TSV639x, TSV639xA Micropower (60 µA), wide bandwidth (2.4 MHz) CMOS op-amps Features ■ Rail-to-rail input and output ■ Low power consumption: 60 µA typ at 5 V ■ Low supply voltage: 1.5 V - 5.5 V ■ Gain bandwidth product: 2.4 MHz typ, stable for gain equal or above -3 or +4 ■ Low power shutdown mode: 5 nA typ ■ Low offset voltage: 800 µV max (A version) ■ Low input bias current: 1 pA typ ■ EMI hardened operational amplifiers ■ High tolerance to ESD: 4 kV HBM ■ Extended temperature range: -40° C to +125° C SOT23-8 SO-8 MiniSO-8/10 Applications ■ Battery-powered applications ■ Portable devices ■ Signal conditioning ■ Active filtering ■ Medical instrumentation TSSOP-14 Description The TSV639x series of dual and quad operational amplifiers offers low voltage operation and rail-torail input and output. For applications configured with gain, the TSV639x series offers an excellent speed/power consumption ratio, 2.4 MHz gain bandwidth product while consuming only 60 µA at 5 V. The devices also feature an ultra-low input bias current and have a shutdown mode (TSV6393, TSV6395). These features make the TSV639x family ideal for sensor interfaces, battery supplied and portable applications, as well as active filtering. January 2010 TSSOP-16 Table 1. Device summary Dual version Reference Quad version Without With Without With standby standby standby standby TSV639x TSV6392 TSV6393 TSV6394 TSV6395 TSV639xA TSV6392A TSV6393A TSV6394A TSV6395A Doc ID 16883 Rev 1 1/25 www.st.com 25 Contents TSV639x, TSV639xA Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Shutdown function (TSV6393 - TSV6395) . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Optimization of DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.6 Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.7 PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.8 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1 SOT23-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4 MiniSO-10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.6 TSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2/25 Doc ID 16883 Rev 1 TSV639x, TSV639xA 1 Package pin connections Package pin connections Figure 1. Pin connections for each package (top view) Out1 1 In1- 2 _ In1+ 3 + VCC- 4 8 VCC+ 7 Out2 _ 6 In2- + 5 In2+ Out1 1 In1- 2 _ In1+ 3 + VCC- 4 SHDN1 5 10 VCC+ 9 Out2 _ 8 In2- + 7 In2+ 6 SHDN2 TSV6392IDT/IST/ILT TSV6393IST SO8/Mini-SO8/SOT23-8 MiniSO-10 1 In1- 2 _ _ 13 In4- In1+ 3 + + 12 In4+ VCC+ 4 In2+ 5 1 In1- 2 _ _ 15 In4- In1+ 3 + + 14 In4+ VCC+ 4 In2+ 5 In2- 6 In2- 6 Out2 7 Out2 7 10 Out3 SHDN1/2 8 9 11 VCC+ _ + _ 10 In3+ 9 In3- 8 Out3 16 Out4 Out1 14 Out4 Out1 TSV6394IPT TSSOP14 13 VCC+ _ + _ 12 In3+ 11 In3- SHDN3/4 TSV6395IPT TSSOP16 Doc ID 16883 Rev 1 3/25 Absolute maximum ratings and operating conditions 2 TSV639x, TSV639xA Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings (AMR) Symbol VCC Vid Vin Iin SHDN Tstg Parameter Supply voltage (1) Differential input voltage Input voltage (3) Input current (4) Shutdown voltage (2) (3) Storage temperature Rthja Tj Maximum junction temperature ESD MM: machine model(7) model(8) CDM: charged device Unit 6 V ±VCC V VCC- - 0.2 to VCC++ 0.2 V 10 mA VCC- - 0.2 to VCC++ 