PGA900 as a 4- to 20-mA Current Loop

Application Report
SLDA030 – May 2015
PGA900 as a 4- to 20-mA Current Loop Transmitter
Miro Oljaca, Tim Green, Collin Wells
............................................ Enhanced Industrial and Precision Analog
ABSTRACT
This application note shows the PGA900 used as a 2-wire, 4- to 20-mA current loop transmitter, a
common method of transmitting sensor information in industrial process-monitoring applications.
Transmitting sensor information (physical parameter measurements) through a current loop is particularly
useful when the information must be sent to a remote location over long distances (1000 feet or more).
This note describes the configuration of the PGA900 as a loop-powered, 2-wire, 4- to 20-mA transmitter
and analyzes the performance. The designer must first determine the minimum available transmitter
voltage. With this information, the designer can select the operating Q-point, then an emitter resistor. The
added emitter resistor minimizes the impact of the loop components' variation and provides adequate gain
of the control loop. This leads to a lower closed-loop frequency and better phase margin.
1
2
3
4
5
6
7
Contents
Introduction ...................................................................................................................
PGA900 DAC Current Loop DC Characteristics ........................................................................
DC Input/Output Transfer Function ........................................................................................
AC Characteristics ...........................................................................................................
4.1
Simulated Results ..................................................................................................
4.2
Measured Results ..................................................................................................
Recommendations from the Analysis .....................................................................................
Conclusion ....................................................................................................................
References ...................................................................................................................
2
3
4
5
7
8
8
8
9
List of Figures
1
Loop-Powered PGA900 Transmitter ...................................................................................... 3
2
PGA900 DAC Transfer Function........................................................................................... 4
3
Small-Signal Hybrid-π Model of BJT and PGA900 ...................................................................... 5
4
BCP56-16 DC Load Line for the Common Collector Circuit Used for 4- to 20-mA Transmitter ................... 6
5
Gain and Phase of the PGA900 Current Loop Transmitter With RE = 150 Ω ........................................ 6
6
System Overshoot vs Phase Margin ...................................................................................... 6
7
Small-Signal Response of the PGA900 Current Loop Transmitter With RE = 150 Ω ............................... 7
8
Large-Signal Response of the PGA900 Current Loop Transmitter With RE = 150 Ω ............................... 7
9
Large-Signal Step Response, 4- to 20-mA Measured at RS ........................................................... 8
All trademarks are the property of their respective owners.
SLDA030 – May 2015
Submit Documentation Feedback
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
1
Introduction
1
www.ti.com
Introduction
In a 2-wire, 4- to 20-mA transmitter, a sensor measures physical parameters such as temperature,
pressure, speed, liquid flow rates, and so forth. Transmitting the sensor information over a current loop is
particularly useful when the information must be sent to a remote location over long distances (1000 feet
or more).
The current loop’s operation is straightforward: a sensor’s output voltage is first converted by PGA900 to a
proportional current, with 4 mA normally representing the sensor’s zero-level output, and 20 mA
representing the sensor’s full-scale output. Then, a receiver at the remote end converts the 4- to 20-mA
current back into a voltage which in turn can be further processed by a PLC, controller, computer, or
display module.
Sending a current over long distances produces voltage losses proportional to the wiring’s length.
However, these voltage losses—also known as loop drops—do not impact the 4- to 20-mA current as long
as the transmitter and loop supply can compensate for these drops. The magnitude of the current in the
loop is not affected by voltage drops in the system wiring because all of the current originating at the
negative (–) terminal of the loop power supply has to return back to its positive (+) terminal.
Adequate phase margin in the control loop is required to achieve stable current loop operation. Low-gain
feedback circuitry or improper placement of capacitors can degrade the circuit performance.
