RPC56EL60L5 32-bit Power Architecture® microcontroller for Aerospace and Defense, SIL3/ASILD safety applications Datasheet - production data LQFP144 (20 x 20 x 1.4 mm) High-performance e200z4d dual core 32-bit Power Architecture® technology CPU Core frequency as high as 120 MHz Dual issue five-stage pipeline core Variable Length Encoding (VLE) Memory Management Unit (MMU) 4 KB instruction cache with error detection code Signal processing engine (SPE) Memory available – 1 MB flash memory with ECC – 128 KB on-chip SRAM with ECC – Built-in RWW capabilities for EEPROM emulation SIL3/ASILD innovative safety concept: LockStep mode and Fail-safe protection – Sphere of replication (SoR) for key components (such as CPU core, eDMA, crossbar switch) – FCCU, interrupt controller – Redundancy control and checker unit (RCCU) on outputs of the SoR connected to FCCU – Boot-time Built-In Self-Test for Memory (MBIST) and Logic (LBIST) triggered by hardware – Boot-time Built-In Self-Test for ADC and flash memory triggered by software – Replicated safety enhanced watchdog – Replicated junction temperature sensor – Non-maskable interrupt (NMI) – 16-region memory protection unit (MPU) – Clock monitoring units (CMU) This is information on a product in full production. Decoupled Parallel mode for high-performance use of replicated cores Nexus Class 3+ interface Features September 2014 – Power management unit (PMU) – Cyclic redundancy check (CRC) unit GPIOs individually programmable as input, output or special function Three 6-channel general-purpose eTimer units 2 FlexPWM units: 4 16-bit channels per module Communications interfaces – 2 LINFlexD channels – 3 DSPI channels – 2 FlexCAN interfaces (2.0B Active) – FlexRay module (V2.1 Rev. A) Two 12-bit analog-to-digital converters (ADCs) – 16 input channels – Programmable CTU to synchronize ADCs conversion with timer and PWM Sine wave generator (D/A with low pass filter) Single 3.0 V to 3.6 V voltage supply Ambient temperature range –40 °C to 125 °C Junction temperature range –40 °C to 150 °C Aerospace and Defense features – Dedicated traceability and part marking – Production parts approval documents available – Adapted Extended life time and obsolescence management – Extended Product Change Notification process – Designed and manufactured to meet sub ppm quality goals – Advanced mold and frame designs for Superior resilience to harsh environment (acceleration, EMI, thermal, humidity) – Single Fabrication, Assembly and Test site – Dual internal production source capability DocID026934 Rev 1 1/137 www.st.com Contents RPC56EL60L5 Contents 1 2/137 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 High-performance e200z4d core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.3 Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.4 Enhanced Direct Memory Access (eDMA) . . . . . . . . . . . . . . . . . . . . . . 14 1.5.5 On-chip flash memory with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.6 On-chip SRAM with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.7 Platform flash memory controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.8 Platform Static RAM Controller (SRAMC) . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.9 Memory subsystem access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.10 Error Correction Status Module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.11 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.12 Interrupt Controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.13 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.14 Frequency-Modulated Phase-Locked Loop (FMPLL) . . . . . . . . . . . . . . 20 1.5.15 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.16 Internal Reference Clock (RC) oscillator . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.17 Clock, reset, power, mode and test control modules (MC_CGM, MC_RGM, MC_PCU, and MC_ME) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.18 Periodic Interrupt Timer Module (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.19 System Timer Module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.20 Software Watchdog Timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.21 Fault Collection and Control Unit (FCCU) . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.22 System Integration Unit Lite (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.23 Non-Maskable Interrupt (NMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.24 Boot Assist Module (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.25 System Status and Configuration Module (SSCM) . . . . . . . . . . . . . . . . 23 1.5.26 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.27 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 DocID026934 Rev 1 RPC56EL60L5 2 3 Contents 1.5.28 Serial communication interface module (LINFlexD) . . . . . . . . . . . . . . . 25 1.5.29 Deserial Serial Peripheral Interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 25 1.5.30 FlexPWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.31 eTimer module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.32 Sine Wave Generator (SWG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.33 Analog-to-Digital Converter module (ADC) . . . . . . . . . . . . . . . . . . . . . . 28 1.5.34 Cross Triggering Unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.35 Cyclic Redundancy Checker (CRC) Unit . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.36 Redundancy Control and Checker Unit (RCCU) . . . . . . . . . . . . . . . . . . 29 1.5.37 Junction temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.38 Nexus Port Controller (NPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.39 IEEE 1149.1 JTAG Controller (JTAGC) . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5.40 Voltage regulator / Power Management Unit (PMU) . . . . . . . . . . . . . . . 32 1.5.41 Built-In Self-Test (BIST) capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.3 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.4.1 General notes for specifications at maximum junction temperature . . . 87 3.5 Electromagnetic Interference (EMI) characteristics . . . . . . . . . . . . . . . . . 89 3.6 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 90 3.7 Static latch-up (LU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.8 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 91 3.9 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.10 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.11 Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . 99 3.12 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 99 DocID026934 Rev 1 3/137 4 Contents RPC56EL60L5 3.13 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.14 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . 102 3.15 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.15.1 3.16 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.17 SWG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 3.18 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.18.1 3.19 3.20 4 Input Impedance and ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Reset sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 3.19.1 Reset sequence duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.19.2 Reset sequence description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.19.3 Reset sequence trigger mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.19.4 Reset sequence — start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.19.5 External watchdog window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 3.20.