3600V IC110 = 20A VCE(sat) 3.4V TO-268HV (IXBT) Symbol Test Conditions Maximum Ratings G VCES TJ = 25°C to 150°C 3600 V VCGR TJ = 25°C to 150°C, RGE = 1M 3600 V VGES Continuous ± 20 V VGEM Transient ± 30 V IC25 TC = 25°C 70 A IC110 TC = 110°C 20 A ICM TC = 25°C, 1ms 220 A SSOA (RBSOA) VGE = 15V, TVJ = 125°C, RG = 10 Clamped Inductive Load ICM = 160 VCES 1500 A V TSC (SCSOA) VGE = 15V, TJ = 125°C, RG = 52, VCE = 1500V, Non-Repetitive 10 μs PC TC 430 W -55 ... +150 °C TJM 150 °C Tstg -55 ... +150 °C 300 260 °C °C 1.13/10 Nm/lb.in 4 6 g g = 25°C TJ TL TSOLD Maximum Lead Temperature for Soldering Plastic Body for 10s Md Mounting Torque (TO-247HV) Weight TO-268HV TO-247HV E C (Tab) TO-247HV (IXBH) G E C G = Gate E = Emitter C (Tab) C = Collector Tab = Collector Features High Voltage Packages High Blocking Voltage High Peak Current Capability Low Saturation Voltage Advantages Symbol Test Conditions (TJ = 25°C Unless Otherwise Specified) Characteristic Values Min. Typ. Max. BV CES IC = 250μA, VGE = 0V 3600 VGE(th) IC = 250μA, VCE = VGE 3.0 ICES VCE = VCES, VGE = 0V IGES VCE = 0V, VGE = ± 20V VCE(sat) IC = 20A, VGE = 15V, Note 1 V TJ = 125°C 5.0 V 25 500 μA μA ±100 nA 3.4 V V Applications TJ = 125°C 2.9 3.6 © 2014 IXYS CORPORATION, All Rights Reserved Low Gate Drive Requirement High Power Density Switch-Mode and Resonant-Mode Power Supplies Uninterruptible Power Supplies (UPS) Laser Generators Capacitor Discharge Circuits AC Switches DS100643(12/14) 1 IXBT20N360HV IXBH20N360HV Symbol Test Conditions (TJ = 25°C Unless Otherwise Specified) gfs IC = 20A, VCE = 10V, Note 1 Cies Coes Cres VCE = 25V, VGE = 0V, f = 1MHz Qg(on) Qge Qgc IC = 20A, VGE = 15V, VCE = 1000V td(on) tri Eon td(off) tfi Eoff td(on) tri Eon td(off) tfi Eoff td(on) tr td(off) tf td(on) tr td(off) tf RthJC RthCS Characteristic Values Min. Typ. Max. 10 Inductive load, TJ = 25°C IC = 20A, VGE = 15V VCE = 1500V, RG = 10 Note 2 Inductive load, TJ = 125°C IC = 20A, VGE = 15V VCE = 1500V, RG = 10 Note 2 Resistive load, TJ = 25°C IC = 20A, VGE = 15V VCE = 960V, RG = 10 Resistive load, TJ = 125°C IC = 20A, VGE = 15V TO-268HV Outline E 17 S 2045 110 50 pF pF pF 110 13 43 nC nC nC 18 14 15.50 238 206 4.30 ns ns mJ ns ns mJ 20 22 16.10 247 216 4.15 ns ns mJ ns ns mJ 30 325 ns ns 165 1045 ns ns 32 890 ns ns 185 1100 ns ns TO-247HV 0.29°C/W °C/W 0.21 Symbol Test Conditions (TJ = 25°C Unless Otherwise Specified) trr IRM QRM 3 D 1 E1 H 2 3 2 C e D1 D2 A1 L4 e A C2 D3 1 b PINS: 1 - Gate 2 - Emitter 3 - Collector L3 A2 L TO-247HV Outline E R 0P A A2 E1 0P1 Q S D1 D 4 D2 VCE = 960V, RG = 10 Reverse Diode VF L2 1 2 3 L1 D3 L e e1 A3 2X A1 E2 E3 4X b c 3X PINS: 1 - Gate 2 - Emitter 3, 4 - Collector 3X Characteristic Values Min. Typ. Max IF = 20A, VGE = 0V, Note 1 3.5 1.7 IF = 10A, VGE = 0V, -diF/dt = 100A/μs VR = 100V, VGE = 0V V μs 35 A 30 μC Note: 1. Pulse test, t 300μs, duty cycle, d 2%. 