2
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
SLDA030 – May 2015
Submit Documentation Feedback
PGA900 DAC Current Loop DC Characteristics
www.ti.com
2
PGA900 DAC Current Loop DC Characteristics
PGA900 can be configured to work as a loop-powered, 2-wire, 4- to 20-mA transmitter. The on-board 14bit digital-to-analog converter (DAC) uses an internal reference voltage of 1.25 V. The DAC converts input
DAC_REG register code from 0x0000 to 0x3FFF into the equivalent loop current.
Figure 1 shows the principles of PGA900 operation in loop-powered transmitter mode. The circuit details
were omitted for clarity. In Figure 1, IDD represents supply (quiescent) currents of the internal digital and
analog blocks and the sense element such as resistive bridge and thermocouple.
The DAC, DAC GAIN (the on-board operational amplifier), and external NPN transistor create a control
loop. Equation 1 expresses the loop current as a function of the input DAC_REG code.
1.25 V DAC _ REGCODE
I LOOP 1001
40 k:
0x3FFF
(1)
From Figure 1, observe that ILOOP is a sum of two currents:
I LOOP = I DD + I E
where only IE is a value regulated by the control loop to maintain the relationship shown.
(2)
The base current of the transistor can be neglected in the analysis due to high DC current gain (for
BCP56-16 hFE = 100 – 250).
Because only the magnitude of IE is controlled, ILOOP has a lower limit. This limit depends on the quiescent
current of the sensor transmitter, IDD.
VDD
14-Bit DAC
VDAC
RI
40 NŸ
LOOP+
IDD
+
ILOOP
VOUT
C1
±
VREF
1.25 V
RE
IE
COMP
RF
40 NŸ
RR
RS
40 Ÿ
ILOOP
FBP
LOOP±
PGA900
Figure 1. Loop-Powered PGA900 Transmitter
SLDA030 – May 2015
Submit Documentation Feedback
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
3
DC Input/Output Transfer Function
3
www.ti.com
DC Input/Output Transfer Function
The output current sourced by the FBP pin of the device is expressed by Equation 1. The valid DAC_REG
range is the full 14-bit code space (0x0000 to 0x3FFF), which results in the VDAC range of 0 to
approximately 1.25 V. The theoretical maximum output current sourced out of the FBP pin, ILOOP, is 31.28
mA. However, this does not result in the ILOOP range of 0 to 31.28 mA. The minimum output current
depends on the system implementation. The last component current, IE, can be theoretically controlled
down to 0 mA, but, due to the stability considerations of the control loop, do not allow IE to drop below 500
μA.
Figure 2 shows the DAC transfer characteristic of the 4- to 20-mA transmitter, including minimum current
limit. In this example, the minimum current limit for the loop-powered transmitter is about 2.6 mA (IDD).
The PGA900 data sheet specifications section lists typical values for IDD. The minimum IE depends on the
BJT device used and control loop stability.
ILOOP (µA)
31279.3
31277.4
20001.4
19999.5
19997.5
20 mA
4003.7
4001.8
3999.9
4 mA
2.6 mA
IDD
0x3FFE
0x3FFF
0x28EA
0x28EB
0x28EC
0x082F
0x0830
0x0831
0x0000
0x0001
0x0002
3.8
1.9
0.0
DACCODE (hex)
Figure 2. PGA900 DAC Transfer Function
4
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
SLDA030 – May 2015
Submit Documentation Feedback
AC Characteristics
www.ti.com
4
AC Characteristics
Use the circuit from Figure 1 to analyze the AC characteristics of the loop drive circuit. From the circuit in
Figure 1, assume that the internal PGA900 amplifier dominates the frequency response of the system
(UGBW = 1.7 MHz). It has one dominant pole and pole-zero pair at 0.5 mHz, 142 kHz, and 274 kHz,
respectively. BJT’s response (for BCP56 ƒT = 180 MHz) in the bandwidth of the control loop (ƒCL = 100 –
200 kHz) is assumed to be frequency independent and is characterized by the transconductance (gm) and
the output resistance (ro). Figure 3 shows small-signal hybrid-π model of BJT and open-loop output
impedance (ZO) and open-loop gain (AOL) of the PGA900 internal operational amplifier.