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.20.2 WKUP/NMI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.20.3 IEEE 1149.1 JTAG interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.20.4 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.20.5 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.20.6 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4/137 DocID026934 Rev 1 RPC56EL60L5 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. RPC56EL60L5 device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Platform memory access time summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 LQFP144 pin function summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 LFBGA257 pin function summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Thermal characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Thermal characteristics for LFBGA257 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 EMI configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 EMI emission testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Voltage regulator electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Current consumption characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Flash memory program and erase electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 108 Flash memory timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 RPC56EL60L5 SWG Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Pad AC specifications (3.3 V , IPP_HVE = 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 RESET sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Reset sequence trigger — reset sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Voltage Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 WKUP/NMI glitch filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 LFBGA257 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 DocID026934 Rev 1 5/137 5 List of figures RPC56EL60L5 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. 6/137 RPC56EL60L5 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 RPC56EL60L5 LQFP144 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 RPC56EL60L5 LFBGA257 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 BCP68 board schematic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Input Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Transient Behavior during Sampling Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Pad output delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Destructive Reset Sequence, BIST enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Destructive Reset Sequence, BIST disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 External Reset Sequence Long, BIST enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Functional Reset Sequence Long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Functional Reset Sequence Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Reset sequence start for Destructive Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Reset sequence start via RESET assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Reset sequence - External watchdog trigger window position . . . . . . . . . . . . . . . . . . . . . 117 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Nexus EVTI Input Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Nexus Double Data Rate (DDR) Mode output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 DSPI classic SPI timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 DSPI classic SPI timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 DSPI classic SPI timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 DSPI classic SPI timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 DSPI modified transfer format timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . 128 DSPI modified transfer format timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . 129 DSPI modified transfer format timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 129 DSPI modified transfer format timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . 130 DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 LQFP144 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 LFBGA257 package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 DocID026934 Rev 1 RPC56EL60L5 1 Introduction 1.1 Document overview Introduction This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the devices. This document provides electrical specifications, pin assignments, and package diagrams for the RPC56EL60L5 series of microcontroller units (MCUs). Microcontroller Reference Manual and Safety Application Guide are available on request. 1.2 Description The RPC56EL60L5 series microcontrollers are system-on-chip devices that are built on Power Architecture technology and contain enhancements that improve the architecture’s fit in embedded applications, include additional instruction support for digital signal processing (DSP) and integrate technologies such as an enhanced time processor unit, enhanced queued analog-to-digital converter, Controller Area Network, and an enhanced modular input-output system. The RPC56EL60L5 family of 32-bit microcontrollers is designed to address electrical hydraulic power steering (EHPS), electric power steering (EPS) and airbag applications. The advanced and cost-efficient host processor core of the RPC56EL60L5 controller family complies with the Power Architecture embedded category. It operates at speeds as high as 120 MHz and offers high-performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users’ implementations. 1.3 Device comparison DocID026934 Rev 1 7/137 136 Introduction RPC56EL60L5 Table 1. RPC56EL60L5 device summary Feature RPC56EL60 2 × e200z4 (in lock-step or decoupled operation) Type Architecture Harvard Execution speed 0–120 MHz (+2% FM) DMIPS intrinsic performance >240 MIPS SIMD (DSP + FPU) CPU Yes MMU 16 entry Instruction set PPC Yes Instruction set VLE Yes Instruction cache 4 KB, EDC MPU-16 regions Yes, replicated module Semaphore unit (SEMA4) Yes Core bus AHB, 32-bit address, 64-bit data Buses Internal periphery bus Crossbar 32-bit address, 32-bit data Lock Step Mode: 4 × 3 Decoupled Parallel Mode: 6 × 3 Master × slave ports Flash 1 MB, ECC, RWW Memory Static RAM (SRAM) 128 KB, ECC Interrupt Controller (INTC) 16 interrupt levels, replicated module Periodic Interrupt Timer (PIT) 1 × 4 channels System Timer Module (STM) 1 × 4 channels, replicated module Software Watchdog Timer (SWT) eDMA Modules 16 channels, replicated module FlexRay 1 × 64 message buffers, dual channel FlexCAN 2 × 32 message buffers LINFlexD (UART and LIN with DMA support) 2 Clock out Yes Fault Collection and Control Unit (FCCU) Yes Cross Triggering Unit (CTU) Yes 3 × 6 channels(1) eTimer 2 Module 4 × (2 + 1) channels(2) FlexPWM Analog-to-Digital Converter (ADC) Sine Wave Generator (SWG) 8/137 Yes, replicated module 2 × 12-bit ADC, 16 channels per ADC (3 internal, 4 shared and 9 external) 32 point DocID026934 Rev 1 RPC56EL60L5 Introduction Table 1. RPC56EL60L5 device summary (continued) Feature RPC56EL60 Deserial Serial Peripheral Interface (DSPI) Modules (cont.) Cyclic Redundancy Checker (CRC) unit Junction temperature sensor (TSENS) Device power supply Analog reference voltage 3.0 V – 3.6 V and 4.5 V – 5.5 V Frequency-modulated phase-locked loop (FMPLL) Internal RC oscillator 2 16 MHz External crystal oscillator 4 – 40 MHz Nexus Level 3+ LQFP 144 pins Packages LBGA Temperature Yes, replicated module 3.3 V with integrated bypassable ballast transistor External ballast transistor not needed for bare die Supply Debug Yes 16 Digital I/Os Clocking 3 × DSPI as many as 8 chip selects (3) LBGA257 Temperature range (junction) –40 to 150 °C Ambient temperature range using external ballast transistor (LQFP) –40 to 125 °C 1. The third eTimer (eTimer_2) is available with external I/O access only in the BGA package, on the LQFP package eTimer_2 is available internally only without any external I/O access. 2. The second FlexPWM module is available only in the BGA package. 3. LBGA257 available only as development package. DocID026934 Rev 1 9/137 136 Introduction 1.4 RPC56EL60L5 Block diagram Figure 1 shows a top-level block diagram of the RPC56EL60L5 device. PMU JTAG Nexus e200z4 SWT ECSM STM INTC SPE VLE VLE ECSM STM INTC MMU FlexRay I-CACHE eDMA SWT SPE MMU SEMA4 e200z4 SEMA4 I-CACHE eDMA RC Crossbar Switch Crossbar Switch Memory Protection Unit Memory Protection Unit ECC logic for SRAM ECC logic for SRAM PBRIDGE RC TSENS PBRIDGE RC Flash memory ECC bits + logic TSENS SRAM ECC bits ADC BAM CMU CRC CTU DSPI ECC ECSM eDMA FCCU FlexCAN FMPLL INTC IRCOSC JTAG – Analog-to-Digital Converter – Boot Assist Module – Clock Monitoring Unit – Cyclic Redundancy Check unit – Cross Triggering Unit – Serial Peripherals Interface – Error Correction Code – Error Correction Status Module – Enhanced Direct Memory Access controller – Fault Collection and Control Unit – Controller Area Network controller – Frequency Modulated Phase Locked Loop – Interrupt Controller – Internal RC Oscillator – Joint Test Action Group interface LINFlexD MC PBRIDGE PIT PMU RC RTC SEMA4 SIUL SSCM STM SWG SWT TSENS XOSC DocID026934 Rev 1 PIT FCCU SWG CRC DSPI DSPI – LIN controller with DMA support – Mode Entry, Clock, Reset, & Power – Peripheral bridge – Periodic Interrupt Timer – Power Management Unit – Redundancy Checker – Real Time Clock – Semaphore Unit – System Integration Unit Lite – System Status and Configuration Module – System Timer Module – Sine Wave Generator – Software Watchdog Timer – Temperature