STMICROELECTRONICS TSV6392ID/DT

TSV639x, TSV639xA
Micropower (60 µA), wide bandwidth (2.4 MHz) CMOS op-amps
Features
■
Rail-to-rail input and output
■
Low power consumption: 60 µA typ at 5 V
■
Low supply voltage: 1.5 V - 5.5 V
■
Gain bandwidth product: 2.4 MHz typ, stable
for gain equal or above -3 or +4
■
Low power shutdown mode: 5 nA typ
■
Low offset voltage: 800 µV max (A version)
■
Low input bias current: 1 pA typ
■
EMI hardened operational amplifiers
■
High tolerance to ESD: 4 kV HBM
■
Extended temperature range: -40° C to
+125° C
SOT23-8
SO-8
MiniSO-8/10
Applications
■
Battery-powered applications
■
Portable devices
■
Signal conditioning
■
Active filtering
■
Medical instrumentation
TSSOP-14
Description
The TSV639x series of dual and quad operational
amplifiers offers low voltage operation and rail-torail input and output.
For applications configured with gain, the
TSV639x series offers an excellent speed/power
consumption ratio, 2.4 MHz gain bandwidth
product while consuming only 60 µA at 5 V. The
devices also feature an ultra-low input bias
current and have a shutdown mode (TSV6393,
TSV6395).
These features make the TSV639x family ideal
for sensor interfaces, battery supplied and
portable applications, as well as active filtering.
January 2010
TSSOP-16
Table 1.
Device summary
Dual version
Reference
Quad version
Without
With
Without
With
standby standby standby standby
TSV639x
TSV6392
TSV6393
TSV6394
TSV6395
TSV639xA
TSV6392A
TSV6393A
TSV6394A
TSV6395A
Doc ID 16883 Rev 1
1/25
www.st.com
25
Contents
TSV639x, TSV639xA
Contents
1
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
4.1
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3
Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4
Shutdown function (TSV6393 - TSV6395) . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5
Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6
Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7
PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.8
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1
SOT23-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3
MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4
MiniSO-10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.6
TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
1
Package pin connections
Package pin connections
Figure 1.
Pin connections for each package (top view)
Out1
1
In1-
2
_
In1+
3
+
VCC-
4
8
VCC+
7
Out2
_
6
In2-
+
5
In2+
Out1
1
In1-
2
_
In1+
3
+
VCC-
4
SHDN1
5
10 VCC+
9
Out2
_
8
In2-
+
7
In2+
6
SHDN2
TSV6392IDT/IST/ILT
TSV6393IST
SO8/Mini-SO8/SOT23-8
MiniSO-10
1
In1-
2
_
_
13 In4-
In1+
3
+
+
12 In4+
VCC+
4
In2+
5
1
In1-
2
_
_
15 In4-
In1+
3
+
+
14 In4+
VCC+
4
In2+
5
In2-
6
In2-
6
Out2
7
Out2
7
10 Out3
SHDN1/2
8
9
11 VCC+
_
+
_
10 In3+
9
In3-
8
Out3
16 Out4
Out1
14 Out4
Out1
TSV6394IPT
TSSOP14
13 VCC+
_
+
_
12 In3+
11 In3-
SHDN3/4
TSV6395IPT
TSSOP16
Doc ID 16883 Rev 1
3/25
Absolute maximum ratings and operating conditions
2
TSV639x, TSV639xA
Absolute maximum ratings and operating conditions
Table 2.
Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vin
Iin
SHDN
Tstg
Parameter
Supply voltage
(1)
Differential input voltage
Input voltage
(3)
Input current
(4)
Shutdown voltage
(2)
(3)
Storage temperature
Rthja
Tj
Maximum junction temperature
ESD
MM: machine
model(7)
model(8)
CDM: charged device
Unit
6
V
±VCC
V
VCC- - 0.2 to VCC++ 0.2
V
10
mA
VCC- - 0.2 to VCC++ 0.2
V
-65 to +150
°C
ambient(5)(6)
Thermal resistance junction to
SOT23-8
MiniSO-8
SO-8
MiniSO-10
TSSOP14
TSSOP16
HBM: human body
Value
model(9)
Latch-up immunity
105
190
125
113
100
95
°C/W
150
°C
4
kV
300
V
1.5
kV
200
mA
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. VCC-Vin must not exceed 6 V, Vin must not exceed 6V.