ZO
In+
VOUT
B
Ib
Ic
C
+
VOS
AOLVOS
Vbe
VŒ
rŒ
±
In±
gmVŒ
rO
Vce
E
Ie
RE
COMP
Figure 3. Small-Signal Hybrid-π Model of BJT and PGA900
Components of the small-signal hybrid-π model are directly dependent on the particular Q-point at which
the transistor operates. Equation 3 through Equation 5 describe hybrid-π model components.
VT
w vBE
EVT
rS
ICQ
w iB Q ± pt IBQ
(3)
gm
ro
w iC
w vBE
w v CE
w iC
ICQ
Q ± pt
Q ± pt
VT
(4)
VT
ICQ
(5)
The external emitter resistor, RE, determines the gain of 1/β and the frequency that the 1/β and AOL curves
intersect. Selecting a proper value for RE reduces the impact of ZO, rπ, gm, and the Q-point on the stability
of the control loop. RE values close to zero degrade the system phase margin resulting in high overshoot
and ringing.
The first step when selecting the external emitter resistor is to determine the operating Q-point of the
selected transistor. To ensure proper operation of OWI communication and to be able to calibrate
PGA900, the minimum voltage between VDD and GND must be 4 V. The maximum saturation voltage
between VDD and VOUT is 0.2 V. A maximum base emitter saturation voltage of 0.8 V was used for this
calculation in Equation 7.
9DD ± 9CE _sat ± 9BE _ max
RE
IOUT _ max
(6)
Using these values, calculate RE.
9 ± 9 ± 9
RE
150 :
20 mA
(7)
SLDA030 – May 2015
Submit Documentation Feedback
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
5
AC Characteristics
www.ti.com
Based on the calculated RE value, a load line can be plotted over the IC vs VCE graph for the selected
transistor, in this case the BCP56-15, as shown in Figure 4. The transistor provides the difference
between the 4- to 20-mA loop current and the 2.6-mA quiescent current of the transmitter. Therefore, the
transistor emitter current will vary from 1.4 to 17.4 mA and the VCE voltage will vary from 3.8 to 1.4 V.
30
IB = 10 µA
IB = 20 µA
IB = 30 µA
IB = 40 µA
IB = 50 µA
IB = 60 µA
IB = 70 µA
IB = 80 µA
IB = 90 µA
IB = 100 µA
Load Line
Q-pt
25
IC (mA)
20
15
10
5
0
0
1
2
3
4
VCE (V)
5
6
7
8
D001
Figure 4. BCP56-16 DC Load Line for the Common Collector Circuit Used for 4- to 20-mA Transmitter
From Figure 1, observe that the emitter resistor is part of the feedback network. This resistor impacts the
closed-loop gain of the amplifier. Selecting a value of 150 Ω creates 1/β of 18 dB, the amount of the
output voltage fed back to the feedback point. Figure 5 shows the gain and phase of the PGA900 DAC
gain operational amplifier.
From Figure 5, observe that 1/β crosses the AOL curve at 210 kHz. The loop-gain phase margin at the
crossing frequency is 75°. This direct relationship between phase margin and overshoot is shown in
Figure 6. For a high phase margin, the operational amplifier output overshoot will be negligible.
60
100%
125
70%
gCL
50
Gain (dB)
200
Gain
175
1/E
Phase 150
40
100
30
75
20
50
90%
80%
60%
50%
40%
10
25
30%
0
0
20%
-25
10%
-50
1E+8
0
-10
-20
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
1E+7
0
10
20
30
40
50
60
70
80
Phase Margin (q)
D002
Figure 5. Gain and Phase of the PGA900 Current Loop
Transmitter With RE = 150 Ω
6
O v e rs h o o t
70
Phase (q)
80
90
D003
Figure 6. System Overshoot vs Phase Margin
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
SLDA030 – May 2015
Submit Documentation Feedback
AC Characteristics
www.ti.com
4.1
Simulated Results
Figure 7 displays the simulated results when a small-signal step response is applied to the inputs of the
DAC gain operational amplifier. The operational amplifier output quickly settles to the final value with
minimal overshoot and ringing which correlates to the high phase margin measured previously. Figure 8
shows the simulated large-signal response of the circuit. The current loop response depends on the value
of the decoupling capacitor and loop load resistance.