0.2 V -65 to +150 °C ambient(5)(6) Thermal resistance junction to SOT23-8 MiniSO-8 SO-8 MiniSO-10 TSSOP14 TSSOP16 HBM: human body Value model(9) Latch-up immunity 105 190 125 113 100 95 °C/W 150 °C 4 kV 300 V 1.5 kV 200 mA 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. VCC-Vin must not exceed 6 V, Vin must not exceed 6V. 4. Input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground. Table 3. Operating conditions Symbol 4/25 Parameter VCC Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Doc ID 16883 Rev 1 Value Unit 1.5 to 5.5 V VCC- - 0.1 to VCC+ + 0.1 V -40 to +125 °C TSV639x, TSV639xA Electrical characteristics 3 Electrical characteristics Table 4. Electrical characteristics at VCC+ = +1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit TSV639x TSV639xA TSV6393AIST - MiniSO-10 3 0.8 1 mV Tmin < Top < Tmax - TSV639x Tmin < Top < Tmax - TSV639xA Tmin < Top < Tmax - TSV6393AIST 4.5 2 2.2 mV DC performance Vio DVio Offset voltage Input offset voltage drift Iio Input offset current (Vout = VCC/2) Iib Input bias current (Vout = VCC/2) CMR Common mode rejection ratio 20 log (ΔVic/ΔVio) Tmin < Top < Tmax Tmin < Top < Tmax 0 V to 1.8 V, Vout = 0.9 V 53 Tmin < Top < Tmax 51 RL= 10 kΩ, Vout = 0.5 V to 1.3 V 85 Tmin < Top < Tmax 80 35 50 Avd Large signal voltage gain VOH High level output voltage RL = 10 kΩ Tmin < Top < Tmax VOL Low level output voltage RL = 10 kΩ Tmin < Top < Tmax Isink Iout Isource ICC Supply current (per operator) μV/°C 2 1 10(1) pA 1 100 pA 1 10(1) pA 1 100 pA 74 dB 95 6 Tmin < Top < Tmax 4 Vo = 0 V 6 Tmin < Top < Tmax 4 No load, Vout = VCC/2 40 dB dB 5 4 Vo = 1.8 V dB mV 35 50 mV 12 mA 10 mA 50 Tmin < Top < Tmax 60 µA 62 µA AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF 2 MHz Gain Minimum gain for stability Phase margin = 60°, Rf = 10kΩ, RL = 10 kΩ, CL = 20 pF +4 -3 V/V SR Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 1.3 V 0.7 V/μs en Equivalent input noise voltage f = 1 kHz f = 10 kHz 60 33 nV -----------Hz 1. Guaranteed by design. Doc ID 16883 Rev 1 5/25 Electrical characteristics Table 5. TSV639x, TSV639xA Shutdown characteristics VCC = 1.8 V Symbol Parameter Conditions Min. Typ. Max. Unit 2.5 50 nA Tmin < Top < 85° C 200 nA Tmin < Top < 125° C 1.5 µA DC performance SHDN = VCCICC Supply current in shutdown mode (all operators) ton Amplifier turn-on time RL= 2 kΩ, Vout = VCC- to VCC-+0.2 V 200 ns toff Amplifier turn-off time RL = 2 kΩ, Vout = VCC+ - 0.5 V to VCC+ - 0.7 V 20 ns VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 pA IIL SHDN current low SHDN = VCC- 10 pA 50 pA 1 nA IOLeak 6/25 1.35 V 0.6 Output leakage in shutdown SHDN = VCCmode Tmin < Top < 125° C Doc ID 16883 Rev 1 V TSV639x, TSV639xA Table 6. Electrical characteristics VCC+ = +3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit TSV639x TSV639xA TSV6393AIST - MiniSO10 3 0.8 1 mV Tmin < Top < Tmax - TSV639x Tmin < Top < Tmax - TSV639xA Tmin < Top < Tmax - TSV6393AIST 4.5 2 2.2 mV DC performance Vio DVio Iio Iib CMR Offset voltage Input offset voltage drift 1 10(1) pA 1 100 pA 1 10(1) pA 1 100 pA Input offset current Tmin < Top < Tmax Input bias current Tmin < Top < Tmax Common mode rejection ratio 20 log (ΔVic/ΔVio) 0 V to 3.3 