4. Input current must be limited by a resistor in series with the inputs.
5. Short-circuits can cause excessive heating and destructive dissipation.
6. Rth are typical values.
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two
pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
combinations with other pins floating.
9. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to the ground.
Table 3.
Operating conditions
Symbol
4/25
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Doc ID 16883 Rev 1
Value
Unit
1.5 to 5.5
V
VCC- - 0.1 to VCC+ + 0.1
V
-40 to +125
°C
TSV639x, TSV639xA
Electrical characteristics
3
Electrical characteristics
Table 4.
Electrical characteristics at VCC+ = +1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C,
and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
TSV639x
TSV639xA
TSV6393AIST - MiniSO-10
3
0.8
1
mV
Tmin < Top < Tmax - TSV639x
Tmin < Top < Tmax - TSV639xA
Tmin < Top < Tmax - TSV6393AIST
4.5
2
2.2
mV
DC performance
Vio
DVio
Offset voltage
Input offset voltage drift
Iio
Input offset current
(Vout = VCC/2)
Iib
Input bias current
(Vout = VCC/2)
CMR
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Tmin < Top < Tmax
Tmin < Top < Tmax
0 V to 1.8 V, Vout = 0.9 V
53
Tmin < Top < Tmax
51
RL= 10 kΩ, Vout = 0.5 V to 1.3 V
85
Tmin < Top < Tmax
80
35
50
Avd
Large signal voltage gain
VOH
High level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
VOL
Low level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
Isink
Iout
Isource
ICC
Supply current (per
operator)
μV/°C
2
1
10(1)
pA
1
100
pA
1
10(1)
pA
1
100
pA
74
dB
95
6
Tmin < Top < Tmax
4
Vo = 0 V
6
Tmin < Top < Tmax
4
No load, Vout = VCC/2
40
dB
dB
5
4
Vo = 1.8 V
dB
mV
35
50
mV
12
mA
10
mA
50
Tmin < Top < Tmax
60
µA
62
µA
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
2
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10kΩ,
RL = 10 kΩ, CL = 20 pF
+4
-3
V/V
SR
Slew rate
RL = 10 kΩ, CL = 100 pF, Vout =
0.5 V to 1.3 V
0.7
V/μs
en
Equivalent input noise
voltage
f = 1 kHz
f = 10 kHz
60
33
nV
-----------Hz
1. Guaranteed by design.
Doc ID 16883 Rev 1
5/25
Electrical characteristics
Table 5.
TSV639x, TSV639xA
Shutdown characteristics VCC = 1.8 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
2.5
50
nA
Tmin < Top < 85° C
200
nA
Tmin < Top < 125° C
1.5
µA
DC performance
SHDN = VCCICC
Supply current in shutdown
mode (all operators)
ton
Amplifier turn-on time
RL= 2 kΩ,
Vout = VCC- to VCC-+0.2 V
200
ns
toff
Amplifier turn-off time
RL = 2 kΩ,
Vout = VCC+ - 0.5 V to VCC+ - 0.7 V
20
ns
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
pA
IIL
SHDN current low
SHDN = VCC-
10
pA
50
pA
1
nA
IOLeak
6/25
1.35
V
0.6
Output leakage in shutdown SHDN = VCCmode
Tmin < Top < 125° C
Doc ID 16883 Rev 1
V
TSV639x, TSV639xA
Table 6.
Electrical characteristics
VCC+ = +3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2
(unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
TSV639x
TSV639xA
TSV6393AIST - MiniSO10
3
0.8
1
mV
Tmin < Top < Tmax - TSV639x
Tmin < Top < Tmax - TSV639xA
Tmin < Top < Tmax - TSV6393AIST
4.5
2
2.2
mV
DC performance
Vio
DVio
Iio
Iib
CMR
Offset voltage
Input offset voltage drift
1
10(1)
pA
1
100
pA
1
10(1)
pA
1
100
pA
Input offset current
Tmin < Top < Tmax
Input bias current
Tmin < Top < Tmax
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
0 V to 3.3 V, Vout = 1.65 V
57
Tmin < Top < Tmax
53
RL = 10 kΩ, Vout = 0.5 V to 2.8 V
88
Tmin < Top < Tmax
83
35
50
Avd
Large signal voltage gain
VOH
High level output voltage
RL = 10 kΩ
Tmi. < Top < Tmax
VOL
Low level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
Isink
Iout
Isource
ICC
μV/°C
2
Supply current (per
operator)