Sensor – Crystal Oscillator Figure 1. RPC56EL60L5 block diagram 10/137 DSPI LINFlexD LINFlexD FlexCAN FlexCAN eTimer eTimer eTimer FlexPWM FlexPWM CMU IRCOSC ADC CTU FMPLL WakeUp CMU Secondary FMPLL SIUL CMU SSCM XOSC ADC BAM MC RC RPC56EL60L5 Introduction High-performance e200z4d dual core – 32-bit Power Architecture® technology CPU – Core frequency as high as 120 MHz – Dual issue five-stage pipeline core – Variable Length Encoding (VLE) – Memory Management Unit (MMU) – 4 KB instruction cache with error detection code – Signal processing engine (SPE) Memory available – 1 MB flash memory with ECC – 128 KB on-chip SRAM with ECC – Built-in RWW capabilities for EEPROM emulation SIL3/ASILD innovative safety concept: LockStep mode and Fail-safe protection – Sphere of replication (SoR) for key components (such as CPU core, eDMA, crossbar switch) – Fault collection and control unit (FCCU) – Redundancy control and checker unit (RCCU) on outputs of the SoR connected to FCCU – Boot-time Built-In Self-Test for Memory (MBIST) and Logic (LBIST) triggered by hardware – Boot-time Built-In Self-Test for ADC and flash memory triggered by software – Replicated safety enhanced watchdog – Replicated junction temperature sensor – Non-maskable interrupt (NMI) – 16-region memory protection unit (MPU) – Clock monitoring units (CMU) – Power management unit (PMU) – Cyclic redundancy check (CRC) unit Decoupled Parallel mode for high-performance use of replicated cores Nexus Class 3+ interface Interrupts – Replicated 16-priority controller – Replicated 16-channel eDMA controller GPIOs individually programmable as input, output or special function Three 6-channel general-purpose eTimer units 2 FlexPWM units – Four 16-bit channels per module Communications interfaces – 2 LINFlexD channels – 3 DSPI channels with automatic chip select generation – 2 FlexCAN interfaces (2.0B Active) with 32 message objects DocID026934 Rev 1 11/137 136 Introduction RPC56EL60L5 – 12/137 FlexRay module (V2.1 Rev. A) with 2 channels, 64 message buffers and data rates up to 10 Mbit/s Two 12-bit analog-to-digital converters (ADCs) – 16 input channels – Programmable cross triggering unit (CTU) to synchronize ADCs conversion with timer and PWM Sine wave generator (D/A with low pass filter) On-chip CAN/UART bootstrap loader Single 3.0 V to 3.6 V voltage supply Ambient temperature range –40 °C to 125 °C Junction temperature range –40 °C to 150 °C DocID026934 Rev 1 RPC56EL60L5 Introduction 1.5 Feature details 1.5.1 High-performance e200z4d core The e200z4d Power Architecture® core provides the following features: 2 independent execution units, both supporting fixed-point and floating-point operations Dual issue 32-bit Power Architecture technology compliant – 5-stage pipeline (IF, DEC, EX1, EX2, WB) – In-order execution and instruction retirement Full support for Power Architecture instruction set and Variable Length Encoding (VLE) – Mix of classic 32-bit and 16-bit instruction allowed – Optimization of code size possible Thirty-two 64-bit general purpose registers (GPRs) Harvard bus (32-bit address, 64-bit data) – I-Bus interface capable of one outstanding transaction plus one piped with no waiton-data return – D-Bus interface capable of two transactions outstanding to fill AHB pipe I-cache and I-cache controller – 4 KB, 256-bit cache line (programmable for 2- or 4-way) No data cache 16-entry MMU 8-entry branch table buffer Branch look-ahead instruction buffer to accelerate branching Dedicated branch address calculator 3 cycles worst case for missed branch Load/store unit – Fully pipelined – Single-cycle load latency – Big- and little-endian modes supported – Misaligned access support – Single stall cycle on load to use Single-cycle throughput (2-cycle latency) integer 32 × 32 multiplication 4 – 14 cycles integer 32 × 32 division (average division on various benchmark of nine cycles) Single precision floating-point unit – 1 cycle throughput (2-cycle latency) floating-point 32 × 32 multiplication – Target 9 cycles (worst case acceptable is 12 cycles) throughput floating-point 32 × 32 division – Special square root and min/max function implemented Signal processing support: APU-SPE 1.1 – Support for vectorized mode: as many as two floating-point instructions per clock Vectored interrupt support Reservation instruction to support read-modify-write constructs DocID026934 Rev 1 13/137 136 Introduction 1.5.2 RPC56EL60L5 Extensive system development and tracing support via Nexus debug port Crossbar switch (XBAR) The XBAR multi-port crossbar switch supports simultaneous connections between four master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. The crossbar allows four concurrent transactions to occur from any master port to any slave port, although one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. The crossbar provides the following features: 4 masters and 3 slaves supported per each replicated crossbar – Masters allocation for each crossbar: e200z4d core with two independent bus interface units (BIU) for I and D access (2 masters), one eDMA, one FlexRay – Slaves allocation for each crossbar: a redundant flash-memory controller with 2 slave ports to guarantee maximum flexibility to handle Instruction and Data array, one redundant SRAM controller with 1 slave port each and 1 redundant peripheral bus bridge 32-bit address bus and 64-bit data bus Programmable arbitration priority – Requesting masters can be treated with equal priority and are granted access to a slave port in round-robin method, based upon the ID of the last master to be granted access or a priority order can be assigned by software at application run time Temporary dynamic priority elevation of masters The XBAR is replicated for each processing channel. 1.5.3 Memory Protection Unit (MPU) The Memory Protection Unit splits the physical memory into 16 different regions. Each master (eDMA, FlexRay, CPU) can be assigned different access rights to each region. 16-region MPU with concurrent checks against each master access 32-byte granularity for protected address region The memory protection unit is replicated for each processing channel. 1.5.4 Enhanced Direct Memory Access (eDMA) The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware microarchitecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is used to minimize the overall block size. 14/137 DocID026934 Rev 1 RPC56EL60L5 Introduction The eDMA module provides the following features: 16 channels supporting 8-, 16-, and 32-bit value single or block transfers Support variable sized queues and circular buffered queue Source and destination address registers independently configured to post-increment or stay constant Support major and minor loop offset Support minor and major loop done signals DMA task initiated either by hardware requestor or by software Each DMA task can optionally generate an interrupt at completion and retirement of the task Signal to indicate closure of last minor loop Transfer control descriptors mapped inside the SRAM The eDMA controller is replicated for each processing channel. 1.5.5 On-chip flash memory with ECC This device includes programmable, non-volatile flash memory. The non-volatile memory (NVM) can be used for instruction storage or data storage, or both. The flash memory module interfaces with the system bus through a dedicated flash memory array controller. It supports a 64-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains four 128-bit prefetch buffers. Prefetch buffer hits allow no-wait responses. Buffer misses incur a 3 wait state response at 120 MHz. The flash memory module provides the following features 1.5.6 1 MB of flash memory in unique multi-partitioned hard macro Sectorization: 16 KB + 2 × 48 KB + 16 KB + 2 × 64 KB + 2 × 128 KB + 2 × 256 KB EEPROM emulation (in software) within same module but on different partition 16 KB test sector and 16 KB shadow block for test, censorship device and user option bits Wait states: – 3 wait states for frequencies =< 120 MHz – 2 wait states for frequencies =< 80 MHz – 1 wait state for frequencies =< 60 MHz Flash memory line 128-bit wide with 8-bit ECC on 64-bit word (total 144 bits) Accessed via a 64-bit wide bus for write and a 128-bit wide array for read operations 1-bit error correction, 2-bit error detection On-chip SRAM with ECC The RPC56EL60L5 SRAM provides a general-purpose single port memory. ECC handling is done on a 32-bit boundary for data and it is extended to the address to have the highest possible diagnostic coverage including the array internal address decoder. DocID026934 