V, Vout = 1.65 V 57 Tmin < Top < Tmax 53 RL = 10 kΩ, Vout = 0.5 V to 2.8 V 88 Tmin < Top < Tmax 83 35 50 Avd Large signal voltage gain VOH High level output voltage RL = 10 kΩ Tmi. < Top < Tmax VOL Low level output voltage RL = 10 kΩ Tmin < Top < Tmax Isink Iout Isource ICC μV/°C 2 Supply current (per operator) 79 dB 98 dB 6 7 Vo = 3.3 V 23 Tmin < Top < Tmax 20 Vo = 0 V 23 Tmin < Top < Tmax 20 No load, Vout = 1.75 V 43 mV 35 50 mV 45 mA 38 mA 55 Tmin < Top < Tmax 64 µA 66 µA AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF 2.2 MHz Gain Minimum gain for stability Phase margin = 60°, Rf = 10kΩ, RL = 10 kΩ, CL = 20 pF +4 -3 V/V Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to 2.8 V 0.9 V/μs SR 1. Guaranteed by design. Doc ID 16883 Rev 1 7/25 Electrical characteristics Table 7. TSV639x, TSV639xA Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit TSV639x TSV639xA TSV6393AIST - MiniSO10 3 0.8 1 mV Tmin < Top < Tmax - TSV639x Tmin < Top < Tmax - TSV639xA Tmin < Top < Tmax - TSV6393AIST 4.5 2 2.2 mV DC performance Vio DVio Iio Iib CMR SVR Avd EMIRR Offset voltages Input offset voltage drift Input offset current (Vout = VCC/2) Input bias current (Vout = VCC/2) Tmin < Top < Tmax Tmin < Top < Tmax Common mode rejection ratio 20 log (ΔVic/ΔVio) 0 V to 5 V, Vout = 2.5 V 60 Tmin < Top < Tmax 55 Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) VCC = 1.8 to 5 V 75 Tmin < Top < Tmax 73 RL= 10 kΩ, Vout = 0.5 V to 4.5 V 89 Tmin < Top < Tmax 84 Large signal voltage gain EMI Rejection Ratio pA 1 100 pA 1 10(1) pA 1 100 pA 80 93 dB 98 85 dB 92 VRF = 100 mVrms, f = 2400 MHz 83 VOL Low level output voltage RL = 10 kΩ Tmin < Top < Tmax Iout Isource Supply current (per operator) 35 50 40 Tmin < Top < Tmax 35 Vo = 0 V 40 Tmin < Top < Tmax 35 No load, Vout = VCC/2 50 Doc ID 16883 Rev 1 7 6 Vo = 5 V Tmin < Top < Tmax dB dB VRF = 100 mVrms, f = 900 MHz RL = 10 kΩ Tmin < Top < Tmax dB dB 61 High level output voltage 8/25 10 VRF = 100 mVrms, f = 400 MHz VOH ICC 1 (1) EMIRR = -20 log (VRFpeak/ΔVio) V = 100 mV RF rms, f = 1800 MHz Isink μV/°C 2 mV 35 50 mV 65 mA 72 60 mA 69 µA 72 µA TSV639x, TSV639xA Table 7. Electrical characteristics Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C, and RL connected to VCC/2 (unless otherwise specified) (continued) Symbol Parameter Conditions Min. Typ. Max. Unit AC performance GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF 2.4 MHz Gain Minimum gain for stability Phase margin = 60°, Rf = 10kΩ, RL = 10 kΩ, CL = 20 pF, +4 -3 V/V SR Slew rate RL = 10 kΩ, CL = 100 pF 1.1 V/μs en Equivalent input noise voltage f = 1 kHz f = 10 kHz 60 33 nV -----------Hz Total harmonic distortion + noise VCC = 5 V, fin = 1 kHz, ACL = -10, RL = 100 kΩ, Vicm = VCC/2, BW = 22 kHz, Vout = 1 Vrms 0.015 % THD+N 1. Guaranteed by design. Table 8. Shutdown characteristics at VCC = 5 V Symbol Parameter Conditions Min. Typ. Max. Unit 5 50 nA Tmin < Top < 85° C 200 nA Tmin < Top < 125° C 1.5 µA DC performance SHDN = VCCICC Supply current in shutdown mode (all operators) ton Amplifier turn-on time RL = 2 kΩ, Vout = VCC- V to VCC-+0.2 V 200 ns toff Amplifier turn-off time RL = 2 kΩ, Vout = VCC+ - 0.5 V to VCC+ - 0.7 V 20 ns VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 pA IIL SHDN current low SHDN = VCC- 10 pA 50 pA 1 nA IOLeak 2 V 0.8 Output leakage in shutdown SHDN = VCCmode Tmin < Top < 125° C Doc ID 16883 Rev 1 V 9/25 Electrical characteristics TSV639x, TSV639xA Figure 3. Figure 2. Supply current vs. supply voltage at Vicm = VCC/2 Figure 4. Output current vs. output voltage at Figure 5. VCC = 5 V Output current vs. output voltage at VCC = 1.5 V Closed loop response for gain = -10, at VCC = 1.5 V and VCC = 5 V 20 Gain (dB) 15 VCC=1.5V VCC=5V 10 Closed loop gain = -10 T=25 C,CLoad=100pF, Vicm=VCC/2, RLoad=2.2kΩ for Iout giving minimum stability on a typical part 5 0 10000 100000 1000000 Frequency (Hz) Figure 6. 14 12 Closed loop response for gain = -3 Figure 7. at VCC = 1.5 V T=25°C, Vicm=VCC/2 ACL=-3, VCC=1.5V CLoad=33pF 14 RLoad=2.2kΩ 12 8 RLoad=100kΩ 6 4 2 0 10000 8 RLoad=2.2kΩ RLoad=100kΩ 6 4 RLoad= 100kΩ connected to VCC/2 RLoad= 2.2kΩ for Iout giving minimum stability on a typical part 100000 2 1000000 0 10000 RLoad= 100kΩ connected to VCC/2 RLoad= 2.2kΩ for Iout giving minimum stability on a typical part 100000 Frequency (Hz) Frequency (Hz) 10/25 T=25°C, Vicm=VCC/2 ACL=-3, VCC=5V CLoad=33pF 10 Gain (dB) Gain (dB) 10 Closed loop response for gain = -3 at VCC = 5 V Doc ID 16883 Rev 1 1000000 TSV639x, TSV639xA Positive slew rate vs. supply voltage in closed loop RLoad=2kΩ, CLoad=100pF, ACL=−10 Vin: from 0.5V to VCC+− 0.5V SR calculated from 10% to 90% Vicm=VCC/2 T=25°C T=125°C Figure 9. Negative slew rate vs. supply voltage in closed loop RLoad=2kΩ, CLoad=100pF, ACL=−10 Vin: from VCC+− 0.5V to 0.5V SR calculated from 10% to 90% Vicm=VCC/2 Slew rate (V/ s) Slew rate (V/ s) Figure 8. Electrical characteristics T=125°C T=−40°C T=−40°C T=25°C Supply voltage (V) Supply voltage (V) Open loop configuration, T = 25°C RLoad=10kΩ, CLoad=100pF, Vin=1VPP, Vicm=VCC/2 SR calculated from 0.5V to VCC- 0.5V Amplitude (V) Slew rate (V/ s) Figure 10. Slew rate vs. supply voltage in open Figure 11. Slew rate timing in open loop loop Open loop,RLoad=10kΩ CLoad=100pF, Vicm=VCC/2 T=25°C, VCC=5V, Vin=1VPP Time (µs) Supply voltage (V) Amplitude (V) RLoad=2kΩ, CLoad=100pF, Vicm=VCC/2, ACL=−10 T=25°C, VCC=5V Vout Vin Figure 13. Noise vs. frequency Equivalent Input Voltage Noise (nV/VHz) Figure 12. Slew rate timing in closed loop 300 Vcc=5V T=25°C 250 200 Vicm=2.5V 150 100 Vicm=4.5V 50 0 Time (µs) Doc ID 16883 Rev 1 100 1000 10000 11/25 Electrical characteristics TSV639x, TSV639xA Figure 15. Distortion + noise vs. frequency at VCC = 1.8 V THD + N (%) THD + N (%) Figure 14. Distortion + noise vs. output voltage at VCC = 1.8 V Ω Ω Ω Ω Output voltage (Vrms) Frequency (Hz) THD + N (%) Ω THD + N (%) Figure 17. Distortion + noise vs. frequency at VCC = 5 V Figure 16. Distortion + noise vs. output voltage at VCC = 5 V Ω Ω Ω Ouput voltage (Vrms) Frequency (Hz) Figure 18. EMIRR vs. frequency at Vcc = 5 V, T = 25° C 120 EMIRR Vpeak (dB) 100 80 60 40 20 0 1 10 12/25 2 10 3 10 Doc ID 16883 Rev 1 TSV639x, TSV639xA Application information 4 Application information 4.1 Operating voltages The TSV639x can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3 and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV639x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40° C to +125° C. 4.2 Rail-to-rail input The TSV639x are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from VCC-- 0.1 V to VCC+ + 0.1 V. The transition between the two pairs appears at VCC+ - 0.7 V. In the transition region, the performance of CMR, SVR, Vio (Figure 19 and Figure 20) and THD is slightly degraded. Figure 19. Input offset voltage vs input common mode at VCC = 1.5 V Figure 20. Input offset voltage vs input common mode at VCC = 5 V The devices are guaranteed without phase reversal. 4.3 Rail-to-rail output The operational amplifiers’ output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2. 4.4 Shutdown function (TSV6393 - TSV6395) The operational amplifiers are enabled when the SHDN pin is pulled high. To disable the amplifiers, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifiers’ output is in a high impedance state. The SHDN pin must never be left floating but tied to VCC+ or VCC-. Doc ID 16883 Rev 1 13/25 Application information TSV639x, TSV639xA The turn-on and turn-off times are calculated for an output variation of ±200 mV (Figure 21 and Figure 22 show the test configurations). Figure 21. Test configuration for turn-on time (Vout pulled down) + VCC Figure 22. Test configuration for turn-off time (Vout pulled down) + VCC VCC - 0.5 V GND 2 KΩ 2 KΩ GND + VCC - 0.5 V + DUT DUT - - GND GND Figure 23. Turn-on time, VCC = 5 V, Vout pulled down, T = 25° C Figure 24. Turn-off time, VCC = 5 V, Vout pulled down, T = 25° C Shutdown pulse Voltage (V) Vout Output voltage (V) Vcc = 5V T = 25°C Vout Vcc = 5V T = 25°C RL connected to GND Time (μs) 14/25 Shutdown pulse Time (μs) Doc ID 16883 Rev 1 TSV639x, TSV639xA 4.5 Application information Optimization of DC and AC parameters These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (60 µA typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and Avd, benefit from this narrow dispersion. 4.6 Driving resistive and capacitive loads These products are micropower, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 2 kΩ.. For lower resistive loads, the THD level may significantly increase. The amplifiers have a relatively low internal compensation capacitor, making them very fast while consuming very little. They are ideal when used in a non-inverting configuration or in an inverting configuration in the following conditions. ● IGainI ≥ 3 in an inverting configuration (CL = 20 pF, RL = 100 kΩ) or IgainI ≥10 (CL = 100 pF, RL = 100 kΩ) ● Gain ≥ +4 in a non-inverting configuration (CL = 20 pF, RL = 100 kΩ) or gain ≥ +11 (CL = 100 pF, RL= 100 kΩ) As these operational amplifiers are not unity gain stable, for a low closed-loop gain, it is recommended to use the TSV63x (60 µA, 880 kHz) which is unity gain stable. Table 9. Related products Part # 4.7 Icc (µA) at 5 V GBP (MHz) Minimum gain for stability (CLoad = 100 pF) SR (V/µs) TSV62-2-3-4-5 29 0.42 0.14 1 TSV629-2-3-4-5 29 1.3 0.5 +11 TSV63-2-3-4-5 60 0.88 0.34 1 TSV639-2-3-4-5 60 2.4 1.1 +11 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. 4.8 Macromodel Two accurate macromodels (with or without shutdown feature) of the TSV639x are available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV639x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements. Doc ID 16883 Rev 1 15/25 Package information 5 TSV639x, TSV639xA Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 16/25 Doc ID 16883 Rev 1 TSV639x, TSV639xA 5.1 Package information SOT23-8 package information Figure 25. SOT23-8 package mechanical drawing Table 10. SOT23-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. Inches Max. Min. Typ. Max. A 1.45 0.057 A1 0.15 0.006 A2 0.90 1.30 0.035 0.051 b 0.22 0.38 0.009 0.015 c 0.08 0.22 0.003 0.009 D 2.80 3 0.110 0.118 E 2.60 3 0.102 0.118 E1 1.50 1.75 0.059 0.069 e 0.65 0.026 e1 1.95 0.077 L 0.30 0.60 < 0° 8° Doc ID 16883 Rev 1 0.012 0.024 17/25 Package information 5.2 TSV639x, TSV639xA SO-8 package information Figure 26. SO-8 package mechanical drawing Table 11. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc 18/25 Inches 1.04 0 0.040 8° 0.10 Doc ID 16883 Rev 1 1° 8° 0.004 TSV639x, TSV639xA 5.3 Package information MiniSO-8 package information Figure 27. MiniSO-8 package mechanical drawing Table 12. MiniSO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.026 0.80 0.016 0.024 L1 0.95 0.037 L2 0.25 0.010 k ccc 0° 0.037 8° 0.10 Doc ID 16883 Rev 1 0° 0.031 8° 0.004 19/25 Package information 5.4 TSV639x, TSV639xA MiniSO-10 package information Figure 28. MiniSO-10 package mechanical drawing Table 13. MiniSO-10 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.10 Max. 0.043 A1 0.05 0.10 0.15 0.002 0.004 0.006 A2 0.78 0.86 0.94 0.031 0.034 0.037 b 0.25 0.33 0.40 0.010 0.013 0.016 c 0.15 0.23 0.30 0.006 0.009 0.012 D 2.90 3.00 3.10 0.114 0.118 0.122 E 4.75 4.90 5.05 0.187 0.193 0.199 E1 2.90 3.00 3.10 0.114 0.118 0.122 e L 0.50 0.40 L1 k aaa 20/25 Inches 0.55 0.020 0.70 0.016 0.95 0° 3° 0.022 0.028 0.037 6° 0.10 Doc ID 16883 Rev 1 0° 3° 6° 0.004 TSV639x, TSV639xA 5.5 Package information TSSOP14 package information Figure 29. TSSOP14 package mechanical drawing Table 14. TSSOP14 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L 0.65 0.45 L1 k aaa 1.00 0.60 0.0256 0.75 0.018 1.00 0° 0.024 0.030 0.039 8° 0.10 Doc ID 16883 Rev 1 0° 8° 0.004 21/25 Package information 5.6 TSV639x, TSV639xA TSSOP16 package information Figure 30. TSSOP16 package mechanical drawing b Table 15. TSSOP16 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0° L 0.45 aaa 1.00 0.65 k L1 22/25 Inches 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 1.00 8° 0.024 0.030 0.039 0.10 Doc ID 16883 Rev 1 0.004 TSV639x, TSV639xA 6 Ordering information Ordering information Table 16. Order codes Order code Temperature range Package Packing SO-8 Tube and tape & reel TSV6392ID/DT V6392I TSV6392AID/DT V632AI TSV6392IST K111 MiniSO-8 Tape & reel TSV6392AIST K146 TSV6392ILT TSV6393IST Marking SOT23-8 Tape & reel MiniSO-10 Tape & reel -40° C to +125° C K111 K111 TSV6393AIST K145 TSV6394IPT V6394I TSSOP-14 Tape & reel TSV6394AIPT V6394AI TSV6395IPT V6395I TSSOP-16 TSV6395AIPT Tape & reel V6395AI Doc ID 16883 Rev 1 23/25 Revision history 7 TSV639x, TSV639xA Revision history Table 17. 24/25 Document revision history Date Revision 18-Jan-2010 1 Changes Initial release. Doc ID 16883 Rev 1 TSV639x, TSV639xA Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 16883 Rev 1 25/25