2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG. ADVANCETECHNICALINFORMATION The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice. IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,860,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 b1 IXBT20N360HV IXBH20N360HV Fig. 1. Output Characteristics @ TJ = 25ºC Fig. 2. Extended Output Characteristics @ TJ = 25ºC 40 VGE = 25V 19V 15V 13V 11V 35 17V 200 9V 25 I C - Amperes I C - Amperes 30 VGE = 25V 21V 19V 240 20 15 7V 15V 160 13V 120 11V 80 10 9V 40 5 6V 0 0 0.5 1 1.5 2 2.5 3 3.5 7V 0 4 4.5 0 5 10 15 1.6 30 VGE = 15V 1.5 9V VCE(sat) - Normalized 30 I C - Amperes 1.7 VGE = 25V 21V 17V 15V 13V 11V 35 25 Fig. 4. Dependence of VCE(sat) on Junction Temperature Fig. 3. Output Characteristics @ TJ = 125ºC 40 20 VCE - Volts VCE - Volts 25 20 7V 15 1.4 I C = 40A 1.3 1.2 I C = 20A 1.1 1.0 10 I C = 10A 0.9 6V 5 0.8 5V 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.7 -50 5.5 -25 0 VCE - Volts Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage 8 25 50 75 100 125 150 TJ - Degrees Centigrade Fig. 6. Input Admittance 60 50 6 40 I C - Amperes VCE - Volts TJ = 25ºC 7 5 I C = 40A 4 20 20A 3 30 TJ = 125ºC 25ºC - 40ºC 10 10A 0 2 6 7 8 9 10 11 12 13 VGE - Volts © 2014 IXYS CORPORATION, All Rights Reserved 14 15 3.5 4 4.5 5 5.5 6 6.5 7 VGE - Volts 7.5 8 8.5 9 9.5 IXBT20N360HV IXBH20N360HV Fig. 8. Gate Charge Fig. 7. Transconductance 16 30 TJ = - 40ºC VCE = 1000V 14 I C = 20A 25 I G = 10mA VGE - Volts g f s - Siemens 12 25ºC 20 125ºC 15 10 10 8 6 4 5 2 0 0 0 10 20 30 40 50 60 70 0 10 20 30 I C - Amperes 50 60 70 80 90 100 110 QG - NanoCoulombs Fig. 9. Forward Voltage Drop of Intrinsic Diode Fig. 10. Capacitance 60 10,000 f = 1 MHz TJ = 25ºC 125ºC Capacitance - PicoFarads J 50 40 I F - Amperes 40 30 VGE = 0V 20 C ies 1,000 C oes 100 VGE = 15V 10 Cres 0 10 0.5 1 1.5 2 2.5 3 3.5 4 0 5 10 15 20 25 30 35 40 VCE - Volts VF - Volts Fig. 12. Maximum Transient Thermal Impedance Fig. 11. Reverse-Bias Safe Operating Area 1 180 160 140 Z(th)JC - ºC / W I C - Amperes 120 100 80 60 40 TJ = 125ºC 20 RG = 10Ω dv / dt < 10V / ns 0 200 600 1000 1400 1800 2200 2600 3000 3400 VCE - Volts IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions. 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 0.1 Pulse Width - Seconds 1 10 IXBT20N360HV IXBH20N360HV Fig. 13. Forward-Bias Safe Operating Area @ T C = 25ºC Fig. 14. Forward-Bias Safe Operating Area @ T C = 75ºC 1000 1000 VCE(sat) Limit VCE(sat) Limit 100 I C - Amperes I C - Amperes 100 10 25µs 100µs 1 1ms 10 25µs 100µs 1 1ms TJ = 150ºC 0.1 DC TJ = 150ºC 0.1 10ms TC = 25ºC Single Pulse TC = 75ºC Single Pulse 100ms 0.01 DC 0.01 1 10 100 1,000 10,000 1 10 100 Fig. 15. Inductive Switching Energy Loss vs. Gate Resistance Eoff 16 Eon - 42 Eoff 12 8 26 6 22 4 18 I C = 20A 2 Eoff - MilliJoules E off - MilliJoules 30 14 0 10 15 20 25 30 35 40 45 40 8 6 24 TJ = 25ºC 4 16 2 8 0 50 0 10 15 20 25 --- 35 40 420 36 380 Fig. 18. Inductive Turn-off Switching Times vs. Gate Resistance tfi 900 t d(off) - - - - 800 TJ = 125ºC, VGE = 15V VCE = 1500V 10 28 8 24 6 700 300 600 260 500 I C = 40A I C = 20A 220 400 16 180 300 12 140 200 20 4 Eon - MilliJoules I C = 40A VCE = 1500V 340 32 I C = 20A 2 0 25 35 45 55 65 75 85 95 105 TJ - Degrees Centigrade © 2014 IXYS CORPORATION, All Rights Reserved 115 8 125 100 100 10 15 20 25 30 RG - Ohms 35 40 45 50 t d(off) - Nanoseconds 12 Eoff - MilliJoules Eon - RG = 10Ω , VGE = 15V 40 t f i - Nanoseconds Eoff 30 I C - Amperes Fig. 17. Inductive Switching Energy Loss vs. Junction Temperature 14 32 TJ = 125ºC RG - Ohms 16 48 Eon - MilliJoules 10 E on - MilliJoules 34 I C = 40A --- VCE = 1500V 10 12 Eon - 56 TJ = 125ºC , VGE = 15V 38 VCE = 1500V 10 10,000 Fig. 16. Inductive Switching Energy Loss vs. Collector Current 14 46 --- TJ = 125ºC , VGE = 15V 14 1,000 VCE - Volts VCE - Volts 18 10ms 100ms IXBT20N360HV IXBH20N360HV Fig. 19. Inductive Turn-off Switching Times vs. Collector Current 400 tfi 360 t d(off) - - - - 280 400 270 360 RG = 10Ω , VGE = 15V VCE = 1500V 260 240 240 200 230 TJ = 25ºC 160 220 120 210 80 15 20 25 30 35 VCE = 1500V 280 250 240 240 I C = 20A 230 160 25 35 45 70 60 60 50 t r i - Nanoseconds I C = 40A 60 40 40 30 I C = 20A 20 0 25 30 35 40 45 tri IC = 40A 30 0 30 22 TJ = 125ºC 18 TJ = 25ºC 14 10 15 20 25 30 35 40 31 19 20 16 10 13 0 65 26 10 IC = 20A 55 t d(on) - - - - 20 10 50 22 45 34 RG = 10Ω , VGE = 15V 30 10 25 40 35 210 125 28 VCE = 1500V 25 115 75 85 95 105 115 t d(on) - Nanoseconds t r i - Nanoseconds t d(on) - - - - RG = 10Ω , VGE = 15V 50 105 I C - Amperes Fig. 23. Inductive Turn-on Switching Times vs. Junction Temperature 60 95 40 20 RG - Ohms 70 85 t d(on) - Nanoseconds 50 t d(on) - Nanoseconds VCE = 1500V 20 75 VCE = 1500V 80 15 65 Fig. 22. Inductive Turn-on Switching Times vs. Collector Current tri t d(on) - - - - TJ = 125ºC, VGE = 15V 10 55 TJ - Degrees Centigrade t r i - Nanoseconds tri 220 I C = 40A 120 40 Fig. 21. Inductive Turn-on Switching Times vs. Gate Resistance 100 260 I C = 40A I C - Amperes 120 270 200 200 10 t d(off) - - - - RG = 10Ω , VGE = 15V 320 t f i - Nanoseconds 250 TJ = 125ºC tfi 280 t d(off) - Nanoseconds 280 t d(off) - Nanoseconds t f i - Nanoseconds 320 Fig. 20. Inductive Turn-off Switching Times vs. Junction Temperature 10 125 TJ - Degrees Centigrade IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions. IXYS REF: B_20N360(H7-B11)12-12-14-A