Rev 1 15/137 136 Introduction RPC56EL60L5 The SRAM module provides the following features: System SRAM: 128 KB ECC on 32-bit word (syndrome of 7 bits) – 1.5.7 ECC covers SRAM bus address 1-bit error correction, 2-bit error detection Wait states: – 1 wait state for frequencies =< 120 MHz – 0 wait states for frequencies =< 80 MHz Platform flash memory controller The following list summarizes the key features of the flash memory controller: Single AHB port interface supports a 64-bit data bus. All AHB aligned and unaligned reads within the 32-bit container are supported. Only aligned word writes are supported. Array interfaces support a 128-bit read data bus and a 64-bit write data bus for each bank. Code flash (bank0) interface provides configurable read buffering and page prefetch support. – Four page-read buffers (each 128 bits wide) and a prefetch controller support speculative reading and optimized flash access. Single-cycle read responses (0 AHB data-phase wait states) for hits in the buffers. The buffers implement a least-recently-used replacement algorithm to maximize performance. Programmable response for read-while-write sequences including support for stallwhile-write, optional stall notification interrupt, optional flash operation abort , and optional abort notification interrupt. Separate and independent configurable access timing (on a per bank basis) to support use across a wide range of platforms and frequencies. Support of address-based read access timing for emulation of other memory types. Support for reporting of single- and multi-bit error events. Typical operating configuration loaded into programming model by system reset. The platform flash controller is replicated for each processor. 1.5.8 Platform Static RAM Controller (SRAMC) The SRAMC module is the platform SRAM array controller, with integrated error detection and correction. The main features of the SRAMC provide connectivity for the following interfaces: 16/137 XBAR Slave Port (64-bit data path) ECSM (ECC Error Reporting, error injection and configuration) SRAM array DocID026934 Rev 1 RPC56EL60L5 Introduction The following functions are implemented: ECC encoding (32-bit boundary for data and complete address bus) ECC decoding (32-bit boundary and entire address) Address translation from the AHB protocol on the XBAR to the SRAM array The platform SRAM controller is replicated for each processor. 1.5.9 Memory subsystem access time Every memory access the CPU performs requires at least one system clock cycle for the data phase of the access. Slower memories or peripherals may require additional data phase wait states. Additional data phase wait states may also occur if the slave being accessed is not parked on the requesting master in the crossbar. Table 2 shows the number of additional data phase wait states required for a range of memory accesses. Table 2. Platform memory access time summary AHB transfer Data phase wait states Description e200z4d instruction fetch 0 Flash memory prefetch buffer hit (page hit) e200z4d instruction fetch 3 Flash memory prefetch buffer miss (based on 4-cycle random flash array access time) e200z4d data read 0–1 SRAM read e200z4d data write 0 SRAM 32-bit write e200z4d data write 0 SRAM 64-bit write (executed as 2 x 32-bit writes) e200z4d data write 0–2 SRAM 8-,16-bit write (Read-modify-Write for ECC) e200z4d flash memory read 0 Flash memory prefetch buffer hit (page hit) e200z4d flash memory read 3 Flash memory prefetch buffer miss (at 120 MHz; includes 1 cycle of program flash memory controller arbitration) 1.5.10 Error Correction Status Module (ECSM) The ECSM on this device manages the ECC configuration and reporting for the platform memories (flash memory and SRAM). It does not implement the actual ECC calculation. A detected error (double error for flash memory or SRAM) is also reported to the FCCU. The following errors and indications are reported into the ECSM dedicated registers: ECC error status and configuration for flash memory and SRAM ECC error reporting for flash memory ECC error reporting for SRAM ECC error injection for SRAM DocID026934 Rev 1 17/137 136 Introduction 1.5.11 RPC56EL60L5 Peripheral bridge (PBRIDGE) The PBRIDGE implements the following features: 1.5.12 Duplicated periphery Master access privilege level per peripheral (per master: read access enable; write access enable) Checker applied on PBRIDGE output toward periphery Byte endianess swap capability Interrupt Controller (INTC) The INTC provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. For high-priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource can not preempt each other. The INTC provides the following features: Duplicated periphery Unique 9-bit vector per interrupt source 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source Priority elevation for shared resource The INTC is replicated for each processor. 18/137 DocID026934 Rev 1 RPC56EL60L5 1.5.13 Introduction System clocks and clock generation The following list summarizes the system clock and clock generation on this device: Lock status continuously monitored by lock detect circuitry Loss-of-clock (LOC) detection for reference and feedback clocks On-chip loop filter (for improved electromagnetic interference performance and fewer external components required) Programmable output clock divider of system clock (1, 2, 4, 8) FlexPWM module and as many as three eTimer modules running on an auxiliary clock independent from system clock (with max frequency 120 MHz) On-chip crystal oscillator with automatic level control Dedicated internal 16 MHz internal RC oscillator for rapid start-up – Supports automated frequency trimming by hardware during device startup and by user application Auxiliary clock domain for motor control periphery (FlexPWM, eTimer, CTU, ADC, and SWG) DocID026934 Rev 1 19/137 136 Introduction 1.5.14 RPC56EL60L5 Frequency-Modulated Phase-Locked Loop (FMPLL) Each device has two FMPLLs. Each FMPLL allows the user to generate high speed system clocks starting from a minimum reference of 4 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The FMPLL multiplication factor, output clock divider ratio are all software configurable. The FMPLLs have the following major features: 1.5.15 Input frequency: 4–40 MHz continuous range (limited by the crystal oscillator) Voltage controlled oscillator (VCO) range: 256–512 MHz Frequency modulation via software control to reduce and control emission peaks – Modulation depth ±2% if centered or 0% to –4% if downshifted via software control register – Modulation frequency: triangular modulation with 25 kHz nominal rate Option to switch modulation on and off via software interface Output divider (ODF) for reduced frequency operation without re-lock 3 modes of operation – Bypass mode – Normal FMPLL mode with crystal reference (default) – Normal FMPLL mode with external reference Lock monitor circuitry with lock status Loss-of-lock detection for reference and feedback clocks Self-clocked mode (SCM) operation On-chip loop filter Auxiliary FMPLL – Used for FlexRay due to precise symbol rate requirement by the protocol – Used for motor control periphery and connected IP (A/D digital interface CTU) to allow independent frequencies of operation for PWM and timers and jitter-free control – Option to enable/disable modulation to avoid protocol violation on jitter and/or potential unadjusted error in electric motor control loop – Allows to run motor control periphery at different (precisely lower, equal or higher as required) frequency than the system to ensure higher resolution Main oscillator The main oscillator provides these features: 1.5.16 Input frequency range 4–40 MHz Crystal input mode External reference clock (3.3 V) input mode FMPLL reference Internal Reference Clock (RC) oscillator The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared to the stable bandgap reference voltage. The RC oscillator is the device safe clock. 20/137 DocID026934 Rev 1 RPC56EL60L5 Introduction The RC oscillator provides these features: 1.5.17 Nominal frequency 16 MHz ±5% variation over voltage and temperature after process trim Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the FMPLL RC oscillator is used as the default system clock during startup and can be used as back-up input source of FMPLL(s) in case XOSC fails Clock, reset, power, mode and test control modules (MC_CGM, MC_RGM, MC_PCU, and MC_ME) These modules provide the following: 1.5.18 Clock gating and clock distribution control Halt, stop mode control Flexible configurable system and auxiliary clock dividers Various execution modes – HALT and STOP mode as reduced activity low power mode – Reset, Idle, Test, Safe – Various RUN modes with software selectable powered modules – No stand-by mode implemented (no internal switchable power domains) Periodic Interrupt Timer Module (PIT) The PIT module implements the following features: 1.5.19 4 general purpose interrupt timers 32-bit counter resolution Can be used for software tick or DMA trigger operation System Timer Module (STM) The STM implements the following features: Up-counter with 4 output compare registers OS task protection and hardware tick implementation per AUTOSAR(a) requirement The STM is replicated for each processor. 1.5.20 Software Watchdog Timer (SWT) This module implements the following features: Fault tolerant output Safe internal RC oscillator as reference clock Windowed watchdog Program flow control monitor with 16-bit pseudorandom key generation Allows a high level of safety (SIL3 monitor) a. Automotive Open System Architecture DocID026934 Rev 1 21/137 136 Introduction RPC56EL60L5 The SWT module is replicated for each processor. 1.5.21 Fault Collection and Control Unit (FCCU) The FCCU module has the following features: 1.5.22 Redundant collection of hardware checker results Redundant collection of error information and latch of faults from critical modules on the device Collection of self-test results Configurable and graded fault control – Internal reactions (no internal reaction, IRQ, Functional Reset, Destructive Reset, or Safe mode entered) – External reaction (failure is reported to the external/surrounding system via configurable output pins) System Integration Unit Lite (SIUL) The SIUL controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and system reset operation. The reset configuration block contains the external pin boot configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. The SIU provides the following features: 1.5.23 Centralized pad control on a per-pin basis – Pin function selection – Configurable weak pull-up/down – Configurable slew rate control (slow/medium/fast) – Hysteresis on GPIO pins – Configurable automatic safe mode pad control Input filtering for external interrupts Non-Maskable Interrupt (NMI) The non-maskable interrupt with de-glitching filter supports high-priority core exceptions. 1.5.24 Boot Assist Module (BAM) The BAM is a block of read-only memory with hard-coded content. The BAM program is executed only if serial booting mode is selected via boot configuration pins. The BAM provides the following features: 22/137 Enables booting via serial mode (FlexCAN or LINFlex-UART) Supports programmable 64-bit password protection for serial boot mode Supports serial bootloading of either Power Architecture code (default) or VLE code Automatic switch to serial boot mode if internal flash memory is blank or invalid DocID026934 Rev 1 RPC56EL60L5 1.5.25 Introduction System Status and Configuration Module (SSCM) The SSCM on this device features the following: 1.5.26 System configuration and status Debug port status and debug port enable Multiple boot code starting locations out of reset through implementation of search for valid Reset Configuration Half Word Sets up the MMU to allow user boot code to execute as either Power Architecture code (default) or as VLE code out of flash memory Triggering of device self-tests during reset phase of device boot FlexCAN The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: realtime processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module provides the following features: Full implementation of the CAN protocol specification, version 2.0B – Standard data and remote frames – Extended data and remote frames – 0 to 8 bytes data length – Programmable bit rate as fast as 1Mbit/s 32 message buffers of 0 to 8 bytes data length Each message buffer configurable as receive or transmit buffer, all supporting standard and extended messages Programmable loop-back mode supporting self-test operation 3 programmable mask registers Programmable transmit-first scheme: lowest ID or lowest buffer number Time stamp based on 16-bit free-running timer Global network time, synchronized by a specific message Maskable interrupts Independent of the transmission medium (an external transceiver is assumed) High immunity to EMI Short latency time due to an arbitration scheme for high-priority messages Transmit features – Supports configuration of multiple mailboxes to form message queues of scalable depth – Arbitration scheme according to message ID or message buffer number – Internal arbitration to guarantee no inner or outer priority inversion – Transmit abort procedure and notification DocID026934 Rev 1 23/137 136 Introduction 1.5.27 RPC56EL60L5 Receive features – Individual programmable filters for each mailbox – 8 mailboxes configurable as a 6-entry receive FIFO – 8 programmable acceptance filters for receive FIFO Programmable clock source – System clock – Direct oscillator clock to avoid FMPLL jitter FlexRay The FlexRay module provides the following features: 24/137 Full implementation of FlexRay Protocol Specification 2.1 Rev. A 64 configurable message buffers can be handled Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate Message buffers configurable as transmit or receive Message buffer size configurable Message filtering for all message buffers based on Frame ID, cycle count, and message ID Programmable acceptance filters for receive FIFO Message buffer header, status, and payload data stored in system memory (SRAM) Internal FlexRay memories have error detection and correction DocID026934 Rev 1 RPC56EL60L5 1.5.28 Introduction Serial communication interface module (LINFlexD) The LINFlexD module (LINFlex with DMA support) on this device features the following: Supports LIN Master mode, LIN Slave mode and UART mode LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications Manages LIN frame transmission and reception without CPU intervention LIN features 1.5.29 – Autonomous LIN frame handling – Message buffer to store as many as 8 data bytes – Supports messages as long as 64 bytes – Detection and flagging of LIN errors (Sync field, delimiter, ID parity, bit framing, checksum and Time-out errors) – Classic or extended checksum calculation – Configurable break duration of up to 50-bit times – Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional) – Diagnostic features (Loop back, LIN bus stuck dominant detection) – Interrupt driven operation with 16 interrupt sources LIN slave mode features – Autonomous LIN header handling – Autonomous LIN response handling UART mode – Full-duplex operation – Standard non return-to-zero (NRZ) mark/space format – Data buffers with 4-byte receive, 4-byte transmit – Configurable word length (8-bit, 9-bit, 16-bit, or 17-bit words) – Configurable parity scheme: none, odd, even, always 0 – Speed as fast as 2 Mbit/s – Error detection and flagging (Parity, Noise and Framing errors) – Interrupt driven operation with four interrupt sources – Separate transmitter and receiver CPU interrupt sources – 16-bit programmable baud-rate modulus counter and 16-bit fractional – Two receiver wake-up methods Support for DMA enabled transfers Deserial Serial Peripheral Interface (DSPI) The DSPI modules provide a synchronous serial interface for communication between the RPC56EL60L5 and external devices. A DSPI module provides these features: Full duplex, synchronous transfers Master or slave operation Programmable master bit rates Programmable clock polarity and phase DocID026934 Rev 1 25/137 136 Introduction 1.5.30 RPC56EL60L5 End-of-transmission interrupt flag Programmable transfer baud rate Programmable data frames from 4 to 16 bits As many as 8 chip select lines available, depending on package and pin multiplexing 4 clock and transfer attributes registers Chip select strobe available as alternate function on one of the chip select pins for deglitching FIFOs for buffering as many as 5 transfers on the transmit and receive side Queueing operation possible through use of the eDMA General purpose I/O functionality on pins when not used for SPI FlexPWM The pulse width modulator module (FlexPWM) contains four PWM channels, each of which is configured to control a single half-bridge power stage. Two modules are included on LFBGA257 devices; on the LQFP144 package, only one module is present. Additionally, four fault input channels are provided per FlexPWM module. This PWM is capable of controlling most motor types, including: AC induction motors (ACIM) Permanent Magnet AC motors (PMAC) Brushless (BLDC) and brush DC motors (BDC) Switched (SRM) and variable reluctance motors (VRM) Stepper motors A FlexPWM module implements the following features: 16 bits of resolution for center, edge aligned, and asymmetrical PWMs Maximum operating frequency as high as 120 MHz – 26/137 Clock source not modulated and independent from system clock (generated via secondary FMPLL) Fine granularity control for enhanced resolution of the PWM period PWM outputs can operate as complementary pairs or independent channels Ability to accept signed numbers for PWM generation Independent control of both edges of each PWM output Synchronization to external hardware or other PWM supported Double buffered PWM registers – Integral reload rates from 1 to 16 – Half cycle reload capability Multiple ADC trigger events can be generated per PWM cycle via hardware Fault inputs can be assigned to control multiple PWM outputs Programmable filters for fault inputs Independently programmable PWM output polarity Independent top and bottom deadtime insertion Each complementary pair can operate with its own PWM frequency and deadtime values DocID026934 Rev 1 RPC56EL60L5 Individual software control for each PWM output All outputs can be forced to a value simultaneously PWMX pin can optionally output a third signal from each channel Channels not used for PWM generation can be used for buffered output compare functions Channels not used for PWM generation can be used for input capture functions Enhanced dual edge capture functionality Option to supply the source for each complementary PWM signal pair from any of the following: 1.5.31 Introduction – External digital pin – Internal timer channel – External ADC input, taking into account values set in ADC high- and low-limit registers DMA support eTimer module The MPC5643L provides three eTimer modules (on the LQFP package eTimer_2 is available internally only without any external I/O access). Six 16-bit general purpose up/down timer/counters per module are implemented with the following features: Maximum clock frequency of 120 MHz Individual channel capability 1.5.32 – Input capture trigger – Output compare – Double buffer (to capture rising edge and falling edge) – Separate prescaler for each counter – Selectable clock source – 0–100% pulse measurement – Rotation direction flag (Quad decoder mode) Maximum count rate – Equals peripheral clock divided by 2 for external event counting – Equals peripheral clock for internal clock counting Cascadeable counters Programmable count modulo Quadrature decode capabilities Counters can share available input pins Count once or repeatedly Preloadable counters Pins available as GPIO when timer functionality not in use DMA support Sine Wave Generator (SWG) A digital-to-analog converter is available to generate a sine wave based on 32 stored values for external devices (ex: resolver). DocID026934 Rev 1 27/137 136 Introduction 1.5.33 RPC56EL60L5 Analog-to-Digital Converter module (ADC) The ADC module features include: Analog part: 2 on-chip ADCs – 12-bit resolution SAR architecture – Same digital interface as in the SPC560P family – A/D Channels: 9 external, 3 internal and 4 shared with other A/D (total 16 channels) – One channel dedicated to each T-sensor to enable temperature reading during application – Separated reference for each ADC – Shared analog supply voltage for both ADCs – One sample and hold unit per ADC – Adjustable sampling and conversion time Digital part: 4 analog watchdogs comparing ADC results against predefined levels (low, high, range) before results are stored in the appropriate ADC result location 2 modes of operation: CPU Mode or CTU Mode CPU mode features 1.5.34 – Register based interface with the CPU: one result register per channel – ADC state machine managing three request flows: regular command, hardware injected command, software injected command – Selectable priority between software and hardware injected commands – 4 analog watchdogs comparing ADC results against predefined levels (low, high, range) – DMA compatible interface CTU mode features – Triggered mode only – 4 independent result queues (116 entries, 28 entries, 14 entries) – Result alignment circuitry (left justified; right justified) – 32-bit read mode allows to have channel ID on one of the 16-bit parts – DMA compatible interfaces Built-in self-test features triggered by software Cross Triggering Unit (CTU) The ADC cross triggering unit allows automatic generation of ADC conversion requests on user selected conditions without CPU load during the PWM period and with minimized CPU load for dynamic configuration. 28/137 DocID026934 Rev 1 RPC56EL60L5 Introduction The CTU implements the following features: 1.5.35 Cross triggering between ADC, FlexPWM, eTimer, and external pins Double buffered trigger generation unit with as many as 8 independent triggers generated from external triggers Maximum operating frequency less than or equal to 120 MHz Trigger generation unit configurable in sequential mode or in triggered mode Trigger delay unit to compensate the delay of external low pass filter Double buffered global trigger unit allowing eTimer synchronization and/or ADC command generation Double buffered ADC command list pointers to minimize ADC-trigger unit update Double buffered ADC conversion command list with as many as 24 ADC commands Each trigger capable of generating consecutive commands ADC conversion command allows control of ADC channel from each ADC, single or synchronous sampling, independent result queue selection DMA support with safety features Cyclic Redundancy Checker (CRC) Unit The CRC module is a configurable multiple data flow unit to compute CRC signatures on data written to its input register. The CRC unit has the following features: 1.5.36 3 sets of registers to allow 3 concurrent contexts with possibly different CRC computations, each with a selectable polynomial and seed Computes 16- or 32-bit wide CRC on the fly (single-cycle computation) and stores result in internal register. The following standard CRC polynomials are implemented: – x8 + x4 + x3 + x2 + 1 [8-bit CRC] – x16 + x12 + x5 + 1 [16-bit CRC-CCITT] – x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 [32-bit CRC-ethernet(32)] Key engine to be coupled with communication periphery where CRC application is added to allow implementation of safe communication protocol Offloads core from cycle-consuming CRC and helps checking configuration signature for safe start-up or periodic procedures CRC unit connected as peripheral bus on internal peripheral bus DMA support Redundancy Control and Checker Unit (RCCU) The RCCU checks all outputs of the sphere of replication (addresses, data, control signals). It has the following features: Duplicated module to guarantee highest possible diagnostic coverage (check of checker) Multiple times replicated IPs are used as checkers on the SoR outputs DocID026934 Rev 1 29/137 136 Introduction 1.5.37 RPC56EL60L5 Junction temperature sensor The junction temperature sensor provides a value via an ADC channel that can be used by software to calculate the device junction temperature. The key parameters of the junction temperature sensor include: 1.5.38 Nominal temperature range from –40 to 150 °C Software temperature alarm via analog ADC comparator possible Nexus Port Controller (NPC) The NPC module provides real-time development support capabilities for this device in compliance with the IEEE-ISTO 5001-2003. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NPC block interfaces to the host processor and internal buses to provide development support as per the IEEE-ISTO 5001-2003 Class 3+, including selected features from Class 4 standard. The development support provided includes program trace, data trace, watchpoint trace, ownership trace, run-time access to the MCUs internal memory map and access to the Power Architecture internal registers during halt. The Nexus interface also supports a JTAG only mode using only the JTAG pins. The following features are implemented: Full and reduced port modes MCKO (message clock out) pin 4 or 12 MDO (message data out) pins(b) 2 MSEO (message start/end out) pins EVTO (event out) pin – Auxiliary input port EVTI (event in) pin 5-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK) – Supports JTAG mode Host processor (e200) development support features – Data trace via data write messaging (DWM) and data read messaging (DRM). This allows the development tool to trace reads or writes, or both, to selected internal memory resources. – Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by providing visibility of which process ID or operating system task is activated. An ownership trace message is transmitted when a new process/task is activated, allowing development tools to trace ownership flow. – Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow discontinuities (direct branches, indirect branches, b. 4 MDO pins on LQFP144 package, 12 MDO pins on LFBGA257 package. 