RENESAS H7N0608LS

H7N0608LD, H7N0608LS, H7N0608LM
Silicon N Channel MOS FET
High Speed Power Switching
REJ03G0144-0100Z
Rev.1.00
Oct.30.2003
Features
• Low on-resistance
RDS(on) = 6.0 mΩ typ.
• Low drive current
• Available for 4.5 V gate drive
Outline
LDPAK
D
4
G
1
1
S
Rev.1.00, Oct.30.2003, page 1 of 11
2
4
4
2
1
3
2
3
H7N0608LS H7N0608LM
3
H7N0608LD
1. Gate
2. Drain
3. Source
4. Drain
H7N0608LD, H7N0608LS, H7N0608LM
Absolute Maximum Ratings
(Ta = 25°C)
Item
Symbol
Ratings
Unit
Drain to source voltage
VDSS
60
V
Gate to source voltage
VGSS
±20
V
Drain current
ID
70
A
Note1
Drain peak current
ID (pulse)
280
A
Body-drain diode reverse drain current
IDR
70
A
40
A
Note3
Avalanche current
IAP
Avalanche energy
EARNote3
137
mJ
Channel dissipation
Pch
80
W
Channel temperature
Tch
150
°C
Storage temperature
Tstg
–55 to +150
°C
Note2
Notes: 1. PW ≤ 10 µs, duty cycle ≤ 1%
2. Value at Tc = 25°C
3. Value at Tch = 25°C, Rg ≥ 50 Ω
Rev.1.00, Oct.30.2003, page 2 of 11
H7N0608LD, H7N0608LS, H7N0608LM
Electrical Characteristics
(Ta = 25°C)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown
voltage
V(BR)DSS
—
—
V
ID = 10 mA, VGS = 0
Gate to source breakdown Voltage V(BR)GSS ±20
—
—
V
IG = ±100 µA, VDS = 0
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
Zero gate voltage drain current
IDSS
—
—
10
µA
VDS = 60 V, VGS = 0
Gate to source cutoff voltage
VGS(off)
1.5
—
2.5
V
ID = 1 mA, VDS = 10 VNote1
Static drain to source on state
RDS(on)
—
6.0
8.0
mΩ
ID = 35 A, VGS = 10 VNote1
—
8.0
12
mΩ
ID = 35 A, VGS = 4.5 VNote1
resistance
60
Forward transfer admittance
|yfs|
45
75
—
S
ID = 35 A, VGS = 10 VNote1
Input capacitance
Ciss
—
6200
—
pF
VDS = 10 V
Output capacitance
Coss
—
680
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
350
—
pF
f = 1 MHz
Total gate charge
Qg
—
100
—
nC
VDD = 25 V
Gate to source charge
Qgs
—
20
—
nC
VGS = 10 V
Gate to drain charge
Qgd
—
20
—
nC
ID = 70 A
Turn-on delay time
td(on)
—
45
—
ns
VGS = 10 V, ID = 35 A
Rise time
tr
—
220
—
ns
RL = 0.86 Ω
Turn-off delay time
td(off)
—
125
—
ns
Rg = 4.7 Ω
Fall time
tf
—
35
—
ns
Body–drain diode forward voltage VDF
—
0.94
—
V
IF = 70 A, VGS = 0
Body–drain diode reverse
recovery time
—
40
—
ns
IF = 70 A, VGS = 0
diF/dt = 100 A/µs
trr
Notes: 1. Pulse test
Rev.1.00, Oct.30.2003, page 3 of 11
H7N0608LD, H7N0608LS, H7N0608LM
Main Characteristics
Power vs. Temperature Derating
Maximum Safe Operation Area
1000
300
(A)
30
Drain Current
40
0
10
50
100
150
Case Temperature
0.3
0.1