Figure 7. Small-Signal Response of the PGA900 Current Loop Transmitter With RE = 150 Ω
Figure 8. Large-Signal Response of the PGA900 Current Loop Transmitter With RE = 150 Ω
SLDA030 – May 2015
Submit Documentation Feedback
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
7
AC Characteristics
4.2
www.ti.com
Measured Results
Figure 9 shows the measured large-signal step response.
Figure 9. Large-Signal Step Response, 4- to 20-mA Measured at RS
5
Recommendations from the Analysis
This analysis needs to be performed using the minimum loop voltage. The closed loop response does not
change when the supply voltage increases from the minimum value to the maximum value of 30 V. TI
recommends using the largest possible emitter resistance for the specified minimum supply voltage. Take
special care not to add capacitors between VDD and GND or DACCAP and GND. The addition of one or
both of these capacitors adds an unwanted zero in the feedback loop and causes stability problems. TI
recommends to add a capacitor between Loop+ and Loop– or between VDD and FBP to minimize the
effects of loop noise on the PGA900. As this capacitor is out of the PGA900 current control loop, it does
not impact system stability. This analysis used a general-purpose BCP56-16 NPN transistor. Using similar
transistors like 2N2222 does not change the design procedure and response results.
6
Conclusion
PGA900 is designed to operate as a 2-wire current loop transmitter. The designer must first determine the
minimum available transmitter voltage. Based on that, proper selection of the operating Q-point leads to
selecting an emitter resistor. The added emitter resistor minimizes the impact of the loop components'
variation and provides adequate gain of the control loop. This leads to lower closed-loop frequency and
better phase margin. Small-signal and large-signal step response exhibit quick settlement to the final value
with minimum overshoot.
8
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
SLDA030 – May 2015
Submit Documentation Feedback
References
www.ti.com
7
References
1. John V. Wait, etc., Introduction to Operational Amplifier Theory and Applications, ISBN: 9780070677654
2. Thomas M. Frederiksen, Intuitive Operational Amplifiers: From Basics to Useful Applications, ISBN:
978-0070219670
3. George B. Rutkowski, Operational Amplifiers: Integrated and Hybrid Circuits, ISBN: 978-0-471-57718-8
4. Jerald G. Graeme, Optimizing Op Amp Performance, ISBN: 978-0071590280
5. Sergio Franco, Design With Operational Amplifiers and Analog Integrated Circuits, ISBN: 9780078028168
6. Miroslav Oljaca and Henry Surtihadi, Operational amplifier gain stability, Part 1: General system
analysis, Analog Applications Journal (1Q 2010), SLYT367
7. Henry Surtihadi and Miroslav Oljaca, Operational amplifier gain stability, Part 2: DC gain-error analysis,
Analog Applications Journal (2Q 2010), SLYT374
8. Miroslav Oljaca and Henry Surtihadi, Operational amplifier gain stability, Part 3: AC gain-error analysis,
Analog Applications Journal (3Q 2010), SLYT383
9. TI E2E forum, Solving Op Amp Stability Issues
10. Miro Oljaca, Collin Wells, and Tim Green, Understanding Open Loop Gain of the PGA900 DAC Gain
Amplifier. SLDA031
11. Miro Oljaca, Tim Green, and Collin Wells, PGA900 as a Capacitive Load Driver. SLDA020
SLDA030 – May 2015
Submit Documentation Feedback
PGA900 as a 4- to 20-mA Current Loop Transmitter
Copyright © 2015, Texas Instruments Incorporated
9
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated