UM0723 User manual 1 kW three-phase motor control demonstration board featuring L6390 drivers and STGP10NC60KD IGBT 1 Introduction This document describes the 1 kW three-phase motor control demonstration board featuring the L6390 high and low-side drivers and the STGP10NC60KD IGBT. The demonstration board is an AC/DC inverter that generates a three-phase waveform for driving three or twophase motors such as induction motors or PMSM motors up to 1000 W with or without sensors. The main device presented in this user manual is a universal, fully evaluated, and populated design consisting of a three-phase inverter bridge based on the 600 V STMicroelectronics™ IGBT STGP10NC60KD in a TO-220 package mounted on a heatsink, and the L6390 highvoltage high-side and low-side driver featuring an integrated comparator for hardware protection features such as overcurrent and overtemperature. The driver also integrates an operational amplifier suitable for advanced current sensing. Thanks to this advanced characteristic, the system has been specifically designed to achieve an accurate and fast conditioning of the current feedback, therefore matching the typical requirements in field oriented control (FOC). The board has been designed to be compatible with single-phase mains, supplying from 90 VAC to 285 VAC or from 125 VDC to 400 VDC for DC voltage. With reconfiguration of the input sourcing, the board is suitable also for low-voltage DC applications up to 35 VDC. This document is associated with the release of the STEVAL-IHM023V2 demonstration board (see Figure 1 below). Figure 1. June 2011 STEVAL-IHM023V2 Doc ID 15870 Rev 4 1/48 Contents UM0723 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 System introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 4 5 2/48 2.1 Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Target applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Safety and operating instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 General terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.2 Demonstration board intended use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.3 Demonstration board installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.4 Electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.5 Demonstration board operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Board description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 The board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Inrush limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Brake function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.4 Gate driving circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.5 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.6 Current sensing amplifying network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.7 The tachometer and Hall/encoder inputs . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.8 Temperature feedback and overtemperature protection . . . . . . . . . . . . 23 Hardware setting of the STEVAL-IHM023V2 . . . . . . . . . . . . . . . . . . . . . 24 4.1 Hardware settings for six-step (block commutation) control of BLDC motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Hardware settings for “Field Oriented Control” (FOC) in single-shunt topology current reading configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Hardware settings for FOC in three-shunt configuration . . . . . . . . . . . . . 27 Description of jumpers, test pins, and connectors . . . . . . . . . . . . . . . 30 Doc ID 15870 Rev 4 UM0723 Contents 6 Connector placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8 PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 10 Using STEVAL-IHM023V2 with STM32 PMSM FOC firmware library v3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 10.1 Environmental considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 10.2 Hardware requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 10.3 Software requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 10.4 STM32 FOC firmware library v3.0 customization . . . . . . . . . . . . . . . . . . . 45 11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Doc ID 15870 Rev 4 3/48 List of tables UM0723 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. 4/48 Current reading configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Jumper settings for high-voltage BLDC motor in six-step control . . . . . . . . . . . . . . . . . . . . 24 Jumper settings for low-voltage BLDC motor in six-step control . . . . . . . . . . . . . . . . . . . . 25 Jumper settings for high-voltage PMAC or generic AC motor in single-shunt FOC control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Jumper settings for low-voltage BLDC motor in single-shunt FOC control. . . . . . . . . . . . . 27 Jumper settings for FOC of HV PMSM, BLDC, or AC IM in three-shunt configuration for current reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Jumper settings for FOC of LV PMSM or BLDC in three-shunt configuration for current reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Jumpers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Connector pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Testing pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STEVAL-IHM023V2 motor control workbench parameters . . . . . . . . . . . . . . . . . . . . . . . . 45 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Doc ID 15870 Rev 4 UM0723 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. STEVAL-IHM023V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor control system architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL- IHM023V2 schematic - part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL- IHM023V2 schematic - part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL- IHM023V2 schematic - part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL- IHM023V2 schematic - part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL- IHM023V2 schematic - part 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL- IHM023V2 schematic - part 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gate driving network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three-shunt configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Six-step current sensing configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NTC placement on the heatsink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STEVAL-IHM023V2 connectors placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Silk screen - top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Silk screen - bottom side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Copper tracks - top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Copper tracks - bottom side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Doc ID 15870 Rev 4 .....1 .....9 . . . . 10 . . . . 11 . . . . 12 . . . . 13 . . . . 14 . . . . 15 . . . . 17 . . . . 18 . . . . 19 . . . . 21 . . . . 22 . . . . 23 . . . . 33 . . . . 41 . . . . 42 . . . . 43 . . . . 43 5/48 System introduction UM0723 2 System introduction 2.1 Main characteristics The information below lists the converter specification data and the main parameters set for the STEVAL-IHM023V2 demonstration board. 2.2 6/48 ● Minimum input voltage 125 VDC or 90 VAC ● Maximum input voltage 400 VDC or 285 VAC ● With applied input voltage doubler - the range is from 65 VAC to 145 VAC ● Voltage range for low-voltage motor control applications from 18 VDC to 35 VDC ● Possibility to use auxiliary +15 V supply voltage ● Maximum output power for motors up to 1000 W ● Regenerative brake control feature ● Input inrush limitation with bypassing relay ● + 15 V auxiliary power supply based on buck converter with VIPer™16 ● IGBT power switch STGP10NC60KD in TO-220 package - compatible with other ST IGBTs or power MOSFETs in TO-220 package ● Fully populated board conception with testing points and isolated plastic safety cover ● Motor control connector for interface with STM3210B-EVAL board and other ST motor control dedicated kits ● Tachometer input ● Hall/encoder inputs ● Possibility to connect BEMF daughterboard for sensorless six-step control of BLDC motors ● PCB type and size: – Material of PCB - FR-4 – Double-sided layout – Copper thickness: 60 µm – Total dimensions of demonstration board: 127 mm x 180 mm. Target applications ● Washing machines ● Home appliances ● Medical applications - rehabilitative beds ● High-power, high-efficiency water pumps for heating applications. Doc ID 15870 Rev 4 UM0723 System introduction 2.3 Safety and operating instructions 2.3.1 General terms Warning: During assembly, testing, and operation, the demonstration board poses several inherent hazards, including bare wires, moving or rotating parts, and hot surfaces. There is a danger of serious personal injury and damage to property, if the kit or components are improperly used or installed incorrectly. The kit is not electrically isolated from the AC/DC input. The demonstration board is directly linked to the mains voltage. No insulation has been placed between the accessible parts and the high-voltage. All measurement equipment must be isolated from the mains before powering the board. When using an oscilloscope with the demonstration board, it must be isolated from the AC line. This prevents a shock from occurring as a result of touching any single point in the circuit, but does NOT prevent shocks when touching two or more points in the circuit. Do not touch the demonstration board after disconnection from the voltage supply, as several parts and power terminals, which contain energized capacitors, need to be allowed to discharge. All operations involving transportation, installation and use, as well as maintenance, are to be carried out by skilled technical personnel (national accident prevention rules must be observed). For the purpose of these basic safety instructions, “skilled technical personnel” are suitably qualified people who are familiar with the installation, use and maintenance of powered electronic systems. 2.3.2 Demonstration board intended use The STEVAL-IHM023V2 demonstration board is a component designed for demonstration purposes only and is not to be used for electrical installation or machinery. The technical data as well as information concerning the power supply conditions should be taken from the documentation and strictly observed. 2.3.3 Demonstration board installation The installation and cooling of the demonstration kit boards must be in accordance with the specifications and the targeted application. ● The motor drive converters are protected against excessive strain. In particular, no components are to be bent or isolating distances altered during the course of transportation or handling. ● No contact must be made with other electronic components and contacts. ● The boards contain electro-statically sensitive components that are prone to damage through improper use. Electrical components must not be mechanically damaged or destroyed. Doc ID 15870 Rev 4 7/48 System introduction 2.3.4 UM0723 Electrical connections Applicable national accident prevention rules must be followed when working on the main power supply with a motor drive. The electrical installation must be completed in accordance with the appropriate requirements. 2.3.5 Demonstration board operation A system architecture which supplies power to the demonstration board should be equipped with additional control and protective devices in accordance with the applicable safety requirements (e.g. compliance with technical equipment and accident prevention rules). 8/48 Doc ID 15870 Rev 4 UM0723 Board description 3 Board description 3.1 System architecture A generic motor control system can be basically schematized as the arrangement of four main blocks (see Figure 2 below). ● A control block - its main task is to accept user commands and motor drive configuration parameters and to provide all digital signals to implement the proper motor driving strategy. The ST demonstration board based on the STM32™ microcontroller STM3210B-EVAL can be used as a control block thanks to the motor control connector used on the board. ● A power block - makes a power conversion from the DC bus transferring to the motor by means of a three-phase inverter topology. The power block is based on high-voltage (high and low-side) drivers (L6390) and power switches (STGP10NC60KD) in TO-220 packages. ● The motor itself - the STEVAL-IHM023V2 demonstration board is able to properly drive any PMSM, but the FOC itself is conceived for sinusoidal-shaped BEMF. The demonstration board is also suitable for driving any three or two-phase asynchronous motor or low-voltage BLDC motors. ● Power supply block - able to work from 90 VAC to 285 VAC or from 125 VDC to 400 VDC. With reconfiguration of the power stage with jumpers, the board can also be used for low-voltage applications from 18 VDC to 35 VDC. By supplying the electronic parts on the board through an external + 15 V connector, the board can be used for a wide voltage range up to 400 VDC. Please refer to Section 4 for detailed settings of the jumpers according to the required application. Figure 2. Motor control system architecture #ONTROLBLOCK -/4/2 0OWERSUPPLY 0OWERBLOCK !-6 Referring to the above motor control system architecture, the STEVAL-IHM023V2 includes the power supply and the power block hardware blocks. Doc ID 15870 Rev 4 9/48 * Doc ID 15870 Rev 4 2 2 $ ":8"6 2 VO LTAGEOFF "# 1 2 2 # N& ! " 7 2 "US # N& 2 # "# N& 1 2 VO LTAGEOFF 2 # 7 # P& 2 6 "RAKECONTROL 1 "# 2 -?PHASE?# -?PHASE?" -?PHASE?! # N& # P& (! # P& "# 1 # P& 2 # N& 5 43),4 3OFTWAREBRAKE 2 2 6 $ " :8"6 2 2 1 "# 5& -(#-2 5% -(#-2 5$ -(#-2 1 "# 1 "# 2 5# -(#-2 2 5" -(#-2 2 2 2 2 # N& 2 2 2 1 "#" 1 "# $ # N& 2 2 $ 344(, # N& 2"RAKE * # N& -?PHASE?! !- 1 34'0.#+$ 1 "# 2 4ACH O 2 .# 7 "US $ 2 $ ,%$2ED 2 6 # N& "RAKECONTROL 2 6 4ACH O * 6DD?MICRO 4ACHOSENSOR "!4*&),- 6 6 6DD?MICRO %NCODERHALL (! (" (: 6 '.$ 2 "!4*&),- 6DD?MICRO Figure 3. 10/48 5! -(#-2 2 3.2 (ALLENCODER Board description UM0723 The board schematic STEVAL- IHM023V2 schematic - part 1 6)0ER ).054 * Doc ID 15870 Rev 4 $RAIN $RAIN $RAIN $RAIN 6 62 3OURCE 3OURCE 3OURCE 3OURCE $ 344(,! 2 .# #/-0 6$$ ,)&" 6 # +"5+ RELAY?" 5 6)0ER,$ "UCKCONVERTER # , # N&8 & &53% !4%-0 RELAY?! 7 # N&9 # N&9 , ( # # N& .# 2 2 2 2 2 2 N& 6 2 .# $ 344(,! # # # N& 6OL TAGE?DOUBLER $ $#?BUS?VOLTAGE $ ":6#3-$ 6 6 6 6 # # # N& # N& ). '.$ /54 5 ,$3423/4 2 $ "!4*&),- 6LINEAR 2 2 2 7 # N& # "US?VOLTAGE 6DD?MICRO "US !- 6 6 6DD?MICRO 6 Figure 4. )NPUTPARTWITHBRIDGE UM0723 Board description STEVAL- IHM023V2 schematic - part 2 11/48 12/48 Doc ID 15870 Rev 4 3OFTWAREBRAKE /#0OFF .4#BYPASSRELAY 7 " ! -/4/ 2 1 "# 07-?6REF -?PHASE?! -?PHASE?" 6$# * 6 2 7 -?PHASE?# 6DD?MCU (ET?TEMPERATURE 6LINEAR # N& 6DD?MICR O 6MAX # N& ). $ . * $ # 3403 N& 07-?6REF "US 6 6DD? MICR O PHASE? # PHASE? " PHASE? ! "%-&DAUGHTERBOARD '.$ /54 5 ,-? # N& 6 # #!0!#)4/20/,? ,6$#BUSSUPPLY LINEBAR /54 '.$ $ 3-4! ). 5 ,-!#$442$0!+ 6/.,9 ,6SU PPLY 7 6 ()'(6/,4!'% "US?VO LTAGE 6)0ER "US $ ,%$GREEN -OTORCONNECTOR -OTORCONNECTOR RELAY? " RELAY? ! 6 # N& 6EXSUPPLY &).$%2 ,3 $ ,%$YELLOW 2 %-?34/0 07-!( 07-!, 07-"( 07-", 07-#( 07-#, #URRE NT?! #URRE NT?" #URRE NT?# .4#?BYPASS?RELAY 2 2 $ . 2 .4#BYPASS PHASE?# PHASE?" PHASE?! * !- 6 Figure 5. * -OTOROUTPUT Board description UM0723 STEVAL- IHM023V2 schematic - part 3 2 Doc ID 15870 Rev 4 # N& T 24 2 6 (ET?TEMPERATURE # # P& P& 2 (EATSINKTEMPERATURE 07 -! ( 2 3$ # 40 40 /#0OF F #URRENT ?" #URRENT ?! 07-#( 07-#, 07-"( 07-", 07-!( 07-!, PHASE?# 40 40 40 40 40 40 40 40 40 40 4ESTPINS PHASE?" 6 6DD?MICRO 5 2 6BOOT (6' /54 .# .# ,6' #0 /0 # P& $ "!4*&),- 2 ,). 3$/$ (). 6CC $4 /0 /0/54 '.$ ,$ PHASE?! # N& #URRENT?! N& 40 40 40 40 40 40 40 40 40 40 2 6 # P& 2 2 2 2 2.# REF 6 6 "RAKECONTROL "US?VOLTAGE -?PHASE?# -?PHASE?" -?PHASE?! #URRENT ?# # P& 2 # # REF 2 6 2 2 2 "US 3( P& # 2 # N& (ET.4#COMPARATOR 2 .# 7 1 34'0.#K$ 3( PHASE?! 1 34'0.#K$ 5 43"),4 2 (ET?TEMPERATURE # N& 2 2 $. $ . 43),4 5 #?% !- 3$ 6 Figure 6. 07 -! , 2 6 (6(,SIDEDRIVERCHANNEL! UM0723 Board description STEVAL- IHM023V2 schematic - part 4 $ "!4*&),- 13/48 14/48 Doc ID 15870 Rev 4 %-?34/0 6DD?MICRO 2 # P& # P& 2 # P& 2 2 # N& /#0/&& #URRE NT?" 6DD?MICRO 2 N& # 6 2 3$ 3$ 5 # P& $ "!4*&),- 7'AIN? 2 , ). 6BOOT 3 $/$ (6' (). /54 6CC .# $4 .# /0 ,6' /0/54 #0 '.$ /0 ,$ # P& 2 # P& 2 .# 2 2 2 # # 2 6 2 # N& 2 $ . $ . 2 7 ! " 2 .# 2 2 2 2 2 1 34'0.#+$ PHASE?" 1 34'0.#+$ "US !-6 6 #?% Figure 7. 07-"( 07-", 2 6 (6(,SIDEDRIVERCHANNEL " Board description UM0723 STEVAL- IHM023V2 schematic - part 5 $ "!4*&),- 07-#( 07-#, 2 2 2 2 # P& 6 # P& 3$ 2 Doc ID 15870 Rev 4 # N& /#0/&& #URRENT?# 6DD? MICRO 2 # N& 6 6BOOT (6' /54 .# .# ,6' #0 /0 5 $ "!4*&),- # P& ,). 3$/$ () . 6CC $4 /0 /0/54 '. $ 2 ,$ # P& 2 # 2 2 2 2 # P& 2.# # 2 6 2 K $ . 2 # N& 2 $ . 2 2 .# 7 3( 3( 1 34'0.#+$ PHASE?# 1 34'0.#+$ "US !-6 #?% Figure 8. (6(,SIDEDRIVERCHANNEL # UM0723 Board description STEVAL- IHM023V2 schematic - part 6 $ "!4*&),- 15/48 Board description 3.3 Circuit description 3.3.1 Power supply UM0723 The power supply in the STEVAL-IHM023V2 demonstration board is implemented as a multifunctional block which allows to supply the inverter in all ranges of input voltage up to 285 VAC or 400 VDC. If the input AC voltage does not surpass 145 VAC, it is possible to apply the input voltage doubler, this is done by shorting the W14 jumper. This configuration almost doubles the input AC voltage to a standard level and allows to evaluate the motor control application with a low level of input AC voltage. For high-voltage applications it is necessary to set W3 jumpers to position “HIGH VOLTAGE”, the auxiliary power supply for supplying all active components on the demonstration board is implemented as a buck converter based on the U6 VIPer16L which works with fixed frequency 60 kHz. The output voltage of the converter is +15 VDC voltage which is fed into the L6390 drivers as supply voltage as well as into the linear regulator L78L33ACD and L78M05ACDT. The linear regulator provides +3.3 VDC and +5 VDC for supplying the operational amplifiers and other related parts placed on the demonstration board. The selection of supply voltage for hardware peripherals placed on the board is done with jumper W1. In the “3.3 V” position the supply voltage selected is +3.3 V and in the “5 V” position it is +5 V. Thanks to jumper W6, it is possible to supply the connected MCU driving board with related supply voltage. In this case, the maximal consumptive current of the MCU unit has not overreached 50 mA. Please refer to the ST released VIPer16LD datasheet for further information on this concept. For low-voltage applications, the step-down converter must be disabled by setting the W3 jumper to position “<35 V ONLY”. In this case, the other linear regulator, L7815, is connected directly on the bus line, to provide auxiliary voltage + 15 VDC. Note: Please note that the voltage range in this kind of application must be in the range + 18 VDC to + 35 VDC. For low-voltage DC motor applications which require a voltage lower than + 18 VDC, a dual supply mode can be used. Voltage on the input connector is normally linked through power switches to the motor and an external auxiliary voltage is fed through the J3 connector from an external power source. The voltage of the external power supply used must be in the range + 14.8 V to + 15.5 V with maximal consumption current 0.5 A. The information regarding the value of the supply bus voltage on the main filtering capacitors is sensed with the voltage divider built around R2, R4, and R7 and is fed into the dedicated control unit through the J5 connector. The proper voltage partitioning for applied resistors values is 0.0075. The presence of +15 VDC on the board is indicated with green LED D7. For a better understanding of the concept, Figure 9 describes the power supply in a block diagram. 16/48 Doc ID 15870 Rev 4 UM0723 Board description Figure 9. Power supply block diagram $#"53 -!86$# 6$# "536$# ,INEARREGULATOR , ,INEARREGULATOR ,- ).054 "RIDGE RECTIFIER 6$# 6$# 7 "UCKCONVERTER 6)0ER,$ ,INEARREGULATOR ,$3 7 6OLTAGE DOUBLER !- 3.3.2 Inrush limitation The input stage of the demonstration board is provided with the 10 Ω NTC resistor to eliminate input inrush current peak during charging of the bulk capacitors. To achieve a higher efficiency of the inverter, it is possible to bypass the NTC after the startup phase. The NTC bypass signal is provided from the MCU board through the J5 connector. The yellow D27 LED diode is turned off when the inrush NTC is bypassed. The STEVAL-IHM023V2 demonstration board contains only a basic EMI filter based on X2 and Y2 capacitors. The main function of this demonstration board is as a universal testing platform. For this reason, the EMI filter is not able to absorb EMI distortion coming from the inverter for all ranges of the applications used and the design of the filter is up to the user. The EMI filter must be designed according to the motor and final target applications used. The heatsink itself is connected to the earth pin in the input J1 connector. If the demonstration board is used only with DC voltage, it is recommended to connect the heatsink to a negative voltage potential - common ground. 3.3.3 Brake function The hardware brake feature has been implemented on the STEVAL-IHM023V2 demonstration board. This feature connects the external resistive load applied to the J6 connector to the bus to eliminate overvoltage generated when the motor acts as a generator. Such a connected load must be able to dissipate all motor generated energy. The brake feature functions automatically in the case of bus overvoltage. Voltage on the bus is sensed through the voltage divider with resistors R23, R24, and R31 and compared to the voltage reference built around the Zener diode D26. The brake dummy load is switched on when voltage on the bus reaches 440 VDC and is switched off when the voltage falls below 420 VDC. This voltage level has been chosen to be fully compliant with the possible use of front-end PFC stage. Another possibility, to activate the brake dummy load, is to use the external signal coming through the J5 motor connector (PWM_Brake signal) from the connected MCU board. This function is active with the jumper W5 in position “R_BRAKE”. The brake threshold levels can be modified by calculating R23, R24, and R34 new values. The D28 red LED diode indicates acting brake switch. Doc ID 15870 Rev 4 17/48 Board description 3.3.4 UM0723 Gate driving circuit The gates of the switches of the IGBT used are controlled by the L6390D drivers. Please refer to the L6390 datasheet for a detailed analysis of the driver parameters. Figure 10 shows the correct driving of the IGBT. As can be seen, the charging current for the IGBT is different compared to the discharging current due to the diode used. The configuration used provides the best trade-off between efficiency and EMI distortion. Thanks to the high-performance L6390 driver, the deadtime insertion between the HVG and LVG outputs is hardware-guaranteed. In this case, considering