79
dB
98
dB
6
7
Vo = 3.3 V
23
Tmin < Top < Tmax
20
Vo = 0 V
23
Tmin < Top < Tmax
20
No load, Vout = 1.75 V
43
mV
35
50
mV
45
mA
38
mA
55
Tmin < Top < Tmax
64
µA
66
µA
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
2.2
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10kΩ,
RL = 10 kΩ, CL = 20 pF
+4
-3
V/V
Slew rate
RL = 10 kΩ, CL = 100 pF, Vout =
0.5 V to 2.8 V
0.9
V/μs
SR
1. Guaranteed by design.
Doc ID 16883 Rev 1
7/25
Electrical characteristics
Table 7.
TSV639x, TSV639xA
Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C,
and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
TSV639x
TSV639xA
TSV6393AIST - MiniSO10
3
0.8
1
mV
Tmin < Top < Tmax - TSV639x
Tmin < Top < Tmax - TSV639xA
Tmin < Top < Tmax - TSV6393AIST
4.5
2
2.2
mV
DC performance
Vio
DVio
Iio
Iib
CMR
SVR
Avd
EMIRR
Offset voltages
Input offset voltage drift
Input offset current
(Vout = VCC/2)
Input bias current
(Vout = VCC/2)
Tmin < Top < Tmax
Tmin < Top < Tmax
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
0 V to 5 V, Vout = 2.5 V
60
Tmin < Top < Tmax
55
Supply voltage rejection
ratio 20 log (ΔVCC/ΔVio)
VCC = 1.8 to 5 V
75
Tmin < Top < Tmax
73
RL= 10 kΩ, Vout = 0.5 V to 4.5 V
89
Tmin < Top < Tmax
84
Large signal voltage gain
EMI Rejection Ratio
pA
1
100
pA
1
10(1)
pA
1
100
pA
80
93
dB
98
85
dB
92
VRF = 100 mVrms, f = 2400 MHz
83
VOL
Low level output voltage
RL = 10 kΩ
Tmin < Top < Tmax
Iout
Isource
Supply current (per
operator)
35
50
40
Tmin < Top < Tmax
35
Vo = 0 V
40
Tmin < Top < Tmax
35
No load, Vout = VCC/2
50
Doc ID 16883 Rev 1
7
6
Vo = 5 V
Tmin < Top < Tmax
dB
dB
VRF = 100 mVrms, f = 900 MHz
RL = 10 kΩ
Tmin < Top < Tmax
dB
dB
61
High level output voltage
8/25
10
VRF = 100 mVrms, f = 400 MHz
VOH
ICC
1
(1)
EMIRR = -20 log (VRFpeak/ΔVio) V = 100 mV
RF
rms, f = 1800 MHz
Isink
μV/°C
2
mV
35
50
mV
65
mA
72
60
mA
69
µA
72
µA
TSV639x, TSV639xA
Table 7.
Electrical characteristics
Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C,
and RL connected to VCC/2 (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
AC performance
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
2.4
MHz
Gain
Minimum gain for stability
Phase margin = 60°, Rf = 10kΩ,
RL = 10 kΩ, CL = 20 pF,
+4
-3
V/V
SR
Slew rate
RL = 10 kΩ, CL = 100 pF
1.1
V/μs
en
Equivalent input noise
voltage
f = 1 kHz
f = 10 kHz
60
33
nV
-----------Hz
Total harmonic distortion +
noise
VCC = 5 V, fin = 1 kHz, ACL = -10,
RL = 100 kΩ, Vicm = VCC/2,
BW = 22 kHz, Vout = 1 Vrms
0.015
%
THD+N
1. Guaranteed by design.
Table 8.
Shutdown characteristics at VCC = 5 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
5
50
nA
Tmin < Top < 85° C
200
nA
Tmin < Top < 125° C
1.5
µA
DC performance
SHDN = VCCICC
Supply current in shutdown
mode (all operators)
ton
Amplifier turn-on time
RL = 2 kΩ,
Vout = VCC- V to VCC-+0.2 V
200
ns
toff
Amplifier turn-off time
RL = 2 kΩ,
Vout = VCC+ - 0.5 V to VCC+ - 0.7 V
20
ns
VIH
SHDN logic high
VIL
SHDN logic low
IIH
SHDN current high
SHDN = VCC+
10
pA
IIL
SHDN current low
SHDN = VCC-
10
pA
50
pA
1
nA
IOLeak
2
V
0.8
Output leakage in shutdown SHDN = VCCmode
Tmin < Top < 125° C
Doc ID 16883 Rev 1
V
9/25
Electrical characteristics
TSV639x, TSV639xA
Figure 3.