Operation in
this area is
limited by RDS(on)
3
10
Drain to Source Voltage
Tc (°C)
30
VDS
100
(V)
Typical Transfer Characteristics
100
40
VGS = 3.2 V
20
(A)
3.6 V
80
ID
Pulse Test
10 V
4.5 V
4.0 V
60
Drain Current
(A)
ID
Drain Current
PW = 10 ms
(1 shot)
1
Typical Output Characteristics
60
s
3
100
80
DC Operation
(Tc = 25°C)
0.03
Ta = 25°C
0.01
0.1 0.3
1
200
µs
s
m
80
0µ
100
ID
120
10
10
1
Channel Dissipation
Pch (W)
160
VDS = 10 V
Pulse Test
40
Tc = 150°C
20
25°C
–40°C
0
2
4
6
Drain to Source Voltage
Rev.1.00, Oct.30.2003, page 4 of 11
8
VDS
10
(V)
0
2
4
6
Gate to Source Voltage
8
VGS
10
(V)
H7N0608LD, H7N0608LS, H7N0608LM
Static Drain to Source on State Resistance
vs. Drain Current
Pulse Test
400
ID = 50 A
300
200
20 A
100
10 A
0
4
12
8
Drain to Source on State Resistance
RDS(on) (mΩ)
Gate to Source Voltage
16
50 A
10, 20 A
4
4.5 V
VGS = 10 V
0
–50 –25
0
25
10, 20, 50 A
50 75 100 125 150
Case Temperature
Tc
Rev.1.00, Oct.30.2003, page 5 of 11
Pulse Test
30
VGS = 4.5 V
10
10 V
3
1
1
3
VGS (V)
16
8
100
20
Static Drain to Source on State Resistance
vs. Temperature
20
Pulse Test
12
Drain to Source on State Resistance
RDS(on) (mΩ)
500
(°C)
30
100 300 1000
10
Drain Current ID (A)
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |yfs| (S)
Drain to Source Saturation Voltage
VDS(on) (V)
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
1000
300
VDS = 10 V
Pulse Test
Tc = –40°C
100
30
25°C
10
150°C
3
1
0.3
0.1
0.1
0.3
1
3
Drain Current ID
10
30
(A)
100
H7N0608LD, H7N0608LS, H7N0608LM
Body-Drain Diode Reverse
Recovery Time
10000
di / dt = 100 A / µs
VGS = 0, Ta = 25°C
300
100
30
10
1000
Coss
300
30
0.3
1
3
10
Reverse Drain Current
30
Crss
100
3
1
0.1
Ciss
3000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
1000
Typical Capacitance vs.
Drain to Source Voltage
VGS = 0
f = 1 MHz
10
0
100
IDR (A)
10
VDS
40
20
0
(V)
12
8
VDD = 50 V
25 V
10 V
40
80
120
160
Gate Charge Qg (nc)
Rev.1.00, Oct.30.2003, page 6 of 11
4
0
200
VGS
VDD = 50 V
25 V
10 V
300
Switching Time t (ns)
60
16
Gate to Source Voltage
VDS (V)
Drain to Source Voltage
VGS
80
40
50
(V)
Switching Characteristics
1000
20
ID = 85 A
30
Drain to Source Voltage VDS
Dynamic Input Characteristics
100
20
tf
tr
td(off)
100
td(on)
tf
30 tr
10
VGS = 10 V, VDD = 30 V
3 PW = 5 µs, duty < 1 %
Rg = 4.7 Ω
1
0.1
0.3
3
10
1
Drain Current
ID
30
(A)
100
H7N0608LD, H7N0608LS, H7N0608LM
Reverse Drain Current vs.
Source to Drain Voltage
Repetitive Avalanche Energy EAR (mJ)
Maximum Avalanche Energy vs.