the value of the deadtime resistors used to be 47 kΩ, the DT of about 600 ns is applied on the outputs in case: ● The deadtime is not present on HIN and LIN inputs signals. ● The deadtime present on HIN and LIN inputs is less than hardware-set DT. On the contrary, the hardware-set deadtime is not the sum of the deadtime present on the outputs between LVG and HVG if the deadtime present on the HIN and LIN inputs signals is higher than the hardware-set deadtime. Figure 10. Gate driving network R41 10 Ω R45 120 Ω 2 D14 Q7 STGP10NC60KD 1 1N4148 3 3.3.5 AM00472a Overcurrent protection Hardware overcurrent protection (OCP) is implemented on the board. This feature takes full advantage of the L6390 driver where an internal comparator is implemented. Thanks to the internal connection between the comparator output and shutdown block, the intervention time of the overcurrent protection is extremely low, ranging slightly above 200 ns. Please see Figure 11 below for details of the OCP. Considering that the overcurrent protection acts as soon as the voltage on the CP+ pin of the L6390 rises above (approximately equal to) 0.53 V, and considering the default value of the shunt resistor, it follows that the default value for the maximum allowed current is equal to: Equation 1 ISHU NT MAX V REF R1 = ---------------------- × ⎛⎝ 1 + --------⎞⎠ R SHUNT R2 with the default values this gives: ISHUNT_MAX = 7 A 18/48 Doc ID 15870 Rev 4 UM0723 Board description Figure 11. Overcurrent protection +3.3 V R3 (R49, R73, R96) +5 V R1 (R47, R67, R95) Smart SD COMPARATOR + – VCC OPAMP OPOUT 7 10 CP+ VREF R2 (50, R70, R93) Shunt resistor 9 OP+ + – 6 OP– GND L6390 AM00473 The overcurrent protection can be disabled with software if the W5 jumper is set to the “OCP OFF” position. This may be necessary and is often useful when the user decides to make the brake operate by turning on the three low-side switches. In fact, if the motor acts as a generator, it's necessary to protect the hardware, preventing the bus voltage from exceeding a safety threshold. In addition to dissipating the motor energy on a brake resistor, it's possible to short the motor phases, preventing the motor current from flowing through the bulk capacitors. Please note that with disabling of the OCP, the demonstration board is not protected against any overcurrent event. 3.3.6 Current sensing amplifying network The STEVAL-IHM023V2 motor control demonstration board can be configured to run in various current reading configuration modes: ● Three-shunt configuration - suitable for the use of field oriented control (FOC) ● Single-shunt configuration - suitable for the use of FOC in a single-shunt configuration ● Single-shunt six-step configuration - suitable for scalar control Configuration with a shunt resistor, where voltage amplified with an operational amplifier is sensed, was chosen as the current sensing networks. Single-shunt configuration requires a single op amp, three-shunt configuration requires three op amps. Just for compatibility purposes, one of them is common to both basic configurations. The configuration jumpers W10 and W11 allow the user to set the common op amp to achieve the compatibility between single-shunt six-step configuration (suitable for scalar control) and three-shunt or single-shunt FOC current reading configuration. Three-shunt FOC or single-shunt FOC current reading configuration The details of the three-shunt current sensing reading configuration are shown in Figure 12. In this configuration, the alternating signal on the shunt resistor, with positive and negative Doc ID 15870 Rev 4 19/48 Board description UM0723 values, must be converted to be compatible with the single positive input of the microcontroller A/D converter used to read the current value. This means that the op amp must be polarized in order to obtain a voltage on the output that makes it possible to measure the symmetrical alternating input signal. The op amp is used in follower mode with the gain of the op amp set by resistor r and R: Equation 2 R+r G = -----------r It is possible to calculate the voltage on the output of the op amp, OP OUT - VOUT, as the sum of a bias, VBIAS, and a signal, VSIGN, component equal to: Equation 3 V OU T = V SIGN + V BIAS 3.3 V BI AS = ---------------------------------------------------------- × G 1 1 1 ⎛ ------- + -------- + --------⎞ × R3 ⎝ R1 R2 R3⎠ I × R SHUNT V SIGN = ---------------------------------------------------------- × G 1 1 1 ⎛ -------- + ------- + --------⎞ × R1 ⎝ R1 R2 R3⎠ Total gain of the circuit including the resistors’ divider is equal to: Equation 4 V SI GN V SI GN - = ---------------------------G TOT = --------------V IN R SHUN T × I with the default values this gives: ● VBIAS = 1.7 V ● G = 4.3 ● GTOT = 1.7 ● Maximum current amplifiable without distortion is 6.5 A. Please observe that the user can modify the max. current value by changing the values of the shunt resistors. 20/48 Doc ID 15870 Rev 4 UM0723 Board description Figure 12. Three-shunt configuration +5 V Smart SD +3.3 V COMPARATOR + – 10 CP+ R3 (R52, R78, R97) VCC VREF (R53, R75, R99) OPAMP OPOUT 7 9 OP+ + – R2 (R54, R76, R100) 6 OP – Shunt resistor L6390 R (R46, R66, R92) r (R48, R72, R94) GND AM00474 For previously mentioned FOC configurations it is necessary to set the proper gain by applying the W10 jumper and by applying the W11 jumper to the dash marked position. Six-step (block commutation) current reading configuration In case of six-step (also called block commutation) current control, only two of the motor phases conduct current at the same time. Therefore, it is possible to use only one shunt resistor placed on the DC link to measure the motor phase current. Moreover, as the current is always flowing on the shunt resistor in the same direction, only positive current must be measured, and in this case, the amplifying network needs to be properly designed. The details of single-shunt current sensing reading configuration are shown in Figure 13. In this configuration, the current sampling is done only when the value on the shunt resistor is positive. The only positive value read on the shunt resistor allows the setting of a higher gain for the op amp than the one set in the three-shunt reading mode. The op amp is used in follower mode with the gain of the op amp set by resistor r and R: Equation 5 + r----------G = R r It is possible to calculate the voltage on the output of the op amp, OP OUT VOUT, as the sum of a bias, VBIAS, and a signal, VSIGN, component equal to: Equation 6 V OU T = V SIGN + V BIAS Doc ID 15870 Rev 4 21/48 Board description UM0723 V BI AS R1 3.3 × ---------------------R1 + R2 = ------------------------------------------------------------------------ × G 1 -⎞ × R4 1 - + ------1 - + --------------------⎛ ------⎝ R3 R1 + R2 R4⎠ I × R SHU NT × R1 I × R SH UNT × R2 V SIGN = --------------------------------------------- + ---------------------------------------------------------------------------------------------- × G R1 + R2 2 1 1 1 ⎛ ------- + ---------------------- + --------⎞ × ( R1 + R2 ) ⎝ R3 R1 + R2 R4⎠ Total gain of the circuit with the resistors’ divider is equal to: Equation 7 V SIGN V SIGN G TOT = ---------------- = -----------------------------V IN R SH UNT × I with the default values this gives: ● VBIAS = 1.7 V ● G = 4.98 ● GTOT = 2.53 ● Maximum current amplifiable without distortion is 6.5 A. Please observe that the user can modify the max. current value by changing the values of the shunt resistors. Figure 13. Six-step current sensing configuration +3.3 V +5 V Smart SD COMPARATOR R4 (R80) + – VCC 10 CP+ R2 (R79) VREF R1 (R75) OPAMP OPOUT 7 9 OP+ + – 6 OP– Shunt resistor R3 (R81) L6390 R (R66 + R69) r (R72) GND AM00475 