Figure 2.
Supply current vs. supply voltage
at Vicm = VCC/2
Figure 4.
Output current vs. output voltage at Figure 5.
VCC = 5 V
Output current vs. output voltage at
VCC = 1.5 V
Closed loop response for gain =
-10, at VCC = 1.5 V and VCC = 5 V
20
Gain (dB)
15
VCC=1.5V
VCC=5V
10
Closed loop gain = -10
T=25 C,CLoad=100pF, Vicm=VCC/2,
RLoad=2.2kΩ for Iout giving
minimum stability on a typical part
5
0
10000
100000
1000000
Frequency (Hz)
Figure 6.
14
12
Closed loop response for gain = -3 Figure 7.
at VCC = 1.5 V
T=25°C, Vicm=VCC/2
ACL=-3, VCC=1.5V
CLoad=33pF
14
RLoad=2.2kΩ
12
8
RLoad=100kΩ
6
4
2
0
10000
8
RLoad=2.2kΩ
RLoad=100kΩ
6
4
RLoad= 100kΩ connected to VCC/2
RLoad= 2.2kΩ for Iout giving
minimum stability on a typical part
100000
2
1000000
0
10000
RLoad= 100kΩ connected to VCC/2
RLoad= 2.2kΩ for Iout giving
minimum stability on a typical part
100000
Frequency (Hz)
Frequency (Hz)
10/25
T=25°C, Vicm=VCC/2
ACL=-3, VCC=5V
CLoad=33pF
10
Gain (dB)
Gain (dB)
10
Closed loop response for gain = -3
at VCC = 5 V
Doc ID 16883 Rev 1
1000000
TSV639x, TSV639xA
Positive slew rate vs. supply
voltage in closed loop
RLoad=2kΩ, CLoad=100pF, ACL=−10
Vin: from 0.5V to VCC+− 0.5V
SR calculated from 10% to 90%
Vicm=VCC/2
T=25°C
T=125°C
Figure 9.
Negative slew rate vs. supply
voltage in closed loop
RLoad=2kΩ, CLoad=100pF, ACL=−10
Vin: from VCC+− 0.5V to 0.5V
SR calculated from 10% to 90%
Vicm=VCC/2
Slew rate (V/ s)
Slew rate (V/ s)
Figure 8.
Electrical characteristics
T=125°C
T=−40°C
T=−40°C
T=25°C
Supply voltage (V)
Supply voltage (V)
Open loop configuration, T = 25°C
RLoad=10kΩ, CLoad=100pF,
Vin=1VPP, Vicm=VCC/2
SR calculated from 0.5V to VCC- 0.5V
Amplitude (V)
Slew rate (V/ s)
Figure 10. Slew rate vs. supply voltage in open Figure 11. Slew rate timing in open loop
loop
Open loop,RLoad=10kΩ
CLoad=100pF, Vicm=VCC/2
T=25°C, VCC=5V, Vin=1VPP
Time (µs)
Supply voltage (V)
Amplitude (V)
RLoad=2kΩ, CLoad=100pF,
Vicm=VCC/2, ACL=−10
T=25°C, VCC=5V
Vout
Vin
Figure 13. Noise vs. frequency
Equivalent Input Voltage Noise (nV/VHz)
Figure 12. Slew rate timing in closed loop
300
Vcc=5V
T=25°C
250
200
Vicm=2.5V
150
100
Vicm=4.5V
50
0
Time (µs)
Doc ID 16883 Rev 1
100
1000
10000
11/25
Electrical characteristics
TSV639x, TSV639xA
Figure 15. Distortion + noise vs. frequency at
VCC = 1.8 V
THD + N (%)
THD + N (%)
Figure 14. Distortion + noise vs. output
voltage at VCC = 1.8 V
Ω
Ω
Ω
Ω
Output voltage (Vrms)
Frequency (Hz)
THD + N (%)
Ω
THD + N (%)
Figure 17. Distortion + noise vs. frequency at
VCC = 5 V
Figure 16. Distortion + noise vs. output
voltage at VCC = 5 V
Ω
Ω
Ω
Ouput voltage (Vrms)
Frequency (Hz)
Figure 18. EMIRR vs. frequency at Vcc = 5 V,
T = 25° C
120
EMIRR Vpeak (dB)
100
80
60
40
20
0
1
10
12/25
2
10
3
10
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Application information
4
Application information
4.1
Operating voltages
The TSV639x can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3
and 5 V power supplies. However, the parameters are very stable in the full VCC range and
several characterization curves show the TSV639x characteristics at 1.5 V. Additionally, the
main specifications are guaranteed in extended temperature ranges from -40° C to +125° C.
4.2
Rail-to-rail input
The TSV639x are built with two complementary PMOS and NMOS input differential pairs.
The devices have a rail-to-rail input, and the input common mode range is extended from
VCC-- 0.1 V to VCC+ + 0.1 V. The transition between the two pairs appears at VCC+ - 0.7 V. In
the transition region, the performance of CMR, SVR, Vio (Figure 19 and Figure 20) and THD
is slightly degraded.
Figure 19. Input offset voltage vs input
common mode at VCC = 1.5 V
Figure 20. Input offset voltage vs input
common mode at VCC = 5 V
The devices are guaranteed without phase reversal.
4.3
Rail-to-rail output
The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above
and below the rail when connected to a 10 kΩ resistive load to VCC/2.
4.4
Shutdown function (TSV6393 - TSV6395)
The operational amplifiers are enabled when the SHDN pin is pulled high. To disable the
amplifiers, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifiers’
output is in a high impedance state. The SHDN pin must never be left floating but tied to
VCC+ or VCC-.
Doc ID 16883 Rev 1
13/25
Application information
TSV639x, TSV639xA
The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 21
and Figure 22 show the test configurations).
Figure 21. Test configuration for turn-on time
(Vout pulled down)
+ VCC
Figure 22. Test configuration for turn-off time
(Vout pulled down)
+ VCC
VCC - 0.5 V
GND
2 KΩ
2 KΩ
GND
+
VCC - 0.5 V
+
DUT
DUT
-
-
GND
GND
Figure 23. Turn-on time, VCC = 5 V,
Vout pulled down, T = 25° C
Figure 24. Turn-off time, VCC = 5 V,
Vout pulled down, T = 25° C
Shutdown pulse
Voltage (V)
Vout
Output voltage (V)
Vcc = 5V
T = 25°C
Vout
Vcc = 5V
T = 25°C
RL connected to GND
Time (μs)
14/25
Shutdown pulse
Time (μs)
Doc ID 16883 Rev 1
TSV639x, TSV639xA
4.5
Application information
Optimization of DC and AC parameters
These devices use an innovative approach to reduce the spread of the main DC and AC
parameters. An internal adjustment achieves a very narrow spread of the current
consumption (60 µA typical, min/max at ±17 %). Parameters linked to the current
consumption value, such as GBP, SR and Avd, benefit from this narrow dispersion.
4.6
Driving resistive and capacitive loads
These products are micropower, low-voltage operational amplifiers optimized to drive rather
large resistive loads, above 2 kΩ.. For lower resistive loads, the THD level may significantly
increase.
The amplifiers have a relatively low internal compensation capacitor, making them very fast
while consuming very little. They are ideal when used in a non-inverting configuration or in
an inverting configuration in the following conditions.
●
IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) or IgainI ≥10
(CL = 100 pF, RL = 100 kΩ)
●
Gain ≥ +4 in a non-inverting configuration (CL = 20 pF, RL = 100 kΩ) or gain ≥ +11
(CL = 100 pF, RL= 100 kΩ)
As these operational amplifiers are not unity gain stable, for a low closed-loop gain, it is
recommended to use the TSV63x (60 µA, 880 kHz) which is unity gain stable.
Table 9.
Related products
Part #
4.7
Icc (µA) at 5 V
GBP (MHz)
Minimum gain for
stability
(CLoad = 100 pF)
SR (V/µs)
TSV62-2-3-4-5
29
0.42
0.14
1
TSV629-2-3-4-5
29
1.3
0.5
+11
TSV63-2-3-4-5
60
0.88
0.34
1
TSV639-2-3-4-5
60
2.4
1.1
+11
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
4.8
Macromodel
Two accurate macromodels (with or without shutdown feature) of the TSV639x are available
on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy
and complexity (that is, time simulation) of the TSV639x operational amplifiers. It emulates
the nominal performances of a typical device within the specified operating conditions
mentioned in the datasheet. It also helps to validate a design approach and to select the
right operational amplifier, but it does not replace on-board measurements.
Doc ID 16883 Rev 1
15/25
Package information
5
TSV639x, TSV639xA
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
16/25
Doc ID 16883 Rev 1
TSV639x, TSV639xA
5.1
Package information
SOT23-8 package information
Figure 25. SOT23-8 package mechanical drawing
Table 10.
SOT23-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
Inches
Max.
Min.
Typ.
Max.
A
1.45
0.057
A1
0.15
0.006
A2
0.90
1.30
0.035
0.051
b
0.22
0.38
0.009
0.015
c
0.08
0.22
0.003
0.009
D
2.80
3
0.110
0.118
E
2.60
3
0.102
0.118
E1
1.50
1.75
0.059
0.069
e
0.65
0.026
e1
1.95
0.077
L
0.30
0.60
<
0°
8°
Doc ID 16883 Rev 1
0.012
0.024
17/25
Package information
5.2
TSV639x, TSV639xA
SO-8 package information
Figure 26. SO-8 package mechanical drawing
Table 11.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
18/25
Inches
1.04
0
0.040
8°
0.10
Doc ID 16883 Rev 1
1°
8°
0.004
TSV639x, TSV639xA
5.3
Package information
MiniSO-8 package information
Figure 27. MiniSO-8 package mechanical drawing
Table 12.
MiniSO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.026
0.80
0.016
0.024
L1
0.95
0.037
L2
0.25
0.010
k
ccc
0°
0.037
8°
0.10
Doc ID 16883 Rev 1
0°
0.031
8°
0.004
19/25
Package information
5.4
TSV639x, TSV639xA
MiniSO-10 package information
Figure 28. MiniSO-10 package mechanical drawing
Table 13.
MiniSO-10 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.10
Max.
0.043
A1
0.05
0.10
0.15
0.002
0.004
0.006
A2
0.78
0.86
0.94
0.031
0.034
0.037
b
0.25
0.33
0.40
0.010
0.013
0.016
c
0.15
0.23
0.30
0.006
0.009
0.012
D
2.90
3.00
3.10
0.114
0.118
0.122
E
4.75
4.90
5.05
0.187
0.193
0.199
E1
2.90
3.00
3.10
0.114
0.118
0.122
e
L
0.50
0.40
L1
k
aaa
20/25
Inches
0.55
0.020
0.70
0.016
0.95
0°
3°
0.022
0.028
0.037
6°
0.10
Doc ID 16883 Rev 1
0°
3°
6°
0.004
TSV639x, TSV639xA
5.5
Package information
TSSOP14 package information
Figure 29. TSSOP14 package mechanical drawing
Table 14.
TSSOP14 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.176
e
L
0.65
0.45
L1
k
aaa
1.00
0.60
0.0256
0.75
0.018
1.00
0°
0.024
0.030
0.039
8°
0.10
Doc ID 16883 Rev 1
0°
8°
0.004
21/25
Package information
5.6
TSV639x, TSV639xA
TSSOP16 package information
Figure 30. TSSOP16 package mechanical drawing
b
Table 15.
TSSOP16 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0°
L
0.45
aaa
1.00
0.65
k
L1
22/25
Inches
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
1.00
8°
0.024
0.030
0.039
0.10
Doc ID 16883 Rev 1
0.004
TSV639x, TSV639xA
6
Ordering information
Ordering information
Table 16.
Order codes
Order code
Temperature
range
Package
Packing
SO-8
Tube and tape & reel
TSV6392ID/DT
V6392I
TSV6392AID/DT
V632AI
TSV6392IST
K111
MiniSO-8
Tape & reel
TSV6392AIST
K146
TSV6392ILT
TSV6393IST
Marking
SOT23-8
Tape & reel
MiniSO-10
Tape & reel
-40° C to +125° C
K111
K111
TSV6393AIST
K145
TSV6394IPT
V6394I
TSSOP-14
Tape & reel
TSV6394AIPT
V6394AI
TSV6395IPT
V6395I
TSSOP-16
TSV6395AIPT
Tape & reel
V6395AI
Doc ID 16883 Rev 1
23/25
Revision history
7
TSV639x, TSV639xA
Revision history
Table 17.
24/25
Document revision history
Date
Revision
18-Jan-2010
1
Changes
Initial release.
Doc ID 16883 Rev 1
TSV639x, TSV639xA
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 16883 Rev 1
25/25