VNQ7140AJ-E Quad channel high-side driver with MultiSense analog feedback for automotive applications Datasheet - production data – Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin – Loss of ground and loss of VCC – Reverse battery with external components – Electrostatic discharge protection PowerSSO-16 GAPGCFT00327 Features Applications Max transient supply voltage VCC 40 V Operating voltage range VCC 4 to 28 V Typ. on-state resistance (per Ch) RON 140 mΩ Current limitation (typ) ILIMH 12 A Stand-by current (max) ISTBY 0.5 µA • General – Quad channel smart high-side driver with MultiSense analog feedback – Very low standby current – Compatible with 3 V and 5 V CMOS outputs • MultiSense diagnostic functions – Multiplexed analog feedback of: load current with high precision proportional current mirror, VCC supply voltage and TCHIP device temperature – Overload and short to ground (power limitation) indication – Thermal shutdown indication – OFF-state open-load detection – Output short to VCC detection – Sense enable/disable • Protections – Undervoltage shutdown – Overvoltage clamp – Load current limitation – Self limiting of fast thermal transients October 2014 This is information on a product in full production. • All types of automotive resistive, inductive and capacitive loads • Specially intended for automotive signal lamps (up to R10W or LED Real Combinations) Description The VNQ7140AJ-E is a quad channel high-side driver manufactured using ST proprietary VIPower® technology and housed in PowerSSO-16 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, providing protection and diagnostics. The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off. A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality. A dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions including high precision proportional load current sense, supply voltage feedback and chip temperature sense, in addition to the detection of overload and short circuit to ground, short to VCC and OFF-state open-load. A sense enable pin allows OFF-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices DocID018837 Rev 8 1/48 www.st.com Contents VNQ7140AJ-E Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 4 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Main electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1 Power limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Negative voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 31 4.1.1 4.2 Immunity against transient electrical disturbances . . . . . . . . . . . . . . . . . . 32 4.3 MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Multisense - analog current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5 5 2/48 4.4.1 Principle of Multisense signal generation . . . . . . . . . . . . . . . . . . . . . . . 35 4.4.2 TCASE and VCC monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4.3 Short to VCC and OFF-state open-load detection . . . . . . . . . . . . . . . . . 38 Maximum demagnetization energy (VCC = 16 V) . . . . . . . . . . . . . . . . . . . 39 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1 6 Diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 PowerSSO-16 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 PowerSSO-16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DocID018837 Rev 8 VNQ7140AJ-E Contents 7 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DocID018837 Rev 8 3/48 3 List of tables VNQ7140AJ-E List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. 4/48 Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified) . . . . . . . . . . . . . 11 Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 MultiSense multiplexer addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ISO 7637-2 - electrical transient conduction along supply line . . . . . . . . . . . . . . . . . . . . . . 32 MultiSense pin levels in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 PCB properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 PowerSSO-16 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DocID018837 Rev 8 VNQ7140AJ-E List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Current sense precision vs. IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Switching time and Pulse skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MultiSense timings (current sense mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Multisense timings (chip temperature and VCC sense mode) . . . . . . . . . . . . . . . . . . . . . . 20 TDSKON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) . . . . . . . . . . . 23 Latch functionality - behavior in hard short circuit condition . . . . . . . . . . . . . . . . . . . . . . . . 23 Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) 24 Standby mode activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Standby state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 OFF-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Standby current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 IGND(ON) vs. Iout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Logic Input high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Logic Input low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 High level logic input current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Low level logic input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Logic Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 FaultRST Input clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 On-state resistance vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 On-state resistance vs. VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Won vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Woff vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ILIMH vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 OFF-state open-load voltage detection threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Vsense clamp vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Vsenseh vs. Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Simplified internal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Multisense and diagnostic – block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Multisense block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Analogue HSD – open-load detection in off-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Open-load / short to VCC condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 GND voltage shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Maximum turn off current versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5) . . . . . . . . . . . . . . . . . . . . 40 PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) . . . . . . . . . . . . . . . . . . . . 40 PowerSSO-16 Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . 41 PowerSSO-16 thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . 41 Thermal fitting model for PowerSSO-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 PowerSSO-16 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DocID018837 Rev 8 5/48 5 Block diagram and pin description 1 VNQ7140AJ-E Block diagram and pin description Figure 1. Block diagram 9&& ,QWHUQDOVXSSO\ 9&&±*1' &ODPS 8QGHUYROWDJH VKXWGRZQ &KDQQHO &KDQQHO &+ &KDQQHO &+ &RQWURO'LDJQRVWLF &KDQQHO &+ )DXOW567 ,1387 9&&±287 &ODPS ,1387 &+ ,1387 287387 ,1387 *DWH'ULYHU 6(/ 7 9&& 287387 921 /LPLWDWLRQ 6(/ 6(/ &XUUHQW /LPLWDWLRQ 08; 6(Q 0XOWLVHQVH 287387 3RZHU/LPLWDWLRQ 2YHUWHPSHUDWXUH 7 6KRUWWR9&& 2SHQ/RDGLQ2)) &XUUHQW 6HQVH )DXOW 96(16(+ *1' 287387 ("1($'5 Table 1. Pin functions Name VCC OUTPUT0,1,2,3 GND 6/48 Function Battery connection. Power output. Ground connection. Must be reverse battery protected by an external diode / resistor network. INPUT0,1,2,3 Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state. MultiSense Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature. SEn Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin. SEL0,1,2 Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer. FaultRST Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode. DocID018837 Rev 8 VNQ7140AJ-E Block diagram and pin description Figure 2. Configuration diagram (top view) 3RZHU662 287387 287387 6(Q 6(/ ,1387 ,1387 *1' 0XOWL6HQVH )DXOW567 6(/ ,1387 ,1387 1& 6(/ 287387 287387 7$% 9 && *$3*&)7 Table 2. Suggested connections for unused and not connected pins Connection / pin MultiSense N.C. Output Input SEn, SELxFaultRST Floating Not allowed X(1) X X X To ground Through 1 kΩ resistor X Not allowed Through 15 kΩ resistor Through 15 kΩ resistor 1. X: do not care. DocID018837 Rev 8 7/48 47 Electrical specification 2 VNQ7140AJ-E Electrical specification Figure 3. Current and voltage conventions ,6 9&& )DXOW567 287387 96(Q ,287 9287 ,6(16( 6(Q ,6(/ 6(/ 96(/ 9)5 ,6(Q 9&& 9)Q ,)5 0XOWL6HQVH 96(16( ,,1 6 ,1 ,1387 ,*1' *$3*&)7 Note: VFn = VOUTn - VCC during reverse battery condition. 2.1 Absolute maximum ratings Stressing the device above the rating listed in Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability. Table 3. Absolute maximum ratings Symbol Value Unit VCC DC supply voltage 38 -VCC Reverse DC supply voltage 0.3 VCCPK Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40V; RL = 4 Ω) 40 V VCCJS Maximum jump start voltage for single pulse short circuit protection 28 V -IGND DC reverse ground pin current 200 mA IOUT OUTPUT0,1,2,3 DC output current -IOUT Reverse DC output current IIN 8/48 Parameter V Internally limited A 4 INPUT0,1,2,3 DC input current ISEn SEn DC input current ISEL SEL0,1,2 DC input current IFR FaultRST DC input current VFR FaultRST DC input voltage DocID018837 Rev 8 -1 to 10 mA 7.5 V VNQ7140AJ-E Electrical specification Table 3. Absolute maximum ratings (continued) Symbol Value Unit MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V) 10 MultiSense pin DC output current in reverse (VCC < 0 V) -20 EMAX Maximum switching energy (single pulse) (TDEMAG = 0.4 ms; Tjstart = 150 °C) 10 mJ VESD Electrostatic discharge (JEDEC 22A-114F) – INPUT0,1,2,3 – MultiSense – SEn, SEL0,1,2, FaultRST – OUTPUT0,1,2,3 – VCC 4000 2000 4000 4000 4000 V V V V V VESD Charge device model (CDM-AEC-Q100-011) 750 V ISENSE Tj Tstg 2.2 Parameter mA Junction operating temperature -40 to 150 Storage temperature -55 to 150 °C Thermal data Table 4. Thermal data Symbol Parameter Typ. value 51-8)(1)(2) Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5 / Rthj-amb Thermal resistance junction-ambient (JEDEC JESD 51-5)(1)(3) Rthj-amb 51-7)(1)(2) Thermal resistance junction-ambient (JEDEC JESD Unit 7.7 61 °C/W 26.8 1. One channel ON. 2. Device mounted on four-layers 2s2p PCB. 3. Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace. DocID018837 Rev 8 9/48 47 Electrical specification 2.3 VNQ7140AJ-E Main electrical characteristics 7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified. All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified. Table 5. Power section Symbol Parameter Test conditions Min. Typ. Max. Unit VCC Operating supply voltage VUSD Undervoltage shutdown 4 VUSDReset Undervoltage shutdown reset 5 V VUSDhyst Undervoltage shutdown hysteresis IOUT = 1 A; Tj = 150°C 280 mΩ IOUT = 1 A; VCC = 4 V; Tj = 25°C 210 4 Vclamp ISTBY On-state resistance(1) Clamp voltage 140 IS = 20 mA; Tj = -40°C 38 IS = 20 mA; 25°C < Tj < 150°C 41 46 IS(ON) IGND(ON) IL(off) VF V 0.5 µA VCC = 13 V; Supply current in standby VIN = VOUT = VFR = VSEn = 0 V; (2) at VCC = 13 V VSEL0,1,2 = 0 V; Tj = 85°C (3) 0.5 µA 3 µA 300 550 µs 10 16 mA 20 mA Standby mode blanking time VCC = 13 V; VIN = VOUT = VFR = VSEL0,1,2 = 0 V; VSEn = 5 V to 0 V Supply current VCC = 13 V; VSEn = VFR = VSEL0,1,2 = 0 V; VIN0,1,2,3 = 5 V; IOUT0,1,2,3 = 0 A 60 Control stage current VCC = 13 V; VSEn = 5 V; consumption in ON state. VFR = VSEL0,1,2 = 0 V; VIN0,1,2,3 = 5 V; IOUT0,1,2,3 = 1 A All channels active. VIN = VOUT = 0 V; VCC = 13 V; Off-state output current at Tj = 25°C VCC = 13 V(1) VIN = VOUT = 0 V; VCC = 13 V; Tj = 125°C Output - VCC diode voltage (1) IOUT = -1 A; Tj = 150°C 1. For each channel. 2. PowerMOS leakage included. 3. Parameter specified by design; not subject to production test. 10/48 52 VCC = 13 V; VIN = VOUT = VFR = VSEn = 0 V; VSEL0,1,2 = 0 V; Tj = 25°C VCC = 13 V; VIN = VOUT = VFR = VSEn = 0 V; VSEL0,1,2 = 0 V; Tj = 125°C tD_STBY 28 0.3 IOUT = 1 A; Tj = 25°C RON 13 DocID018837 Rev 8 0 0.01 0.5 µA 0 3 0.7 V VNQ7140AJ-E Electrical specification Table 6. Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified) Symbol Parameter td(on)(1) Turn-on delay time at Tj = 25°C (1) Turn-off delay time at Tj = 25°C td(off) Test conditions RL = 13 Ω (dVOUT/dt)on(1) Turn-on voltage slope at Tj = 25°C (dVOUT/dt)off(1) Turn-off voltage slope at Tj = 25°C RL = 13 Ω Min. Typ. Max. 10 70 120 10 40 100 0.1 0.29 0.7 0.1 0.35 0.7 Unit µs V/µs WON Switching energy losses at turn-on RL = 13 Ω (twon) — 0.15 0.2(2) mJ WOFF Switching energy losses at turn-off RL = 13 Ω (twoff) — 0.1 0.18(2) mJ tSKEW(1) Differential Pulse skew (tPHL- tPLH) RL = 13 Ω -90 -40 10 µs Max. Unit 0.9 V 1. See Figure 6: Switching time and Pulse skew. 2. Parameter guaranteed by design and characterization; not subject to production test. Table 7. Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) Symbol Parameter Test conditions Min. Typ. INPUT0,1,2,3 characteristics VIL Input low level voltage IIL Low level input current VIH Input high level voltage IIH High level input current VI(hyst) Input hysteresis voltage VICL Input clamp voltage VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA µA V 5.3 7.2 V IIN = -1 mA -0.7 FaultRST characteristics VFRL Input low level voltage IFRL Low level input current VFRH Input high level voltage IFRH High level input current VFR(hyst) Input hysteresis voltage VFRCL Input clamp voltage 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V µA V 5.3 7.5 V IIN = -1 mA -0.7 SEL0,1,2 characteristics (7 V < VCC < 18 V) VSELL Input low level voltage ISELL Low level input current VSELH Input high level voltage ISELH High level input current 0.9 VIN = 0.9 V VIN = 2.1 V DocID018837 Rev 8 V 1 µA 2.1 V 10 µA 11/48 47 Electrical specification VNQ7140AJ-E Table 7. Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C) (continued) Symbol VSEL(hyst) VSELCL Parameter Test conditions Min. Input hysteresis voltage Typ. Max. 0.2 IIN = 1 mA Input clamp voltage Unit V 5.3 7.2 V IIN = -1 mA -0.7 SEn characteristics (7 V < VCC < 18 V) VSEnL Input low level voltage ISEnL Low level input current VSEnH Input high level voltage ISEnH High level input current VSEn(hyst) Input hysteresis voltage VSEnCL Input clamp voltage 0.9 VIN = 0.9 V 1 µA 2.1 V VIN = 2.1 V 10 0.2 IIN = 1 mA V µA V 5.3 7.2 V IIN = -1 mA -0.7 Table 8. Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C) Symbol Parameter Test conditions ILIMH DC short circuit current ILIML Short circuit current during thermal cycling TTSD Shutdown temperature VCC = 13 V 4 V < VCC < 18 Reset TRS Thermal reset of fault diagnostic indication VFR = 0 V; VSEn = 5 V Thermal hysteresis (TTSD - TR)(1) ΔTJ_SD Dynamic temperature Tj = -40°C; VCC = 13 V Fault reset time for output unlatch VFR = 5 V to 0 V; VSEn = 5 V – E.g. Ch0 VIN0 = 5 V; VSEL0,1,2 = 0 V VDEMAG VON Turn-off output voltage clamp Output voltage drop limitation Max. 8 12 16 16 VCC = 13 V; TR < Tj < TTSD THYST tLATCH_RST(1) Typ. V(1) temperature(1) TR Min. A 4 150 175 TRS + 1 TRS + 7 200 °C 135 7 60 3 10 K 20 µs IOUT= 1 A; L = 6 mH; Tj = -40°C VCC - 38 V IOUT= 1 A; L = 6 mH; Tj = 25°C to 150°C VCC - 41 VCC - 46 VCC - 52 V 20 mV IOUT = 0.07 A 1. Parameter guaranteed by design and characterization; not subject to production test. 12/48 Unit DocID018837 Rev 8 VNQ7140AJ-E Electrical specification Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) Symbol VSENSE_CL Parameter MultiSense clamp voltage Test conditions VSEn = 0 V; ISENSE = 1 mA Min. Typ. Max. -17 Unit -12 V VSEn = 0 V; ISENSE = -1 mA 7 Current Sense characteristics KOL dKcal/Kcal(1)(2) KLED dKLED/KLED(1)(2) K0 dK0/K0(1)(2) K1 dK1/K1(1)(2) K2 dK2/K2(1)(2) K3 dK3/K3(1)(2) IOUT/ISENSE IOUT = 0.01 A; VSENSE = 0.5 V; VSEn = 5 V 330 Current sense ratio drift at calibration point IOUT = 0.01 A to 0.025 A; Ical = 17.5 mA; VSENSE = 0.5 V; VSEn = 5 V -30 IOUT/ISENSE IOUT = 0.025 A; VSENSE = 0.5 V; VSEn = 5 V 330 Current sense ratio drift IOUT = 0.025 A; VSENSE = 0.5 V; VSEn = 5 V -25 IOUT/ISENSE IOUT = 0.070 A; VSENSE = 0.5 V; VSEn = 5 V 375 Current sense ratio drift IOUT = 0.070 A; VSENSE = 0.5 V; VSEn = 5 V -20 IOUT/ISENSE IOUT = 0.15 A; VSENSE = 4 V; VSEn = 5 V 365 Current sense ratio drift IOUT = 0.15 A; VSENSE = 4 V; VSEn = 5 V -15 IOUT/ISENSE IOUT = 0.7 A; VSENSE = 4 V; VSEn = 5 V 380 Current sense ratio drift IOUT = 0.7 A; VSENSE = 4 V; VSEn = 5 V -10 IOUT/ISENSE IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V 420 Current sense ratio drift IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V -5 DocID018837 Rev 8 30 580 830 25 550 % 570 10 470 % 675 15 475 % 720 20 520 % % 520 5 % 13/48 47 Electrical specification VNQ7140AJ-E Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued) Symbol Parameter Test conditions MultiSense disabled: VSEn = 0 V 0 0.5 -0.5 0.5 MultiSense enabled: VSEn = 5 V All channels ON; IOUTX = 0 A; ChX diagnostic selected: – E.g. Ch0: VIN0,1,2,3 = 5 V; VSEL0 = 0 V; VSEL1,2 = 0 V; IOUT0 = 0 A; IOUT1,2,3 = 1 A 0 2 MultiSense enabled: VSEn = 5 V; ChX OFF; ChX diagnostic selected: – E.g. Ch0: VIN0 = 0 V; VIN1,2,3 = 0 V; VSEL0 = 5V; VSEL1,2 = 0 V; IOUT1,2,3 = 1 A 0 MultiSense disabled: -1 V < VSENSE < 5 V(1) MultiSense leakage current ISENSE0 Min. Typ. Max. Unit µA 2 (1) Output Voltage for MultiSense shutdown VSEn = 5 V; RSENSE = 2.7 kΩE.g. Ch0: VIN0 = 5 V; VSEL0,1,2 = 0 V; IOUT0 = 1 A VSENSE_SAT Multisense saturation voltage VCC = 7 V; RSENSE = 2.7 kΩ; VSEn = 5 V; VIN0 = 5 V; VSEL0,1,2 = 0 V; IOUT0 = 2 A; Tj = 150°C 5 V ISENSE_SAT(1) CS saturation current VCC = 7 V; VSENSE = 4 V; VIN0 = 5 V; VSEn = 5 V; VSEL0,1,2 = 0 V; Tj = 150°C 4 mA Output saturation current VCC = 7 V; VSENSE = 4 V; VIN0 = 5 V; VSEn = 5 V; VSEL0,1,2 = 0 V; Tj = 150°C 2.2 A VOUT_MSD IOUT_SAT(1) 5 V OFF-state diagnostic VOL IL(off2) 14/48 VSEn = 5 V; ChX OFF; ChX OFF-state open-load diagnostic selected voltage detection – E.g: Ch0 threshold VIN0 = 0 V; VSEL0,1,2 = 0 V OFF-state output sink current VIN = 0 V; VOUT = VOL; Tj = -40°C to 125°C DocID018837 Rev 8 2 -100 3 4 V -15 µA VNQ7140AJ-E Electrical specification Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued) Symbol Parameter Test conditions tDSTKON OFF-state diagnostic delay time from falling edge of INPUT (see Figure 9) tD_OL_V Settling time for valid OFF-state open load VIN0,1,2,3 = 0 V; VFR = 0 V; diagnostic indication VSEL0,1,2 = 0 V; VOUT0 = 4 V; VSEn = 0 V to 5 V from rising edge of SEn tD_VOL OFF-state diagnostic delay time from rising edge of VOUT VSEn = 5 V; ChX ON to OFF transition; ChX diagnostic selected: – E.g: Ch0 VIN0 = 5 V to 0 V; VSEL0,1,2 = 0 V; VOUT0 = 4 V; IOUT0 = 0 A Min. Typ. Max. 100 VSEn = 5 V; ChX OFF; ChX diagnostic selected: – E.g: Ch0 VIN0 = 0 V; VSEL0,1,2 = 0 V; VOUT0 = 0 V to 4 V 350 5 Unit 700 µs 60 µs 30 µs Chip temperature analog feedback VSENSE_TC dVSENSE_TC/dT(1) Transfer function MultiSense output voltage proportional to chip temperature all channels off Temperature coefficient VSEn = 5 V; VSEL0 = 0 V; VSEL1,2 = 5 V; VIN0,1,2,3 = 0 V; RSENSE = 1 kΩ; Tj = -40°C 2.325 2.41 2.495 V VSEn = 5 V; VSEL0 = 0 V; VSEL1,2 = 5 V; VIN0,1,2,3 = 0 V; RSENSE = 1 kΩ; Tj = 25°C 1.985 2.07 2.155 V VSEn = 5 V; VSEL0 = 0 V; VSEL1,2 = 5 V; VIN0,1,2,3 = 0 V; RSENSE = 1 kΩ; Tj = 125°C 1.435 1.52 1.605 V -5.5 mV/K Tj = -40 °C to 150 °C VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0) VCC supply voltage analog feedback VSENSE_VCC Transfer function(3) MultiSense output voltage proportional to VCC supply voltage VCC = 13 V; VSEn = 5 V; VIN0,1,2,3 = 0 V; VSEL0,1,2 = 5 V; RSENSE = 1 kΩ 3.16 3.23 3.3 V VSENSE_VCC = VCC / 4 DocID018837 Rev 8 15/48 47 Electrical specification VNQ7140AJ-E Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit Fault diagnostic feedback (see Table 10) VSENSEH MultiSense output voltage in fault condition VCC = 13 V; RSENSE = 1 kΩ – E.g: Ch0 in open load VIN0 = 0 V; VSEn = 5 V; VSEL0,1,2 = 0 V; IOUT0 = 0 A; VOUT0 = 4 V 5 ISENSEH MultiSense output current in fault condition VCC = 13 V; VSENSE = 5 V 7 6.6 V 30 mA 60 µs 5 20 µs 100 250 µs 100 µs 250 µs 20 MultiSense timings (current sense mode - see Figure 7) tDSENSE1H Current sense settling time from rising edge of SEn VIN = 5 V; VSEn = 0 V to 5 V; RSENSE = 1 kΩ; RL = 13 Ω tDSENSE1L Current sense disable delay time from falling edge of SEn VIN = 5 V; VSEn = 0 V to 5 V; RSENSE = 1 kΩ; RL = 13 Ω tDSENSE2H Current sense VIN = 0 V to 5 V; VSEn = 5 V; settling time from R = 1 kΩ; RL = 13 Ω rising edge of INPUT SENSE ΔtDSENSE2H Current sense settling time from rising edge of IOUT (dynamic response to a step change of IOUT) VIN = 5 V; VSEn = 5 V; RSENSE = 1 kΩ; ISENSE = 90 % of ISENSEMAX; RL = 13 Ω tDSENSE2L Current sense turnoff delay time from falling edge of INPUT VIN = 5 V to 0 V; VSEn = 5 V; RSENSE = 1 kΩ; RL = 13 Ω 50 MultiSense timings (chip temperature sense mode - see Figure 8) tDSENSE3H VSENSE_TC settling time from rising edge of SEn VSEn = 0 V to 5 V; VSEL0 = 0 V; VSEL1,2 = 5 V; RSENSE = 1 kΩ 60 µs tDSENSE3L VSENSE_TC disable delay time from falling edge of SEn VSEn = 5 V to 0 V; VSEL0 = 0 V; VSEL1,2 = 5 V; RSENSE = 1 kΩ 20 µs MultiSense timings (VCC voltage sense mode - see Figure 8) 16/48 tDSENSE4H VSENSE_VCC settling time from rising edge of SEn VSEn = 0 V to 5 V; VSEL0,1,2 = 5 V; RSENSE = 1 kΩ 60 µs tDSENSE4L VSENSE_VCC disable delay time from falling edge of SEn VSEn = 5 V to 0 V; VSEL0,1,2 = 5 V; RSENSE = 1 kΩ 20 µs DocID018837 Rev 8 VNQ7140AJ-E Electrical specification Table 9. MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C) (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit MultiSense timings (multiplexer transition times)(4) VIN0 = 5 V; VIN1 = 5 V; MultiSense transition VSEn = 5 V; VSEL1,2 = 0 V; delay from ChX to VSEL0 = 0 V to 5 V; ChY IOUT0 = 0 A; IOUT1 = 1A; RSENSE = 1 kΩ 20 µs tD_CStoTC VIN0 = 5 V; VSEn = 5 V; MultiSense transition VSEL0,1 = 0 V; delay from current VSEL2 = 0 V to 5 V; IOUT0 = 0.5 A; sense to TC sense RSENSE = 1 kΩ 60 µs tD_TCtoCS VIN0 = 5 V; VSEn = 5 V; MultiSense transition VSEL0,1 = 0 V; delay fromTC sense VSEL2 = 5 V to 0 V; to current sense IOUT0 = 0.5 A; RSENSE = 1 kΩ 20 µs tD_CStoVCC VIN3 = 5 V; VSEn = 5 V; MultiSense transition VSEL0,1 = 5 V; delay from current VSEL2 = 0 V to 5 V; sense to VCC sense IOUT3 = 0.5 A; RSENSE = 1 kΩ 60 µs tD_VCCtoCS V = 5 V; VSEn = 5 V; MultiSense transition IN3 VSEL0,1 = 5 V; delay from VCC VSEL2 = 5 V to 0 V; sense to current IOUT3 = 0.5 A; sense to RSENSE = 1 kΩ 20 µs tD_TCtoVCC V = 13 V; Tj = 125°C; MultiSense transition CC VSEn = 5 V; VSEL1,2 = 5 V; delay from TC sense VSEL0 = 0 V to 5 V; to VCC sense RSENSE = 1 kΩ 20 µs tD_VCCtoTC V = 13 V; Tj = 125°C; MultiSense transition CC VSEn = 5 V; VSEL1,2 = 5 V; delay from VCC VSEL0 = 5 V to 0 V; sense to TC sense RSENSE = 1 kΩ 20 µs MultiSense transition delay from stable current sense on ChX to VSENSEH on ChY 20 µs tD_XtoY tD_CStoVSENSEH VIN0 = 5 V; VIN1 = 0 V; VSEn = 5 V; VSEL1,2 = 0 V; VSEL0 = 0 V to 5 V; IOUT0 = 1 A; VOUT1 = 4 V; RSENSE = 1 kΩ 1. Parameter specified by design; not subject to production test. 2. All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified. 3. VCC sensing and TC sensing are referred to GND potential. 4. Transition delays are measured up to +/- 10% of final conditions. DocID018837 Rev 8 17/48 47 Electrical specification VNQ7140AJ-E Figure 4. IOUT/ISENSE versus IOUT ϭϬϬϬ ϴϬϬ DĂdž <ͲĨĂĐƚŽƌ DŝŶ dLJƉ ϲϬϬ ϰϬϬ ϮϬϬ Ϭ Ϭ ϭ ϯ Ϯ /Khd Figure 5. Current sense precision vs. IOUT ϲϱ ϲϬ ϱϱ ϱϬ ϰϱ й ϰϬ ϯϱ ƵƌƌĞŶƚƐĞŶƐĞƵŶĐĂůŝďƌĂƚĞĚƉƌĞĐŝƐŝŽŶ ϯϬ ƵƌƌĞŶƚƐĞŶƐĞĐĂůŝďƌĂƚĞĚƉƌĞĐŝƐŝŽŶ Ϯϱ ϮϬ ϭϱ ϭϬ ϱ Ϭ Ϭ ϭ Ϯ ϯ /Khd *$3*5, 18/48 DocID018837 Rev 8 VNQ7140AJ-E Electrical specification Figure 6. Switching time and Pulse skew WZRQ 9287 WZRII 9FF 9FF 21 2)) G9287GW G9287GW 9FF W ,1387 WGRII WGRQ WS/+ WS+/ W ("1($'5 Figure 7. MultiSense timings (current sense mode) ,1 +LJK 6(Q /RZ +LJK 6(/ /RZ +LJK 6(/ /RZ +LJK 6(/ /RZ ,287 &XUUHQW6HQVH W'6(16(+ W'6(16(/ W'6(16(+ W'6(16(/ ("1($'5 DocID018837 Rev 8 19/48 47 Electrical specification VNQ7140AJ-E Figure 8. Multisense timings (chip temperature and VCC sense mode) +LJK 6(Q /RZ +LJK 6(/ /RZ +LJK 6(/ /RZ +LJK 6(/ /RZ 9&& 96(16( 96(16(B9&& 96(16( 96(16(B7& -XOWL6HQVH W'6(16(+ W'6(16(/ 9&&92/7$*(6(16(02'( W'6(16(+ W'6(16(/ &+,37(03(5$785(6(16(02'( *$3*&)7 Figure 9. TDSKON 9,1387 9287 9287!92/ 0XOWL6HQVH 7'67.21 20/48 DocID018837 Rev 8 *$3*&)7 VNQ7140AJ-E Electrical specification Table 10. Truth table Mode Standby Normal Conditions All logic inputs low Nominal load connected; Tj < 150°C INX FR SEn SELX OUTX MultiSense Comments L L L L L Hi-Z Low quiescent current consumption L X H L H H H L Refer to Table 11 Overload or short to GND causing: Tj > TTSD or ΔTj > ΔTj_SD L X H L H H Undervoltage VCC < VUSD (falling) X X OFF-state diagnostics Short to VCC L X Open-load L X Inductive loads turn-off L X Overload Negative output voltage L Refer to Table 11 H H Refer to Table 11 Outputs configured for Latch-off Refer to Table 11 L X X Refer to Table 11 Refer to Table 11 DocID018837 Rev 8 Hi-Z Hi-Z H Refer to Table 11 <0V Output cycles with temperature hysteresis Output latches-off L L H Outputs configured for auto-restart Re-start when VCC > VUSD + VUSDhyst (rising) External pull-up Refer to Table 11 21/48 47 Electrical specification VNQ7140AJ-E Table 11. MultiSense multiplexer addressing MultiSense output SEn SEL2 SEL1 SEL0 MUX channel Nomal mode Overload OFF-state diag.(1) Negative output L X X X Hi-Z H L L L Channel 0 diagnostic ISENSE = 1/K * IOUT0 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H L L H Channel 1 diagnostic ISENSE = 1/K * IOUT1 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H L H L Channel 2 diagnostic ISENSE = 1/K * IOUT2 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H L H H Channel 3 diagnostic ISENSE = 1/K * IOUT3 VSENSE = VSENSEH VSENSE = VSENSEH Hi-Z H H L L TCHIP Sense VSENSE = VSENSE_TC H H L H VCC Sense VSENSE = VSENSE_VCC H H H L TCHIP Sense VSENSE = VSENSE_TC H H H H VCC Sense VSENSE = VSENSE_VCC 1. In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN0 = 0; OUT0 = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0 Example 2: FR = 1; IN0 = 0; OUT0 = latched, VOUT0 > VOL; MUX channel = channel 0 diagnostic; Mutisense = VSENSEH 22/48 DocID018837 Rev 8 VNQ7140AJ-E 2.4 Electrical specification Waveforms Figure 10. Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) Figure 11. Latch functionality - behavior in hard short circuit condition DocID018837 Rev 8 23/48 47 Electrical specification VNQ7140AJ-E Figure 12. Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off) Figure 13. Standby mode activation 24/48 DocID018837 Rev 8 VNQ7140AJ-E Electrical specification Figure 14. Standby state diagram 1RUPDO2SHUDWLRQ ȗ W!W 'B67%< ,1[ /RZ $1' )DXOW567 /RZ $1' 6(Q /RZ $1' 6(/[ /RZ ,1[ +LJK 25 )DXOW567 +LJK 25 6(Q +LJK 25 6(/[ +LJK 6WDQGE\0RGH *$3*&)7 DocID018837 Rev 8 25/48 47 Electrical specification 2.5 VNQ7140AJ-E Electrical characteristics curves Figure 15. OFF-state output current Figure 16. Standby current ,67%<>$@ ,ORII>Q$@ 9FF 9 2II6WDWH 9FF 9 9LQ 9RXW 7>&@ 7>&@ *$3*5, *$3*5, Figure 17. IGND(ON) vs. Iout Figure 18. Logic Input high level voltage 9L+9)5+96(/+96(Q+>9@ ,*1'21>P$@ 9FF 9 ,RXW ,RXW $ 7>&@ 7>&@ *$3*5, *$3*5, Figure 19. Logic Input low level voltage Figure 20. High level logic input current 9LO/9)5/96(//96(Q/>9@ ,L+,)5+,6(/+,6(Q+>$@ 7>&@ 7>&@ *$3*5, 26/48 DocID018837 Rev 8 *$3*5, VNQ7140AJ-E Electrical specification Figure 21. Low level logic input current Figure 22. Logic Input hysteresis voltage ,L/,)5/,6(//,6(Q/>$@ 9LK\VW9)5K\VW96(/K\VW96(QK\VW>9@ 7>&@ 7>&@ *$3*5, Figure 23. FaultRST Input clamp voltage *$3*5, Figure 24. Undervoltage shutdown 9)5&/>9@ 986'>9@ ,LQ P$ ,LQ P$ 7>&@ *$3*5, Figure 25. On-state resistance vs. Tcase *$3*5, 5RQ>P2KP@ ,RXW $ 9FF 9 Figure 26. On-state resistance vs. VCC 5RQ>P2KP@ 7>&@ 7>&@ 7 & 7 & 7 & 7 & *$3*5, DocID018837 Rev 8 9FF>9@ 27/48 47 Electrical specification VNQ7140AJ-E Figure 27. Turn-on voltage slope Figure 28. Turn-off voltage slope G9RXWGW2Q>9V@ G9RXWGW2II>9V@ 9FF 9 5O ȍ 9FF 9 5O ȍ 7>&@ 7>&@ *$3*5, *$3*5, Figure 30. Woff vs. Tcase Figure 29. Won vs. Tcase :RII>P-@ :RQ>P-@ 7>&@ 7>&@ *$3*5, Figure 31. ILIMH vs. Tcase *$3*5, Figure 32. OFF-state open-load voltage detection threshold ,OLPK>$@ 92/>9@ 9FF 9 7>&@ 28/48 7>&@ *$3*5, *$3*5, DocID018837 Rev 8 VNQ7140AJ-E Electrical specification Figure 33. Vsense clamp vs. Tcase Figure 34. Vsenseh vs. Tcase 96(16(B&/>9@ 96(16(+>9@ ,LQ P$ ,LQ P$ 7>&@ 7>&@ *$3*5, DocID018837 Rev 8 *$3*5, 29/48 47 Protections VNQ7140AJ-E 3 Protections 3.1 Power limitation The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔTj through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue. 3.2 Thermal shutdown In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to TR (see Table 8, FaultRST = Low) or remains off (FaultRST = High). 3.3 Current limitation The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region. 3.4 Negative voltage clamp In case the device drives inductive load, the output voltage reaches negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, VDEMAG (see Table 8), allowing the inductor energy to be dissipated without damaging the device. 30/48 DocID018837 Rev 8 VNQ7140AJ-E 4 Application information Application information Figure 35. Application diagram +5V VDD OUT V CC Rprot OUT FaultRST INPUT Rprot OUT Logic OUT Dld Rprot SEn Rprot SEL OUTPUT Rprot ADC in Multisense Current mirror GND Cext Rsense OUT R GND GND D GND GND GND GND GND GND 4.1 GND protection network against reverse battery Figure 36. Simplified internal structure 9 9FF 5SURW 5SURW ,1387 6(Q 0&8 'OG 5SURW )DXOW567 287387 5SURW 0XOWLVHQVH *1' 5VHQVH ' *1' 5 *1' *1' *$3*&)7 DocID018837 Rev 8 31/48 47 Application information 4.1.1 VNQ7140AJ-E Diode (DGND) in the ground line A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network. 4.2 Immunity against transient electrical disturbances The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010. The related function performance status classification is shown in Table 12. Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through VCC and GND terminals. Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: “The function does not perform as designed during the test but returns automatically to normal operation after the test”. Table 12. ISO 7637-2 - electrical transient conduction along supply line Test Pulse 2011(E) Test pulse severity level with Status II functional performance status Minimum number of pulses or test time Burst cycle / pulse repetition time Pulse duration and pulse generator internal impedance Level US(1) 1 III -112V 500 pulses 0,5 s 2a III +55V 500 pulses 0,2 s 5s 50μs, 2Ω 3a IV -220V 1h 90 ms 100 ms 0.1μs, 50Ω 3b IV +150V 1h 90 ms 100 ms 0.1μs, 50Ω 4(2) IV -7V 1 pulse min max 2ms, 10Ω 100ms, 0.01Ω Load dump according to ISO 16750-2:2010 Test B(3) 40V 5 pulse 1 min 400ms, 2Ω 1. US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6. 2. Test pulse from ISO 7637-2:2004(E). 3. With 40 V external suppressor referred to ground (-40°C < Tj < 150°C). 32/48 DocID018837 Rev 8 VNQ7140AJ-E 4.3 Application information MCU I/Os protection If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs. The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os. Equation 1 VCCpeak/Ilatchup ≤ Rprot ≤ (VOHμC-VIH-VGND) / IIHmax Calculation example: For VCCpeak = -150 V; Ilatchup ≥ 20mA; VOHμC ≥ 4.5V 7.5 kΩ ≤ Rprot ≤ 140 kΩ. Recommended values: Rprot = 15 kΩ 4.4 Multisense - analog current sense Diagnostic information on device and load status are provided by an analog output pin (Multisense) delivering the following signals: • Current monitor: current mirror of channel output current • VCC monitor: voltage propotional to VCC • TCASE: voltage propotional to chip temperature Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in Table 11. DocID018837 Rev 8 33/48 47 Application information VNQ7140AJ-E VCC Figure 37. Multisense and diagnostic – block diagram Internal Supply VCC – GND Clamp Undervoltage shut-down Control & Diagnostic VCC – OUT Clamp FaultRST INPUT Gate Driver VCC T SEL1 SEL0 VON Limitation VCC SEn Current Limitation MONITOR MultiSense MUX ISENSE RPROT TEMP Fault Diagnostic Power Limitation Overtemperature Temp MONITOR Short to VCC Open-Load in OFF To uC ADC K factor RSENSE Current Sense CURRENT MONITOR Fault VSENSEH GND 34/48 DocID018837 Rev 8 IOUT OUT VNQ7140AJ-E 4.4.1 Application information Principle of Multisense signal generation Figure 38. Multisense block diagram 9FF ).054 6HQVH026 0DLQ026 287 &XUUHQWVHQVH 9EDW0RQLWRU 0XOWLVHQVH6ZLWFK%ORFN 7HPSHUDWXUHPRQLWRU )DXOW 08/7,6(16( 7RX&$'& 53527 56(16( *$3*&)7 Current monitor When current mode is selected in the Multisense, this output is capable to provide: • Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K • Diagnostics flag in fault conditions delivering fixed voltage VSENSEH The current delivered by the current sense circuit, ISENSE, can be easily converted to a voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load monitoring and abnormal condition detection. Normal operation (channel ON, no fault, SEn active) While device is operating in normal conditions (no fault intervention), VSENSE calculation can be done using simple equations Current provided by Multisense output: ISENSE = IOUT/K Voltage on RSENSE: VSENSE = RSENSE . ISENSE = RSENSE . IOUT/K DocID018837 Rev 8 35/48 47 Application information VNQ7140AJ-E Where : • VSENSE is voltage measurable on RSENSE resistor • ISENSE is current provided from Multisense pin in current output mode • IOUT is current flowing through output • K factor represent the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between IOUT and ISENSE. Failure flag indication In case of power limitation/overtemperature, the fault is indicated by the Multisense pin which is switched to a “current limited” voltage source, VSENSEH (see Table 9). In any case, the current sourced by the Multisense in this condition is limited to ISENSEH (see Table 9). The typical behavior in case of overload or hard short circuit is shown in Figure 10, Figure 11 and Figure 12. Figure 39. Analogue HSD – open-load detection in off-state 9 9EDW 9EDW Q) 9 Q) 5SXOOXS *1' 0LFURFRQWUROOHU *1' 9 && 9'' )DXOW567 287 N ,1387 ([WHUQDO 3XOO 8S VZLWFK 287 /RJLF N 6(Q 287 6(/ N 287387 287387 0XOWLVHQVH 287 &X UUHQWPLUURU N *1' $'&LQ N 5VHQVH 5 *1 ' N '*1 ' Q) 9 287 N &(;7 *1' *1' 36/48 *1' *1' DocID018837 Rev 8 *1' *1' *$3*&)7 VNQ7140AJ-E Application information Figure 40. Open-load / short to VCC condition 9,1 96(16( 3XOOXSFRQQHFWHG 96(16(+ 2SHQORDG 96(16( 96(16( 3XOOXS GLVFRQQHFWHG W'67.21 6KRUWWR9&& 96(16(+ *$3*&)7 Table 13. MultiSense pin levels in off-state Condition Output VOUT > VOL Open-load VOUT < VOL 4.4.2 Short to VCC VOUT > VOL Nominal VOUT < VOL MultiSense SEn Hi-Z L VSENSEH H Hi-Z L 0 H Hi-Z L VSENSEH H Hi-Z L 0 H TCASE and VCC monitor In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because of a voltage shift is generated between device GND and the microcontroller input GND reference. Figure 41 shows link between VMEASURED and real VSENSE signal. DocID018837 Rev 8 37/48 47 Application information VNQ7140AJ-E Figure 41. GND voltage shift 9%$7 Q)9 0XOWLVHQVHYROWDJHPRGH 96(16(+ 9&&PRQLWRU 7&$6(PRQLWRU )DXOW567 9&& ,1 6(Q 287 6(/ 6(/ 53527 90($685(' 56(16( 93527 96(16( 0XOWLVHQVH 7RX&$'& *1' 53527 N '*1' '!0'#&4 VCC monitor Battery monitoring channel provides VSENSE = VCC / 4. Case temperature monitor Case temperature monitor is capable to provide information about actual device temperature. Since diode is used for temperature sensing, following equation describe link between temperature and output VSENSE level: VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0) where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40oC to +150oC). 4.4.3 Short to VCC and OFF-state open-load detection Short to VCC A short circuit between VCC and output is indicated by the relevant current sense pin set to VSENSEH during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit. OFF-state open-load with external circuitry Detection of an open-load in off mode requires an external pull-up resistor RPU connecting the output to a positive supply voltage VPU. It is preferable VPU to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected. RPU must be selected in order to ensure VOUT > VOLmax in accordance with to following equation: Equation 2 R 38/48 PU V –4 PU < -----------------------------------------------I L ( off2 )min @ 4V DocID018837 Rev 8 VNQ7140AJ-E 4.5 Application information Maximum demagnetization energy (VCC = 16 V) Figure 42. Maximum turn off current versus inductance 914$- 0D[LPXPWXUQRIIFXUUHQWYHUVXVLQGXFWDQFH " # ,$ $ 914$-6LQJOH3XOVH 5HSHWLWLYHSXOVH7MVWDUW & 5HSHWLWLYHSXOVH7MVWDUW & /P+ ("1($'5 A: Tjstart = 150 °C single pulse B: Tjstart = 100 °C repetitive pulse C: Tjstart = 125 °C repetitive pulse 9,1,/ 'HPDJQHWL]DWLRQ 'HPDJQHWL]DWLRQ 'HPDJQHWL]DWLRQ W *$3*&)7 Note: Values are generated with RL = 0 Ω. In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B. DocID018837 Rev 8 39/48 47 Package and PCB thermal data VNQ7140AJ-E 5 Package and PCB thermal data 5.1 PowerSSO-16 thermal data Figure 43. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5) ("1($'5 Figure 44. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) 5PQ (/%QMBOF 7$$QMBOF #PUUPN ("1($'5 Table 14. PCB properties Dimension Board finish thickness 1.6 mm +/- 10% Board dimension 77 mm x 86 mm Board Material FR4 Copper thickness (top and bottom layers) 0.070 mm Copper thickness (inner layers) 0.035 mm Thermal vias separation 1.2 mm Thermal via diameter 0.3 mm +/- 0.08 mm Copper thickness on vias 0.025 mm Footprint dimension (top layer) 2.2 mm x 3.9 mm Heatsink copper area dimension (bottom layer) 40/48 Value DocID018837 Rev 8 Footprint, 2 cm2 or 8 cm2 VNQ7140AJ-E Package and PCB thermal data Figure 45. PowerSSO-16 Rthj-amb vs PCB copper area in open box free air condition 57+MBDPE &: 57+MDPE 57+MDPE 3&%&XKHDWVLQNDUHDFPA ("1($'5 Figure 46. PowerSSO-16 thermal impedance junction ambient single pulse =7+ Σ&: &X FP &X FP &X IRRWSULQW /D\HU 7LPHV ("1($'5 Equation 3: pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tP/T DocID018837 Rev 8 41/48 47 Package and PCB thermal data VNQ7140AJ-E Figure 47. Thermal fitting model for PowerSSO-16 Note: The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered. Table 15. Thermal parameters Area/island 42/48 (cm2) Footprint 2 8 4L R1 = R7 = R9 = R11 (°C/W) 4.8 R2 = R8 = R10 = R12 (°C/W) 1.8 R3 (°C/W) 8 8 8 5 R4 (°C/W) 16 6 6 4 R5 (°C/W) 30 20 10 3 R6 (°C/W) 26 20 18 7 C1 = C7 = C9 = C11 (W.s/°C) 0.0002 C2 = C8 = C10 = C12 (W.s/°C) 0.005 C3 (W.s/°C) 0.08 C4 (W.s/°C) 0.2 0.3 0.3 0.4 C5 (W.s/°C) 0.4 1 1 4 C6 (W.s/°C) 3 5 7 18 DocID018837 Rev 8 VNQ7140AJ-E Package information 6 Package information 6.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 6.2 PowerSSO-16 package information Figure 48. PowerSSO-16 package dimensions ("1($'5 DocID018837 Rev 8 43/48 47 Package information VNQ7140AJ-E Table 16. PowerSSO-16 mechanical data Millimeters Symbol Min. Typ. Θ 0° Θ1 0° Θ2 5° 15° Θ3 5° 15° 8° A 1.70 A1 0.00 0.10 A2 1.10 1.60 b 0.20 0.30 b1 0.20 c 0.19 c1 0.19 D D1 0.25 0.28 0.25 0.20 0.23 4.90 BSC 3.60 4.20 e 0.50 BSC E 6.00 BSC E1 3.90 BSC E2 1.90 2.50 h 0.25 0.50 L 0.40 0.60 L1 1.00 REF N 16 R 0.07 R1 0.07 S 0.20 Tolerance of form and position 44/48 Max. aaa 0.10 bbb 0.10 ccc 0.08 ddd 0.08 eee 0.10 fff 0.10 ggg 0.15 DocID018837 Rev 8 0.85 VNQ7140AJ-E 7 Order codes Order codes Table 17. Device summary Order codes Package PowerSSO-16 Tube Tape and reel VNQ7140AJ-E VNQ7140AJTR-E DocID018837 Rev 8 45/48 47 Revision history 8 VNQ7140AJ-E Revision history Table 18. Document revision history Date Revision 25-Oct-2011 1 Initial release. 2 Updated Table 1: Pin functions Updated Figure 2: Configuration diagram (top view) Table 3: Absolute maximum ratings: – VCCPK, VCCJS: added rows – ISENSE, VESD: updated values and parameters – -VSENSE: removed row Updated Table 4: Thermal data Table 5: Power section: – VUSDReset, IGND(ON): added row – Vclamp, tD_STBY, IS(ON): upadated value Updated Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified) Table 7: Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C): – VICL, VFRCL, VSELCL, VSEnCL: updated value Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C): – tLATCH_RST: updated values – VDEMAG: updated test conditions and value – VON: updated test conditions Updated Table 9: MultiSense (7 V < VCC < 18 V; 40°C < Tj < 150°C) Updated Figure 7: MultiSense timings (current sense mode) and Figure 8: Multisense timings (chip temperature and VCC sense mode) Added Figure 9: TDSKON Updated Section 2.4: Waveforms Added Chapter 3: Protections and Chapter 4: Application information 3 Table 5: Power section: – IGND(ON): updated values Updated Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified) Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C): – VSENSE_CL, KOL, KLED, K0, dK0/K0, K1, dK1/K1, K2, dK2/K2, K3, dK3/K3, VSENSEH: updated values – VSENSE_TC: updated parameter 04-Jul-2012 18-Oct-2012 46/48 Changes DocID018837 Rev 8 VNQ7140AJ-E Revision history Table 18. Document revision history (continued) Date Revision Changes 4 Updated Table 2: Suggested connections for unused and not connected pins Table 3: Absolute maximum ratings: – VCCPK: updated parameter – -IOUT, ISENSE: updated value – EMAX: updated parameter and value Table 5: Power section: – VF: updated test conditions Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C): – THYST: added note Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C): – dKcal/Kcal: added row – KOL, KLED, K0, K1, K3: updated values – ISENSE_SAT, IOUT_SAT: added note – VSENSE_TC: updated test conditions and values – VSENSE_VCC: updated test conditions Table 11: MultiSense multiplexer addressing – updated negative output values Removed following tables: Table: Electrical transient requirements (part 1/3) Table: Electrical transient requirements (part 2/3) Table: Electrical transient requirements (part 3/3) Updated Section 3.1: Power limitation, Section 3.2: Thermal shutdown, Section 3.4: Negative voltage clamp and Section 4.1.1: Diode (DGND) in the ground line Removed Section: Load dump protection Added Section 4.2: Immunity against transient electrical disturbances Updated Section 4.4.1: Principle of Multisense signal generation Updated Figure 39: Analogue HSD – open-load detection in off-state Updated Table 13: MultiSense pin levels in off-state Updated Figure 41: GND voltage shift Added Section 4.5: Maximum demagnetization energy (VCC = 16 V) Updated Chapter 5: Package and PCB thermal data Updated Section 6.2: PowerSSO-16 package information 18-Jul-2013 5 Updated Table 4: Thermal data Updated Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified) Added Section 2.5: Electrical characteristics curves 20-Sep-2013 6 Updated disclaimer. 09-Jun-2014 7 Updated Section 6.2: PowerSSO-16 package information 22-Oct-2014 8 Updated Table 16: PowerSSO-16 mechanical data 21-Jun-2013 DocID018837 Rev 8 47/48 47 VNQ7140AJ-E IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2014 STMicroelectronics – All rights reserved 48/48 DocID018837 Rev 8