22/48 Doc ID 15870 Rev 4 UM0723 Board description For six-step configurations it is necessary to set the proper gain by removing the W10 jumper and applying the W11 jumper to the not marked position. In Table 1 the mentioned setting of gain jumpers, for all possible current reading configurations, is shown. Table 1. Current reading configuration Gain configuration Jumper Six-step current reading 3.3.7 FOC current reading W10 Not present Present W11 Not marked position “-” position The tachometer and Hall/encoder inputs Both the tachometer and Hall/encoder inputs have been implemented on the board. In the case of using a Hall or encoder sensor, the W4 jumper must be connected and the W7 jumper disconnected. The W16 jumper set to dash marked “-” position allows to supply any connected Hall sensor with +5 VDC supply voltage. Setting the W16 jumper to not marked position supplies the Hall sensor with the same supply voltage as other hardware peripherals (+3.3 VDC or +5 VDC depend on the W1 jumper). The U11 Hex Schmitt inverter is used as the voltage level shifter for the connected Hall sensor. In the case of using a tachometer, the W4 jumper must be disconnected and the W7 jumper connected.This feature allows to test and evaluate a wide spectrum of various motors. 3.3.8 Temperature feedback and overtemperature protection Hardware overtemperature protection is implemented on the STEVAL-IHM023V2 demonstration board. This feature fully protects the switches against damage when temperature on the junction of the switches overruns a defined value. The temperature is sensed with an NTC resistor placed on the heatsink. The measured signal is fed through the J5 motor connector to the MCU control unit and can be read with an A/D converter. The signal is also fed to comparator U8 where it is compared with a 2.5 V reference voltage which is built around the U9 precision reference Tl431. The output signal of the comparator U8 is fed to the SD pin of the L6390D drivers to stop the commutation of the connected motor. With the value of the NTC resistor used equal to 10 kΩ, and resistor R44 equal to 3.6 kΩ, the shutdown temperature is around 70 °C. Figure 14. NTC placement on the heatsink Doc ID 15870 Rev 4 23/48 Hardware setting of the STEVAL-IHM023V2 4 UM0723 Hardware setting of the STEVAL-IHM023V2 The STEVAL-IHM023V2 demonstration board can be driven through the J5 motor control connector by various MCU control units released by STMicroelectronics which feature a unified 34-pin motor connector (STM3210B-EVAL, STM32F100-EVAL, STEVALIHM022v1, STM32F10E-EVAL, etc.). The demonstration board is suitable for both field oriented and scalar controls. In particular, it can handle output signal conditioning for different types of speed and/or position feedback sensors (such as tachometer, Hall sensors, and quadrature encoders) and different current sensing topologies (single-shunt resistor placed on DC bus or three-shunt resistors placed in the three inverter legs). 4.1 Hardware settings for six-step (block commutation) control of BLDC motors To drive any motor, the user must ensure that: ● The motor control demonstration board is driven by a control board that provides the six output signals required to drive the three-phase power stage ● The motor is connected to the J2 motor output connector ● If using an encoder or Hall sensor connection, it is connected to connector J4 ● If using a tachometer connection, it is connected to connector J8 ● If using the brake control feature, connect a dissipative power load to J6 connector Table 2 below shows the jumper settings for any BLDC high-voltage motors in six-step (block commutation) control. Please confirm that the demonstration board input voltage is in the range of 125 VDC to 400 VDC or 90 VAC to 285 VAC. If the voltage doubler is applied, the input voltage must be in the range of 65 VAC to 145 VAC. Table 2. Jumper settings for high-voltage BLDC motor in six-step control Jumper Settings for any HV motor in six-step control “3.3 V” position for VDD = 3.3 V W1 “5 V” position for VDD = 5 V W3 “HIGH VOLTAGE” position Present for Hall sensor or encoder W4 Not present for connected tachometer “R_BRAKE” position for software handling of resistive brake (if any) W5 “OCP OFF” position for software handling of overcurrent protection disabling W6 Present for supplying stage from IHM023V2 (max. 50 mA) Present for connected tachometer W7 Not present for connected Hall sensor or encoder 24/48 W9 Single-shunt W10 Not present W11 Not marked position Doc ID 15870 Rev 4 UM0723 Hardware setting of the STEVAL-IHM023V2 Table 2. Jumper settings for high-voltage BLDC motor in six-step control (continued) Jumper W13 Settings for any HV motor in six-step control Single-shunt Present for voltage doubler W14 Not present for standard voltage range Dash mark position of Hall/encoder with VDD W16 Not marked position for supplying Hall/encoder with +5 V Table 3 shows jumper settings for a low-voltage BLDC motor. Please confirm that the input voltage (mains voltage) of the demonstration board in this case is in the range of 18 VDC to 35 VDC. If it is necessary to supply the motor with a voltage lower than 18 VDC, please remove the W3 jumper and connect the auxiliary voltage to the J3 connector. This configuration is called “dual supply configuration”. In this configuration it may be necessary to modify R2, R4, and R7 resistors according to applied supply voltage. Table 3. Jumper settings for low-voltage BLDC motor in six-step control Jumper W1 Settings for any HV motor in six-step control “3.3 V” position for VDD = 3.3 V “5 V” position for VDD = 5 V W3 “<35 V ONLY” position W4 Present for Hall sensor or encoder Not present for connected tachometer W5 “R_BRAKE” position for software handling of resistive brake (if any) “OCP OFF” position for software handling of overcurrent protection disabling W6 Present for supplying stage from IHM023V2 (max. 50 mA) W7 Present for connected tachometer Not present for connected Hall sensor or encoder W9 Single-shunt W10 Not present W11 Not marked position W13 Single-shunt W14 Present for voltage doubler Not present for standard voltage range W16 Dash mark position of Hall/encoder with VDD Not marked position for supplying of Hall/encoder with +5 V Doc ID 15870 Rev 4 25/48 Hardware setting of the STEVAL-IHM023V2 4.2 UM0723 Hardware settings for “Field Oriented Control” (FOC) in single-shunt topology current reading configuration To drive any motor, the user must ensure that: ● The motor control demonstration board is driven by a control board that provides the six output signals required to drive the three-phase power stage ● The motor is connected to the J2 motor output connector ● If using an encoder or Hall sensor connection, it is connected to connector J4 ● If using a tachometer connection, it is connected to connector J8 ● If using the brake control feature, connect a dissipative power load to J6 connector Table 4 below shows the jumper settings for any high-voltage motors in single-shunt FOC configuration. Please confirm that the demonstration board input voltage is in the range of 125 VDC to 400 VDC or 90 VAC to 285 VAC. If the voltage doubler is applied, the input voltage must be in the range of 65 VAC to 145 VAC. Table 4. Jumper W1 Jumper settings for high-voltage PMAC or generic AC motor in singleshunt FOC control Jumper settings for FOC of HV PMSM, BLDC or AC IM in single-shunt configuration for current reading “3.3 V” position for VDD = 3.3 V “5 V” position for VDD = 5 V W3 “HIGH VOLTAGE” position W4 Present for Hall sensor or encoder Not present for connected tachometer W5 “R_BRAKE” position for software handling of resistive brake (if any) “OCP OFF” position for software handling of overcurrent protection disabling W6 Present for supplying control stage from IHM023v2 connector with VDD (max. 50 mA) W7 Present for connected tachometer Not present for connected Hall sensor or encoder W9 Single-shunt W10 Present W11 Dash mark position W13 Single-shunt W14 Not present W16 Dash marked position for supplying of Hall/encoder with VDD Not marked position for supplying of Hall/encoder with +5 V 26/48 Doc ID 15870 Rev 4 UM0723 Hardware setting of the STEVAL-IHM023V2 Table 5 shows jumper settings for a low-voltage BLDC motor in single-phase FOC current control. Please confirm that the input voltage (mains voltage) of the demonstration board in this case is in the range of 18 VDC to 35 VDC. If it is necessary to supply the motor with a voltage lower than 18 VDC, please remove the W3 jumper and connect the auxiliary voltage to the J3 connector. In this configuration it may be necessary to modify R2, R4, and R7 resistors according to applied supply voltage. Table 5. Jumper settings for low-voltage BLDC motor in single-shunt FOC control Jumper W1 Settings for any LV BLDC motor in single-shunt FOC control “3.3 V” position for VDD = 3.3 V “5 V” position for VDD = 5 V W3 “<35 V ONLY” position W4 Present for Hall sensor or encoder Not present for connected tachometer W5 “R_BRAKE” position for software handling of resistive brake (if any) “OCP OFF” position for software handling of overcurrent protection disabling W6 Present for supplying control stage from IHM023v2 connector with VDD (max. 50 mA) W7 Present for connected tachometer Not present for connected Hall sensor or encoder W9 Single-shunt W10 Present W11 Dash mark position W13 Single-shunt W14 Not present W16 Dash marked position for supplying of Hall/encoder with VDD Not marked position for supplying of Hall/encoder with +5 V 4.3 Hardware settings for FOC in three-shunt configuration To drive any motor, the user must ensure that: ● The motor control demonstration board is driven by a control board that provides the six outputs signals required to drive the three-phase power stage ● The motor is connected to the J4 motor output connector ● If using an encoder or Hall sensor connection, it is connected to connector J5 ● If using a tachometer connection, it is connected to connector J6 ● If using the brake control feature, connect a dissipative power load to J7 connector Doc ID 15870 Rev 4 27/48 Hardware setting of the STEVAL-IHM023V2 UM0723 Table 6 below shows the jumper settings for three-shunt based FOC of any high-voltage PMSM, BLDC, or AC IM motor. Please confirm that the demonstration board input voltage is in the range of 125 VDC to 400 VDC or 90 VAC to 285 VAC. If the voltage doubler is applied, the input voltage must be in the range of 65 VAC to 145 VAC. Table 6. Jumper Jumper settings for FOC of HV PMSM, BLDC, or AC IM in three-shunt configuration for current reading Jumper settings for FOC of HV PMSM, BLDC or AC IM in three-shunt configuration for current reading W1 “3.3 V” position W3 “HIGH VOLTAGE” position W4 Present for Hall sensor or encoder Not present for connected tachometer W5 “R_BRAKE” position for software handling of resistive brake (if any) “OCP OFF” position for software handling of overcurrent protection disabling W6 Present for supplying control stage from IHM023v2 connector with VDD (max. 50 mA) W7 Present for connected tachometer Not present for connected Hall sensor or encoder W9 Three-shunt W10 Present W11 Silk screen marked position W13 Three-shunt W14 Not present W16 Silk screen marked position for supplying Hall/encoder with VDD Not marked position for supplying Hall/encoder with +5 V Table 7 shows jumper settings for three-shunt based FOC of any low-voltage PMSM or BLDC. Please confirm that the input voltage of the demonstration board in this case is in the range of 18 VDC to 35 VDC. If it is necessary to supply the motor with a voltage lower than 18 VDC, please remove the W3 jumper and connect the auxiliary voltage to the J3 connector. In this configuration it may be necessary to modify R2, R4, and R7 resistors according to the applied supply voltage. 28/48 Doc ID 15870 Rev 4 UM0723 Hardware setting of the STEVAL-IHM023V2 Table 7. Jumper Jumper settings for FOC of LV PMSM or BLDC in three-shunt configuration for current reading Jumper settings for FOC of LV PMSM or BLDC in three-shunt configuration for current reading W1 “3.3 V” position W3 “<35 V ONLY” position W4 Present for Hall sensor or encoder Not present for connected tachometer W5 “R_BRAKE” position for software handling of resistive brake (if any) “OCP OFF” position for software handling of overcurrent protection disabling W6 Present for supplying control stage from IHM023v2 connector with VDD (max. 50 mA) W7 Present for connected tachometer Not present for connected Hall sensor or encoder W9 Three-shunt W10 Present W11 Silk screen marked position W13 Three-shunt W14 Not present W16 Silk screen marked position for supplying Hall/encoder with VDD Not marked position for supplying Hall/encoder with +5 V Doc ID 15870 Rev 4 29/48 Description of jumpers, test pins, and connectors 5 UM0723 Description of jumpers, test pins, and connectors The following tables give a detailed description of the jumpers, test pins, and the pinout of the connectors used. Table 8. Jumper Jumpers description Selection “3.3 V” position W1 Description VDD = 3.3 V “5 V” position VDD = 5 V “<35 V” ONLY Linear regulator supplied from DC bus - input supply voltage < 35 VDC W3 “HIGH VOLTAGE” Buck converter supplied from bus Present Hall sensor or encoder connected W4 Not present Tachometer connected “R_BRAKE” Software brake feature applied “OCP OFF” OCP disabled W5 Present W6 Not present Present Supplying of MCU control board through J5 motor connector with VDD Separated voltage of MCU control board Tachometer connected W7 Not present Hall sensor or encoder connected Single-shunt Any single-shunt configuration Three-shunt Any three-shunt configuration W9 Present Gain for any FOC W10 Not present Gain for six-step control Dash position Gain for any FOC Free position Gain for six-step control Single-shunt Any single-shunt configuration Three-shunt Any three-shunt configuration W11 W13 Present W14 Not present Standard single-phase range Dash position Hall/encoder supplied by VDD Free position Hall/encoder supplied by +5 V W16 30/48 Voltage doubler applied (VIN = max. 145 VAC) Doc ID 15870 Rev 4 UM0723 Description of jumpers, test pins, and connectors Table 9. Name Connector pinout description Reference Description / pinout J1 Supply connector 1 - PE-earth 2 - PE-earth 3 - L-phase 4 - N-neutral J2 Motor connector A - Phase A B - Phase B C - Phase C J3 15 V auxiliary supply connector 1 - GND 2 - +15 VDC J4 Hall sensors/ encoder input connector 1 - GND 1 - +VDD/+5 V 1 - Hall sensor input 1/ encoder A+ 1 - Hall sensor input 2/ encoder B+ 1 - Hall sensor input 3/ encoder Z+ Motor control connector 1 - Emergency stop 2 - GND 3 - PWM-1H 4 - GND 5 - PWM-1L 6 - GND 7 - PWM-2H 8 - GND 9 - PWM-2L 10 - GND 11 - PWM-3H 12 - GND 13 - PWM-3L 14 - HV bus voltage 15 - Current phase A 16 - GND 17 - Current phase B 18 - GND 19 - Current phase C 20 - GND 21 - NTC bypass relay 22 - GND 23 - Dissipative brake PWM 24 - GND 25 - +V power 26 - heatsink temperature 27 - PFC sync. 28 - Vdd_m 29 - PWM VREF 30 - GND 31 - Measure phase A 32 - GND 33 - Measure phase B 34 - measure phase C J5 Doc ID 15870 Rev 4 31/48 Description of jumpers, test pins, and connectors Table 9. Name UM0723 Connector pinout description (continued) Reference Description / pinout J6 Dissipative brake 1 - Bus voltage 2 - Open collector J7 BEMF daughterboard connector 1 - Phase A 2 - Phase B 3 - Phase C 4 - Bus voltage 5 - 3.3 VDC 