Channel Temperature Derating
Reverse Drain Current
IDR
(A)
100
80
10 V
60
40
5V
VGS = 0, –5 V
20
Pulse Test
0
0.4
0.8
1.2
Source to Drain Voltage
1.6
2.0
VSD
200
IAP = 40 A
VDD = 25 V
duty < 0.1 %
Rg > 50 Ω
160
120
80
40
0
25
(V)
50
75
100
125
Channel Temperature Tch (°C)
Avalanche Test Circuit
V DS
Monitor
Avalanche Waveform
EAR =
L
1
2
• L • I AP •
2
I AP
Monitor
VDSS
VDSS – V DD
V (BR)DSS
I AP
Rg
D. U. T
V DS
VDD
ID
Vin
15 V
50Ω
0
Rev.1.00, Oct.30.2003, page 7 of 11
150
VDD
H7N0608LD, H7N0608LS, H7N0608LM
Normalized Transient Thermal Impedance γs (t)
Normalized Transient Thermal Impedance vs. Pulse Width
3
1
Tc = 25°C
D=1
0.5
0.3 0.2
0.1
0.1
0.03
θch - c(t) = γs (t) • θch - c
θch - c = 1.56°C/ W, Tc = 25°C
0.05
2
0.0
PDM
e
1
0.0
t
ho
ls
pu
D=
PW
1s
0.01
10 µ
PW
T
T
100 µ
1m
10 m
100 m
1
10
100
Pulse Width PW (S)
Switching Time Test Circuit
Vout
Monitor
Vin Monitor
Rg
Waveform
90%
D.U.T.
RL
Vin
Vout
Vin
10 V
V DS
= 30 V
10%
90%
td(on)
Rev.1.00, Oct.30.2003, page 8 of 11
10%
tr
10%
90%
td(off)
tf
H7N0608LD, H7N0608LS, H7N0608LM
Package Dimensions
• H7N0608LD
As of January, 2003
4.44 ± 0.2
10.2 ± 0.3
1.3 ± 0.15
1.3 ± 0.2
1.37 ± 0.2
0.2
0.86 +– 0.1
0.76 ± 0.1
2.54 ± 0.5
2.54 ± 0.5
11.0 ± 0.5
8.6 ± 0.3
11.3 ± 0.5
0.3
10.0 +– 0.5
(1.4)
Unit: mm
2.49 ± 0.2
0.4 ± 0.1
Package Code
JEDEC
JEITA
Mass (reference value)
Rev.1.00, Oct.30.2003, page 9 of 11
LDPAK (L)
—
—
1.40 g
H7N0608LD, H7N0608LS, H7N0608LM
• H7N0608LS
As of January, 2003
Unit: mm
(1.5)
10.0
7.8
7.0
2.49 ± 0.2
0.2
0.1 +– 0.1
1.7
7.8
6.6
1.3 ± 0.15
+ 0.3
– 0.5
8.6 ± 0.3
(1.5)
(1.4)
4.44 ± 0.2
10.2 ± 0.3
2.2
1.37 ± 0.2
2.54 ± 0.5
0.2
0.86 +– 0.1
2.54 ± 0.5
0.4 ± 0.1
0.3
3.0 +– 0.5
1.3 ± 0.2
Package Code
JEDEC
JEITA
Mass (reference value)
Rev.1.00, Oct.30.2003, page 10 of 11
LDPAK (S)-(1)
—
—
1.30 g
H7N0608LD, H7N0608LS, H7N0608LM
• H7N0608LM
As of January, 2003
Unit: mm
(2.3)
10.0
7.8
7.0
2.49 ± 0.2
1.7
7.8
6.6
1.3 ± 0.15
+ 0.3
– 0.5
8.6 ± 0.3
(1.5)
(1.4)
4.44 ± 0.2
10.2 ± 0.3
0.2
0.1 +– 0.1
2.2
1.37 ± 0.2
2.54 ± 0.5
0.2
0.86 +– 0.1
2.54 ± 0.5
0.4 ± 0.1
0.3
5.0 +– 0.5
1.3 ± 0.2
Package Code
JEDEC
JEITA
Mass (reference value)
Rev.1.00, Oct.30.2003, page 11 of 11
LDPAK (S)-(2)
—
—
1.35 g
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com
RENESAS SALES OFFICES
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
© 2003. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon 1.0