6 - VDD_micro 7 - GND 8 - PWM VREF J8 Tachometer input connector for AC motor speed loop control 1 - Tachometer bias 2 - Tachometer input Table 10. Testing pins description Number 32/48 Description TP1 Output phase A TP2 Output phase B TP3 Output phase C TP4 PWM - phase A - low-side TP5 PWM - phase A - high-side TP6 PWM - phase B - low-side TP7 PWM - phase B - high-side TP8 PWM - phase C - low-side TP9 PWM - phase C - high-side TP10 Current sensed in phase A TP11 Current sensed in phase B TP23 Current sensed in phase C TP13 Sensed tachometer/encoder/Hall signal A TP14 Sensed encoder/Hall signal B TP15 Sensed encoder/Hall signal Z TP16 Voltage on bus divider - bus voltage information TP17 Brake status - brake active in low state Doc ID 15870 Rev 4 UM0723 Connector placement Table 10. Testing pins description (continued) Number 6 Description TP18 3.3 VDC TP19 15 VDC TP20 Reference voltage 2.5 V for overtemperature protection TP21 GND TP24 5 VDC Connector placement A basic description of the placement of all connectors on the board is visible in Figure 15. Figure 15. STEVAL-IHM023V2 connectors placement Doc ID 15870 Rev 4 33/48 Bill of material 7 UM0723 Bill of material A list of components used to build the demonstration board is shown in Table 11. The majority of the active components used are available from STMicroelectronics. Table 11. Bill of material Quantity Reference Value / generic part number Package / class Manufacturer Y1 safety CAP - 4.7 nF Murata Manufacturing Co., Ltd. Elyt. capacitor, RM 10 mm, 30 x 45, 105 °C Panasonic 2 C1, C5 2.2 nF/Y1 2 C2, C3 1200 μF/250 V 1 C13 N.C. 1 C14 220 nF/25 V 1 C15 3.3 μF/450 V 1 C16 1 μF/50 V Elyt. capacitor, SMD 4 x 4 Panasonic 1 C19 100 μF/25 V Elyt. capacitor, SMD 8 x 8 Panasonic 9 C66, C67, C71, C72, C73, C26, C24, C27, C28, C6, C7, C17, C18, C10, C11 100 nF/25 V Capacitor, SMD 0805 3 C69, C70, C74 10 pF/25 V Capacitor, SMD 0805 1 C25 4.7 μF/25 V Elyt. capacitor, SMD 4 x 4 1 C29 2.2 nF/25 V Capacitor, SMD 0805 1 C30 4.7 nF/25 V Capacitor, SMD 0805 3 C31, C42, C53 330 pF/25 V Capacitor, SMD 0805 6 C32, C33, C43, C44, C54, C55 1 μF/50 V Capacitor, SMD 1206; 50 V 6 C34, C35, C45, C46, C58, C59 10 pF/25 V Capacitor, SMD 0805 4 C36, C47, C60, C75 1 nF/25 V Capacitor, SMD 0805 3 C37, C48, C61 470 nF/25 V Capacitor, SMD 0805 3 C39, C50, C62 100 pF/25 V Capacitor, SMD 0805 1 C4 150 nF/X2 Foil X2 capacitor, RM 22.5 mm 3 C40, C49, C63 2.2 nF/25 V Capacitor, SMD 0805 3 C41, C51, C64 33 pF/25 V Capacitor, SMD 0805 1 C52 330 pF/25 V Capacitor, SMD 0805 1 C65 100 pF/25 V Capacitor, SMD 0805 1 C56 100 nF/25 V Capacitor, SMD 0805 1 C57 470 pF/25 V Capacitor, SMD 0805 34/48 Capacitor, SMD 0805 Panasonic Doc ID 15870 Rev 4 Panasonic Arcotronics UM0723 Table 11. Bill of material Bill of material (continued) Quantity Reference Value / generic part number Package / class Manufacturer 1 C12 47 nF/25 V Capacitor, SMD 0805 2 C8, C68 22 μF/6.3 V Elyt. capacitor, SMD 4 x 4 2 C9, C38 10 nF/25 V Capacitor, SMD 0805 1 RT1 10 kΩ NTC EPCOS B57703M103G40 1 VR1 10 Ω NTC EPCOS B57364S100M 3 R1, R3, R6 100 kΩ Resistor, SMD 1206 1 R10 13 kΩ Resistor, SMD 0805, 1% 4 R11, R14, R120, R121 5.6 kΩ Resistor, SMD 0805 1 R12 N.C. 1 R13 160 Ω Resistor, SMD 1206 9 R112, R113, R114, R115, R116, R117, R109, R110, R111 4.7 kΩ Resistor, SMD 0805 1 R18 6.8 kΩ Resistor, SMD 0805 2 R19, R108 4 R2, R4, R23, R24 470 kΩ Resistor, SMD 1206, 1% 3 R21, R107, R106 220 Ω Resistor, SMD 0805 6 R22, R27, R20, R33, R74, R17 10 kΩ Resistor, SMD 0805 1 R25 560 Ω Resistor, SMD 0805 1 R32 9.1 kΩ Resistor, SMD 0805, 1% 1 R26 1 kΩ Resistor, SMD 0805, 1% 3 R28, R122, R123 2.2 kΩ Resistor, SMD 0805 1 R29 100 Ω Resistor, SMD 0805 1 R30 15 kΩ Resistor, SMD 0805 1 R31 27 kΩ Resistor, SMD 0805, 1% 1 R34 12 kΩ Resistor, SMD 0805, 1% 4 R35, R36, R57, R82 100 kΩ Resistor, SMD 0805 4 R37, R41, R58, R62 10 Ω Resistor, SMD 0805 6 R38, R59, R85, R40, R61, R87 1 kΩ Resistor, SMD 0805, 1% 4 R39, R45, R60, R65 120 Ω Resistor, SMD 0805 3 R42, R63, R89 3.3 kΩ Resistor, SMD 0805 3 R43, R64, R90 47 kΩ Resistor, SMD 0805, 1% 1 R44 3.6 kΩ Resistor, SMD 0805, 1% Panasonic N.C. Doc ID 15870 Rev 4 35/48 Bill of material Table 11. UM0723 Bill of material (continued) Quantity Reference Value / generic part number Manufacturer 3 R46, R66, R92 1 R49 2 R5, R9 120 Ω Resistor, SMD 0805 3 R52, R97, R78 3.3 kΩ Resistor, SMD 0805, 1% 3 R54, R76, R100 820 Ω Resistor, SMD 0805, 1% 3 R55, R71, R101 0.15 Ω Resistor, SMD 2512, 1%, 2 W 3 R56, R68, R102 N.C. 6 R67, R70, R75, R79, R50, R53 1 kΩ Resistor, SMD 0805, 1% 1 R69 680 Ω Resistor, SMD 0805, 1% 1 R7 7.5 Ω Resistor, SMD 0805, 1% 6 R72, R48, R47, R77, R51, R98 1 kΩ Resistor, SMD 0805, 1% 1 R73 N.C. 1 R8 51 kΩ Resistor, SMD 0805, 1% 1 R80 2.2 kΩ Resistor, SMD 0805, 1% 1 R81 33 Ω Resistor, SMD 0805, 1% 2 R83, R88 10 Ω Resistor, SMD 0805 1 R104 68 kΩ Resistor, SMD 0805 1 R84 2.2 kΩ Resistor, SMD 0805 2 R86, R91 120 Ω Resistor, SMD 0805 5 R93, R95, R99, R94, R103 1 kΩ Resistor, SMD 0805, 1% 1 R96 N.C. 1 R105 220 kΩ Resistor, SMD 0805, 1% 1 L1 47 μH SMD choke, 0.5 A Panasonic 1 L2 2.2 mH SMD choke, 0.25 A Würth Elektronik 1 D1 KBU6K Diode bridge, 250 VAC, 8 A 7 D11, D12, D15, D16, D19, D20, D2, D23, D24 BAT48 Diode, SMD, SOD-323 8 D13, D5, D14, D17, D18, D21, D22, D10 1N4148 Universal diode, SMD, SOD80C 2 D25, D29 1 1 36/48 3.3 kΩ Package / class Resistor, SMD 0805, 1% N.C. STMicroelectronics BZX84B13V Zener diode, SOT23, 13 V D3 STPS1150 Schottky diode, DO-241AC (SMA) STMicroelectronics D4 SM6T36 Transil™, JEDEC DO-214AA STMicroelectronics Doc ID 15870 Rev 4 UM0723 Bill of material Table 11. Bill of material (continued) Quantity Reference Value / generic part number STTH1L06 Package / class 2 D6, D8 1 D7 LED GREEN Universal LED 3 mm, 2 mA 1 D9 BZV55C18SMD Zener diode, SOD80, 18 V 1 D27 LED YELLOW Universal LED 3 mm, 2 mA 1 D28 LED RED Universal LED 3 mm, 2 mA 1 D26 STTH2L06 HV diode, SMA 10 Q1, Q4, Q5, Q12, Q13, Q14, Q15, Q16, Q17, Q18 7 Q10, Q11, Q3, Q6, Q7, Q8, Q9 1 Q2 BC857B 1 F1 Holder Fuse holder 5 x 20 mm, KS21 SW 1 F1 6.25 A Fuse 6.25 A Slov., FST06.3, 5 x 20 mm 1 LS1 Finder 4031-12 1 U1 LD1117S33 1 U2 L7815 1 U3 VIPer16 2 U4, U8 3 U5, U6, U7 1 BC847 HV diode, SMA Manufacturer STMicroelectronics STMicroelectronics NPN transistor, SOT23 STGP10NC60KD N-channel IGBT, TO220 STMicroelectronics PNP transistor, SOT23 SCHURTER Relay 12 VDC Finder Linear regulator 3.3 V, SOT223 STMicroelectronics Linear regulator 15 V, TO-220 STMicroelectronics Smart PWM driver, SO-16 STMicroelectronics TS391 Voltage comparator, SOT23-5 STMicroelectronics L6390 HV low and high-side driver, SO-16 STMicroelectronics U9 TS3431 Voltage reference, SOT23-3L STMicroelectronics 1 U10 L78M05C Linear regulator 5 V, DPAK STMicroelectronics 1 U11 M74HC14 Hex Schmitt inverter SOP STMicroelectronics 3 TP1, TP2, TP3 18 TP4 - TP24 PCB terminal 1 mm Test pin 1 J1 Connector 4P Connector RM 5 mm, 4-pole male horizontal PHOENIX CONTACT Connector 4P Connector RM 5 mm, 4-pole female parallel PHOENIX CONTACT Connector 3P Connector RM 5 mm, 3-pole male horizontal PHOENIX CONTACT Connector 3P Connector RM 5 mm, 3-pole female parallel PHOENIX CONTACT 1 1 1 J2 N.C. Doc ID 15870 Rev 4 37/48 Bill of material Table 11. UM0723 Bill of material (continued) Quantity Reference Value / generic part number Package / class Manufacturer 1 J3 Con. 5 mm, 2P Connector RM 5 mm, 2-pole, screw PHOENIX CONTACT 1 J4 Connector 5P Autocom HE14 5-pin Stelvio Kontek 1 J5 MLW34G MLW connector 34-pin Tyco Electronics 1 J6 Con. 5 mm, 2P Connector RM 5 mm, 2-pole, screw PHOENIX CONTACT 1 J7 Con. 2.54 mm 12-pin Pins RM 2.54 mm female, 12-pin 1 J8 Con. 5 mm, 2P Connector RM 5 mm, 2-pole, screw 1 W1 Jumper 2.54 Three pins of break way + jumper in position 3.3 V 1 W10 Jumper 2.54 Two pins of break way + jumper 1 W11 Jumper 2.54 Three pins of break way + jumper in position 3.3 V 3 W13 Mounting hole Three way HV selector, default three-shunt position Insulated jumper blue HV insulated jumper, 5.08 mm, default three-shunt position 1 3 W3 1 Mounting hole Three way HV selector Insulated jumper blue HV insulated jumper, 5.08 mm, default “HIGH VOLTAGE” position 1 W4 Jumper 2.54 Two pins of break way + jumper 1 W5 Jumper 2.54 Three pins of break way + jumper in position R_BRAKE 1 W6 Jumper 2.54 Two pins of break way 1 W7 Jumper 2.54 Two pins of break way 3 W9 Mounting hole Three way HV selector, default three-shunt position Insulated jumper blue HV insulated jumper, 5.08 mm, default three-shunt position 1 PHOENIX CONTACT 1 W14 Wire jumper Not assembled 1 W16 Jumper 2.54 Three pins of break way + jumper in position 1 Heatsink 150 mm of AL profile 8693 PADA Engineering Heatsink Heatsink for TO-220 with montage pin PADA Engineering Clip for het Montage clip PADA 7704, TO-220, 10 mm PADA Engineering 150 mm Het 1 1 7 38/48 Het 2 Doc ID 15870 Rev 4 UM0723 Table 11. Quantity Bill of material Bill of material (continued) Reference Value / generic part number 1 Clip for het 130 mm Isolation tape Package / class Montage clip PADA 7703, TO-220, 15 mm Manufacturer PADA Engineering Isolation tape, 24 mm wide; approx. 130 mm long, self adhesive Doc ID 15870 Rev 4 39/48 PCB layout 8 UM0723 PCB layout For this application a standard, double-layer, coppered PCB with a ~60 μm copper thickness was selected. The PCB material is FR-4. The dimensions of the board are: Length: 182 mm Width: 127 mm PCB thickness: 1.55 mm 40/48 Doc ID 15870 Rev 4 UM0723 PCB layout Figure 16. Silk screen - top side Doc ID 15870 Rev 4 41/48 PCB layout UM0723 Figure 17. Silk screen - bottom side 42/48 Doc ID 15870 Rev 4 UM0723 PCB layout Figure 18. Copper tracks - top side Figure 19. Copper tracks - bottom side Doc ID 15870 Rev 4 43/48 Ordering information 9 UM0723 Ordering information The demonstration board is orderable through the standard ordering system, the ordering code is: STEVAL-IHM023V2. The items delivered include the assembled demonstration board, board documentation, PCB fabrication data such as gerber files, assembly files (pick and place), and component documentation. 10 Using STEVAL-IHM023V2 with STM32 PMSM FOC firmware library v3.0 The “STM32 PMSM FOC firmware library v3.0” is part of the STM32 PMSM single/dual FOC SDK v3.0. In particular, it is a firmware library running on any STM32F103x and STM32F100x device which implements the “Field Oriented Control” (FOC) drive of threephase “Permanent Magnet Synchronous Motors” (PMSM), both “Surface Mounted” (SMPMSM) and “Internal” (I-PMSM). This section describes how to customize the firmware library by making use of the PC tool “ST MC Workbench” (STMCWB) downloadable from www.st.com. 10.1 Environmental considerations Warning: The STEVAL-IHM023V2 demonstration board must only be used in a power laboratory. The voltage used in the drive system presents a shock hazard. The kit is not electrically isolated from the DC input. This topology is very common in motor drives. The microprocessor is grounded by the integrated ground of the DC bus. The microprocessor and associated circuitry are hot and MUST be isolated from user controls and communication interfaces. Warning: All measuring equipment must be isolated from the main power supply before powering up the motor drive. To use an oscilloscope with the kit, it is safer to isolate the DC supply AND the oscilloscope. This prevents a shock occurring as a result of touching any SINGLE point in the circuit, but does NOT prevent shocks when touching two or more points in the circuit. An isolated AC power supply can be constructed using an isolation transformer and a variable transformer. Note: 44/48 Isolating the application rather than the oscilloscope is highly recommended in any case. Doc ID 15870 Rev 4 UM0723 10.2 Using STEVAL-IHM023V2 with STM32 PMSM FOC firmware library v3.0 Hardware requirements The following items are required to run the STEVAL-IHM023V2 together with the “STM32 PMSM FOC firmware library v3.0”. 10.3 ● Any microcontroller demonstration board with MC connector such as: STEVALIHM022V1, STEVAL-IHM033V1, STM3210B-EVAL, STM3210E-EVAL, or STM32100B-EVAL ● A high-voltage insulated AC power supply up to 230 VAC ● A programmer/debugger dongle for control board (not included in the package). Refer to the control board user manual to find a supported dongle. Use of an insulated dongle is always recommended. ● Three-phase brushless motor with permanent magnet rotor (not included in the package) ● An insulated oscilloscope (as necessary) ● An insulated multimeter (as necessary) Software requirements To customize, compile, and download the “STM32 FOC firmware library v3.0”, a toolchain must be installed. 10.4 STM32 FOC firmware library v3.0 customization The ST motor control workbench can be used to customize the STM32 FOC firmware library v.3.0. The required parameters for the power stage related to the STEVAL-IHM023V2 are reported in Table 12. Table 12. STEVAL-IHM023V2 motor control workbench parameters Variable Value Rated bus voltage information Min. rated voltage (V) 18 or 60 according to W3 position (respectively for “<35 V” and “HIGH VOLTAGE” positions) Max. rated voltage (V) 32 or 450 according to W3 position (respectively for “<35 V” and “HIGH VOLTAGE” positions) Nominal voltage (V) Depends on W3 position and application nominal bus voltage Bus voltage sensing Available Bus voltage divider 1/... Dissipative brake 136 Available if W5 is set to R_BRAKE position, not available otherwise Polarity Active high Driving signals Doc ID 15870 Rev 4 45/48 Using STEVAL-IHM023V2 with STM32 PMSM FOC firmware library v3.0 Table 12. UM0723 STEVAL-IHM023V2 motor control workbench parameters (continued) Variable Value Phases U, V, W high-side polarity Active high Phases U, V, W low-side polarity Active low Temperature sensing Available V0 (mV) 875 T0 (°C) 25 ΔV/ΔT (mV/°C) 28 Max. working temperature on sensor (°C) 70 Overcurrent protection Available Comparator threshold (V) 0.5 Overcurrent network gain (V/A) 0.075 Expected overcurrent threshold (A) 6.25 Overcurrent feedback signal polarity Active low Overcurrent protection disabling network Available if W5 is set to OCP OFF position, not available otherwise Overcurrent protection disabling network polarity Active low Current sensing Current reading topology Configurable Shunt resistor(s) value (Ω) 0.15 Amplifying network gain 1.7 T-noise (ns) 2000 T-rise (ns) 2000 Power switches 46/48 Min. deadtime (ns) 800 Max. switching frequency (kHz) 50 Doc ID 15870 Rev 4 UM0723 11 Conclusion Conclusion This document describes the 1 kW three-phase motor control STEVAL-IHM023V2 demonstration board as a universal fully evaluated and adaptable motor control platform. 12 13 References 1. L6390 datasheet 2. VIPer16 datasheet 3. STGP10NC60KD datasheet 4. UM0379 user manual 5. UM0580 user manual Revision history Table 13. Document revision history Date Revision 07-Sep-2009 1 Initial release. 2 Changed part number STGF7NC60HD to STGP10NC60KD in Figure 10, updated input voltage in Section 4.2, step 3 in Section 10.4, replaced STEVAL-IHM023V1 by STEVAL-IHM021V1 in point 5 of Section 12. 03-May-2011 3 Replaced STEVAL- IHM023V1 by STEVAL-IHM023V2, updated Section 1, Figure 1, Section 2.1, Section 3.1, Figure 3 to Figure 8, Section 3.3, Section 4 to Section 12, minor text and graphic modifications throughout the document. 28-Jun-2011 4 Updated Table 12, corrected typo in Figure 7 and Figure 8. 27-Nov-2009 Changes Doc ID 15870 Rev 4 47/48 UM0723 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 48/48 Doc ID 15870 Rev 4