30/137 DocID026934 Rev 1 RPC56EL60L5 Introduction exceptions, etc.), allowing the development tool to interpolate what transpires between the discontinuities. Thus, static code may be traced. 1.5.39 – Watchpoint messaging (WPM) via the auxiliary port – Watchpoint trigger enable of program and/or data trace messaging – Data tracing of instruction fetches via private opcodes IEEE 1149.1 JTAG Controller (JTAGC) The JTAGC block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard. The JTAG controller provides the following features: IEEE Test Access Port (TAP) interface with 5 pins: – TDI – TMS – TCK – TDO – JCOMP Selectable modes of operation include JTAGC/debug or normal system operation 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions: – BYPASS – IDCODE – EXTEST – SAMPLE – SAMPLE/PRELOAD 3 test data registers: a bypass register, a boundary scan register, and a device identification register. The size of the boundary scan register is parameterized to support a variety of boundary scan chain lengths. TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry DocID026934 Rev 1 31/137 136 Introduction 1.5.40 RPC56EL60L5 Voltage regulator / Power Management Unit (PMU) The on-chip voltage regulator module provides the following features: 1.5.41 Single external rail required Single high supply required: nominal 3.3 V both for packaged and Known Good Die option – Packaged option requires external ballast transistor due to reduced dissipation capacity at high temperature but can use embedded transistor if power dissipation is maintained within package dissipation capacity (lower frequency of operation) – Known Good Die option uses embedded ballast transistor as dissipation capacity is increased to reduce system cost All I/Os are at same voltage as external supply (3.3 V nominal) Duplicated Low-Voltage Detectors (LVD) to guarantee proper operation at all stages (reset, configuration, normal operation) and, to maximize safety coverage, one LVD can be tested while the other operates (on-line self-testing feature) Built-In Self-Test (BIST) capability This device includes the following protection against latent faults: 32/137 Boot-time Memory Built-In Self-Test (MBIST) Boot-time scan-based Logic Built-In Self-Test (LBIST) Run-time ADC Built-In Self-Test (BIST) Run-time Built-In Self Test of LVDs DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions 2 Package pinouts and signal descriptions 2.1 Package pinouts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 package 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 A[4] VPP_TEST F[12] D[14] G[3] C[14] G[2] C[13] G[4] D[12] G[6] VDD_HV_FLA VSS_HV_FLA VDD_HV_REG_1 VSS_LV_COR VDD_LV_COR A[3] VDD_HV_IO VSS_HV_IO B[4] TCK TMS B[5] G[5] A[2] G[7] C[12] G[8] C[11] G[9] D[11] G[10] D[10] G[11] A[1] A[0] D[7] FCCU_F[0] VDD_LV_COR VSS_LV_COR C[1] E[4] B[7] E[5] C[2] E[6] B[8] E[7] E[2] VDD_HV_ADR0 VSS_HV_ADR0 B[9] B[10] B[11] B[12] VDD_HV_ADR1 VSS_HV_ADR1 VDD_HV_ADV VSS_HV_ADV B[13] E[9] B[15] E[10] B[14] E[11] C[0] E[12] E[0] BCTRL VDD_LV_COR VSS_LV_COR VDD_HV_PMU 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 NMI A[6] D[1] F[4] F[5] VDD_HV_IO VSS_HV_IO F[6] MDO0 A[7] C[4] A[8] C[5] A[5] C[7] VDD_HV_REG_0 VSS_LV_COR VDD_LV_COR F[7] F[8] VDD_HV_IO VSS_HV_IO F[9] F[10] F[11] D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET D[8] D[5] D[6] VSS_LV_PLL0_PLL1 VDD_LV_PLL0_PLL1 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 A[15] A[14] C[6] FCCU_F[1] D[2] F[3] B[6] VSS_LV_COR A[13] VDD_LV_COR A[9] F[0] VSS_LV_COR VDD_LV_COR VDD_HV_REG_2 D[4] D[3] VSS_HV_IO VDD_HV_IO D[0] C[15] JCOMP A[12] E[15] A[11] E[14] A[10] E[13] B[3] F[14] B[2] F[15] F[13] C[10] B[1] B[0] Figure 2 shows the RPC56EL60L5 in the LQFP144 package. Figure 2. RPC56EL60L5 LQFP144 pinout (top view) Figure 3 shows the RPC56EL60L5 in the LFBGA257 package. DocID026934 Rev 1 33/137 136 Package pinouts and signal descriptions RPC56EL60L5 Figure 3. RPC56EL60L5 LFBGA257 pinout (top view) 1 A C _IO VSS_HV VSS_HV _IO _IO VDD_HV NC(1) _IO D 3 VSS_HV VSS_HV VDD_HV _IO B 2 F[5] F[4] 4 H[2] 5 6 7 8 9 10 11 12 13 14 15 H[0] G[14] D[3] C[15] VDD_HV A[12] H[10] H[14] A[10] B[2] C[10] VSS_HV VSS_HV B[0] VDD_HV VSS_HV _IO B[6] _IO A[14] F[3] A[9] VSS_HV FCCU_ F[1] _IO A[15] D[2] A[13] MDO0 F[6] D[1] NMI F H[1] G[12] A[7] A[8] C[5] G[13] VSS_HV F[7] G[15] COR C[4] F[9] F[8] L F[10] F[11] M VDD_HV VDD_HV _OSC N XTAL A[5] VSS_HV RESET T EXTAL VSS_HV VDD_HV _IO U FCCU _F[0] I[0] JCOMP H[11] I[1] F[14] COR COR COR _IO NC A[11] E[13] F[15] _IO _IO _IO A[4] F[12] D[14] G[3] COR COR COR COR COR COR VDD_HV VPP _IO _TEST NC C[14] G[2] I[3] NC C[13] I[2] G[4] D[12] H[13] H[9] G[6] COR COR VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV C[7] VDD_LV VSS_LV VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV D[9] NC VDD_LV VSS_LV VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV D[8] NC VDD_LV VDD_LV VDD_LV VDD_LV VDD_LV VDD_LV VDD_LV D[5] VSS_LV_ _REG_0 VSS_HV 17 _IO VDD_HV VSS_HV _IO COR B[1] _REG_2 VDD_LV VSS_LV VDD_HV VDD_HV VDD_HV VDD_HV _REG_1 H[6] _FLA VDD_HV VSS_HV H[15] _REG_1 _FLA NC H[8] H[7] A[3] NC TCK H[4] B[4] C[11] B[5] TMS H[5] NC C[12] A[2] G[5] G[10] G[8] G[7] VSS_HV D[11] G[9] PLL D[6] _OSC R F[13] VSS_LV _IO P B[3] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV _IO VSS_HV E[14] VDD_LV VSS_LV _REG_0 K E[15] VDD_LV_ VSS_LV_ VSS_LV_ VSS_LV_ VSS_LV_ VSS_LV_ VDD_LV_ A[6] _IO J H[12] VDD_LV_ VDD_LV_ VDD_LV_ VDD_LV_ VDD_LV_ VDD_LV_ VDD_LV_ _IO H F[0] COR COR VDD_HV VDD_HV VDD_HV _REG_2 VSS_LV_ VDD_LV_ C[6] E H[3] D[0] _IO _IO COR G D[4] VSS_HV 16 VSS_HV VDD_LV_ VDD_LV_ VSS_LV_ PLL COR COR D[7] B[7] E[6] _IO NC B[8] NC _IO VDD_HV B[10] _ADR0 C[1] E[5] E[7] _IO VSS_HV _IO _IO NC 1 2 3 E[4] 4 C[2] 5 E[2] 6 B[9] 7 VDD_HV B[14] _IO B[13] B[15] VDD_LV_ VSS_LV_ VDD_HV COR COR _IO C[0] BCTRL A[1] _ADR1 B[11] _ADR0 VSS_HV VSS_HV VSS_HV VDD_HV VSS_HV _IO E[9] E[10] E[12] E[0] A[0] D[10] _ADR1 B[12] 8 VDD_HV VSS_HV _IO VDD_HV VSS_HV _ADV _ADV 9 10 E[11] NC NC VDD_HV G[11] _PMU 11 12 13 14 15 _IO VSS_HV VSS_HV _IO _IO 16 17 1. NC = Not connected (the pin is physically not connected to anything on the device) Table 3, and Table 4 provide the pin function summaries for the 144-pin, and 257-pin packages, respectively, listing all the signals multiplexed to each pin. Table 3. LQFP144 pin function summary 34/137 Pin # Port/function 1 NMI Peripheral Output function — DocID026934 Rev 1 Input function RPC56EL60L5 Package pinouts and signal descriptions Table 3. LQFP144 pin function summary (continued) Pin # 2 3 4 5 Port/function A[6] Peripheral Output function Input function SIUL GPIO[6] GPIO[6] DSPI_1 SCK SCK SIUL — EIRQ[6] SIUL GPIO[49] GPIO[49] eTimer_1 ETC[2] ETC[2] CTU_0 EXT_TGR — FlexRay — CA_RX SIUL GPIO[84] GPIO[84] NPC MDO[3] — SIUL GPIO[85] GPIO[85] NPC MDO[2] — D[1] F[4] F[5] 6 VDD_HV_IO — 7 VSS_HV_IO — 8 F[6] 9 10 11 12 13 SIUL GPIO[86] GPIO[86] NPC MDO[1] — MDO0 A[7] C[4] A[8] C[5] — SIUL GPIO[7] GPIO[7] DSPI_1 SOUT — SIUL — EIRQ[7] SIUL GPIO[36] GPIO[36] DSPI_0 CS0 CS0 FlexPWM_0 X[1] X[1] SSCM DEBUG[4] — SIUL — EIRQ[22] SIUL GPIO[8] GPIO[8] DSPI_1 — SIN SIUL — EIRQ[8] SIUL GPIO[37] GPIO[37] DSPI_0 SCK SCK SSCM DEBUG[5] — FlexPWM_0 — FAULT[3] SIUL — EIRQ[23] DocID026934 Rev 1 35/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 3. LQFP144 pin function summary (continued) Pin # 14 15 A[5] Peripheral Output function Input function SIUL GPIO[5] GPIO[5] DSPI_1 CS0 CS0 eTimer_1 ETC[5] ETC[5] DSPI_0 CS7 — SIUL — EIRQ[5] SIUL GPIO[39] GPIO[39] FlexPWM_0 A[1] A[1] SSCM DEBUG[7] — DSPI_0 — SIN C[7] 16 VDD_HV_REG_0 — 17 VSS_LV_COR — 18 VDD_LV_COR — 19 F[7] 20 SIUL GPIO[87] GPIO[87] NPC MCKO — SIUL GPIO[88] GPIO[88] NPC MSEO[1] — F[8] 21 VDD_HV_IO — 22 VSS_HV_IO — 23 F[9] 24 25 26 36/137 Port/function SIUL GPIO[89] GPIO[89] NPC MSEO[0] — SIUL GPIO[90] GPIO[90] NPC EVTO — SIUL GPIO[91] GPIO[91] NPC — EVTI SIUL GPIO[57] GPIO[57] FlexPWM_0 X[0] X[0] LINFlexD_1 TXD — F[10] F[11] D[9] 27 VDD_HV_OSC — 28 VSS_HV_OSC — 29 XTAL — 30 EXTAL — 31 RESET — DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 3. LQFP144 pin function summary (continued) Pin # 32 33 34 Port/function D[8] D[5] Peripheral Output function Input function SIUL GPIO[56] GPIO[56] DSPI_1 CS2 — eTimer_1 ETC[4] ETC[4] DSPI_0 CS5 — FlexPWM_0 — FAULT[3] SIUL GPIO[53] GPIO[53] DSPI_0 CS3 — FlexPWM_0 — FAULT[2] SIUL GPIO[54] GPIO[54] DSPI_0 CS2 — FlexPWM_0 X[3] X[3] FlexPWM_0 — FAULT[1] D[6] 35 VSS_LV_PLL0_PLL1 — 36 VDD_LV_PLL0_PLL1 — 37 SIUL GPIO[55] GPIO[55] DSPI_1 CS3 — DSPI_0 CS4 — SWG analog output — FCCU F[0] F[0] D[7] 38 FCCU_F[0] 39 VDD_LV_COR — 40 VSS_LV_COR — 41 C[1] 42 43 44 45 46 SIUL — GPIO[33] ADC_0 — AN[2] SIUL — GPIO[68] ADC_0 — AN[7] SIUL — GPIO[23] LINFlexD_0 — RXD ADC_0 — AN[0] SIUL — GPIO[69] ADC_0 — AN[8] SIUL — GPIO[34] ADC_0 — AN[3] SIUL — GPIO[70] ADC_0 — AN[4] E[4] B[7] E[5] C[2] E[6] DocID026934 Rev 1 37/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 3. LQFP144 pin function summary (continued) Pin # 47 48 49 B[8] Peripheral Output function Input function SIUL — GPIO[24] eTimer_0 — ETC[5] ADC_0 — AN[1] SIUL — GPIO[71] ADC_0 — AN[6] SIUL — GPIO[66] ADC_0 — AN[5] E[7] E[2] 50 VDD_HV_ADR0 — 51 VSS_HV_ADR0 — 52 B[9] 53 54 55 B[10] B[11] B[12] SIUL — GPIO[25] ADC_0 ADC_1 — AN[11] SIUL — GPIO[26] ADC_0 ADC_1 — AN[12] SIUL — GPIO[27] ADC_0 ADC_1 — AN[13] SIUL — GPIO[28] ADC_0 ADC_1 — AN[14] 56 VDD_HV_ADR1 — 57 VSS_HV_ADR1 — 58 VDD_HV_ADV — 59 VSS_HV_ADV — 60 61 62 63 38/137 Port/function B[13] SIUL — GPIO[29] LINFlexD_1 — RXD ADC_1 — AN[0] SIUL — GPIO[73] ADC_1 — AN[7] SIUL — GPIO[31] SIUL — EIRQ[20] ADC_1 — AN[2] SIUL — GPIO[74] ADC_1 — AN[8] E[9] B[15] E[10] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 3. LQFP144 pin function summary (continued) Pin # 64 65 66 67 68 Port/function Peripheral Output function Input function SIUL — GPIO[30] eTimer_0 — ETC[4] SIUL — EIRQ[19] ADC_1 — AN[1] SIUL — GPIO[75] ADC_1 — AN[4] SIUL — GPIO[32] ADC_1 — AN[3] SIUL — GPIO[76] ADC_1 — AN[6] SIUL — GPIO[64] ADC_1 — AN[5] B[14] E[11] C[0] E[12] E[0] 69 BCTRL — 70 VDD_LV_COR — 71 VSS_LV_COR — 72 VDD_HV_PMU — 73 74 75 76 77 SIUL GPIO[0] GPIO[0] eTimer_0 ETC[0] ETC[0] DSPI_2 SCK SCK SIUL — EIRQ[0] SIUL GPIO[1] GPIO[1] eTimer_0 ETC[1] ETC[1] DSPI_2 SOUT — SIUL — EIRQ[1] SIUL GPIO[107] GPIO[107] FlexRay DBG3 — FlexPWM_0 — FAULT[3] SIUL GPIO[58] GPIO[58] FlexPWM_0 A[0] A[0] eTimer_0 — ETC[0] SIUL GPIO[106] GPIO[106] FlexRay DBG2 — DSPI_2 CS3 — FlexPWM_0 — FAULT[2] A[0] A[1] G[11] D[10] G[10] DocID026934 Rev 1 39/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 3. LQFP144 pin function summary (continued) Pin # 78 79 80 81 82 83 84 85 86 40/137 Port/function D[11] G[9] C[11] G[8] C[12] Peripheral Output function Input function SIUL GPIO[59] GPIO[59] FlexPWM_0 B[0] B[0] eTimer_0 — ETC[1] SIUL GPIO[105] GPIO[105] FlexRay DBG1 — DSPI_1 CS1 — FlexPWM_0 — FAULT[1] SIUL — EIRQ[29] SIUL GPIO[43] GPIO[43] eTimer_0 ETC[4] ETC[4] DSPI_2 CS2 — SIUL GPIO[104] GPIO[104] FlexRay DBG0 — DSPI_0 CS1 — FlexPWM_0 — FAULT[0] SIUL — EIRQ[21] SIUL GPIO[44] GPIO[44] eTimer_0 ETC[5] ETC[5] DSPI_2 CS3 — SIUL GPIO[103] GPIO[103] FlexPWM_0 B[3] B[3] SIUL GPIO[2] GPIO[2] eTimer_0 ETC[2] ETC[2] FlexPWM_0 A[3] A[3] DSPI_2 — SIN MC_RGM — ABS[0] SIUL — EIRQ[2] SIUL GPIO[101] GPIO[101] FlexPWM_0 X[3] X[3] DSPI_2 CS3 — SIUL GPIO[21] GPIO[21] JTAGC — TDI G[7] A[2] G[5] B[5] 87 TMS — 88 TCK — DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 3. LQFP144 pin function summary (continued) Pin # Port/function 89 B[4] Peripheral Output function Input function SIUL GPIO[20] GPIO[20] JTAGC TDO — 90 VSS_HV_IO — 91 VDD_HV_IO — 92 SIUL GPIO[3] GPIO[3] eTimer_0 ETC[3] ETC[3] DSPI_2 CS0 CS0 FlexPWM_0 B[3] B[3] MC_RGM — ABS[2] SIUL — EIRQ[3] A[3] 93 VDD_LV_COR — 94 VSS_LV_COR — 95 VDD_HV_REG_1 — 96 VSS_HV_FLA — 97 VDD_HV_FLA — 98 G[6] 99 100 101 102 103 D[12] G[4] SIUL GPIO[102] GPIO[102] FlexPWM_0 A[3] A[3] SIUL GPIO[60] GPIO[60] FlexPWM_0 X[1] X[1] LINFlexD_1 — RXD SIUL GPIO[100] GPIO[100] FlexPWM_0 B[2] B[2] eTimer_0 — ETC[5] SIUL GPIO[45] GPIO[45] eTimer_1 ETC[1] ETC[1] CTU_0 — EXT_IN FlexPWM_0 — EXT_SYNC SIUL GPIO[98] GPIO[98] FlexPWM_0 X[2] X[2] DSPI_1 CS1 — SIUL GPIO[46] GPIO[46] eTimer_1 ETC[2] ETC[2] CTU_0 EXT_TGR — C[13] G[2] C[14] DocID026934 Rev 1 41/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 3. LQFP144 pin function summary (continued) Pin # 104 105 106 107 108 109 110 111 112 42/137 Port/function G[3] D[14] F[12] Peripheral Output function Input function SIUL GPIO[99] GPIO[99] FlexPWM_0 A[2] A[2] eTimer_0 — ETC[4] SIUL GPIO[62] GPIO[62] FlexPWM_0 B[1] B[1] eTimer_0 — ETC[3] SIUL GPIO[92] GPIO[92] eTimer_1 ETC[3] ETC[3] SIUL — EIRQ[30] VPP_TEST(1) — SIUL GPIO[4] GPIO[4] eTimer_1 ETC[0] ETC[0] DSPI_2 CS1 — eTimer_0 ETC[4] ETC[4] MC_RGM — FAB SIUL — EIRQ[4] SIUL GPIO[16] GPIO[16] FlexCAN_0 TXD — eTimer_1 ETC[2] ETC[2] SSCM DEBUG[0] — SIUL — EIRQ[15] SIUL GPIO[17] GPIO[17] eTimer_1 ETC[3] ETC[3] SSCM DEBUG[1] — FlexCAN_0 — RXD FlexCAN_1 — RXD SIUL — EIRQ[16] SIUL GPIO[42] GPIO[42] DSPI_2 CS2 — FlexPWM_0 A[3] A[3] FlexPWM_0 — FAULT[1] SIUL GPIO[93] GPIO[93] eTimer_1 ETC[4] ETC[4] SIUL — EIRQ[31] A[4] B[0] B[1] C[10] F[13] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 3. LQFP144 pin function summary (continued) Pin # Port/function 113 F[15] 114 115 116 117 118 119 120 121 Peripheral Output function Input function SIUL GPIO[95] GPIO[95] LINFlexD_1 — RXD SIUL GPIO[18] GPIO[18] LINFlexD_0 TXD — SSCM DEBUG[2] — SIUL — EIRQ[17] SIUL GPIO[94] GPIO[94] LINFlexD_1 TXD — SIUL GPIO[19] GPIO[19] SSCM DEBUG[3] — LINFlexD_0 — RXD SIUL GPIO[77] GPIO[77] eTimer_0 ETC[5] ETC[5] DSPI_2 CS3 — SIUL — EIRQ[25] SIUL GPIO[10] GPIO[10] DSPI_2 CS0 CS0 FlexPWM_0 B[0] B[0] FlexPWM_0 X[2] X[2] SIUL — EIRQ[9] SIUL GPIO[78] GPIO[78] eTimer_1 ETC[5] ETC[5] SIUL — EIRQ[26] SIUL GPIO[11] GPIO[11] DSPI_2 SCK SCK FlexPWM_0 A[0] A[0] FlexPWM_0 A[2] A[2] SIUL — EIRQ[10] SIUL GPIO[79] GPIO[79] DSPI_0 CS1 — SIUL — EIRQ[27] B[2] F[14] B[3] E[13] A[10] E[14] A[11] E[15] DocID026934 Rev 1 43/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 3. LQFP144 pin function summary (continued) Pin # 122 123 124 125 A[12] JCOMP Peripheral Output function Input function SIUL GPIO[12] GPIO[12] DSPI_2 SOUT — FlexPWM_0 A[2] A[2] FlexPWM_0 B[2] B[2] SIUL — EIRQ[11] — — JCOMP SIUL GPIO[47] GPIO[47] FlexRay CA_TR_EN — eTimer_1 ETC[0] ETC[0] FlexPWM_0 A[1] A[1] CTU_0 — EXT_IN FlexPWM_0 — EXT_SYNC SIUL GPIO[48] GPIO[48] FlexRay CA_TX — eTimer_1 ETC[1] ETC[1] FlexPWM_0 B[1] B[1] C[15] D[0] 126 VDD_HV_IO — 127 VSS_HV_IO — 128 129 SIUL GPIO[51] GPIO[51] FlexRay CB_TX — eTimer_1 ETC[4] ETC[4] FlexPWM_0 A[3] A[3] SIUL GPIO[52] GPIO[52] FlexRay CB_TR_EN — eTimer_1 ETC[5] ETC[5] FlexPWM_0 B[3] B[3] D[3] D[4] 130 VDD_HV_REG_2 — 131 VDD_LV_COR — 132 VSS_LV_COR — 133 44/137 Port/function SIUL GPIO[80] GPIO[80] FlexPWM_0 A[1] A[1] eTimer_0 — ETC[2] SIUL — EIRQ[28] F[0] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 3. LQFP144 pin function summary (continued) Pin # 134 135 136 137 138 139 140 141 142 143 Port/function Peripheral Output function Input function SIUL GPIO[9] GPIO[9] DSPI_2 CS1 — FlexPWM_0 B[3] B[3] FlexPWM_0 — FAULT[0] A[9] — VDD_LV_COR A[13] SIUL GPIO[13] GPIO[13] FlexPWM_0 B[2] B[2] DSPI_2 — SIN FlexPWM_0 — FAULT[0] SIUL — EIRQ[12] — VSS_LV_COR SIUL GPIO[22] GPIO[22] MC_CGM clk_out — DSPI_2 CS2 — SIUL — EIRQ[18] SIUL GPIO[83] GPIO[83] DSPI_0 CS6 — SIUL GPIO[50] GPIO[50] eTimer_1 ETC[3] ETC[3] FlexPWM_0 X[3] X[3] FlexRay — CB_RX FCCU F[1] F[1] SIUL GPIO[38] GPIO[38] DSPI_0 SOUT — FlexPWM_0 B[1] B[1] SSCM DEBUG[6] — SIUL — EIRQ[24] SIUL GPIO[14] GPIO[14] FlexCAN_1 TXD — eTimer_1 ETC[4] ETC[4] SIUL — EIRQ[13] B[6] F[3] D[2] FCCU_F[1] C[6] A[14] DocID026934 Rev 1 45/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 3. LQFP144 pin function summary (continued) Pin # 144 Port/function A[15] Peripheral Output function Input function SIUL GPIO[15] GPIO[15] eTimer_1 ETC[5] ETC[5] FlexCAN_1 — RXD FlexCAN_0 — RXD SIUL — EIRQ[14] 1. VPP_TEST should always be tied to ground (VSS) for normal operations. Table 4. LFBGA257 pin function summary Pin # Port/function A1 VSS_HV_IO_RING — A2 VSS_HV_IO_RING — A3 VDD_HV_IO_RING — A4 H[2] A5 A6 A7 A8 A9 A10 46/137 Peripheral Output function Input function SIUL GPIO[114] GPIO[114] NPC MDO[5] — SIUL GPIO[112] GPIO[112] NPC MDO[7] — SIUL GPIO[110] GPIO[110] NPC MDO[9] — SIUL GPIO[51] GPIO[51] FlexRay CB_TX — eTimer_1 ETC[4] ETC[4] FlexPWM_0 A[3] A[3] SIUL GPIO[47] GPIO[47] FlexRay CA_TR_EN — eTimer_1 ETC[0] ETC[0] FlexPWM_0 A[1] A[1] CTU_0 — EXT_IN FlexPWM_0 — EXT_SYNC H[0] G[14] D[3] C[15] VDD_HV_IO_RING A[12] — SIUL GPIO[12] GPIO[12] DSPI_2 SOUT — FlexPWM_0 A[2] A[2] FlexPWM_0 B[2] B[2] SIUL — EIRQ[11] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 4. LFBGA257 pin function summary (continued) Pin # A11 A12 A13 A14 A15 Port/function H[10] H[14] A[10] Peripheral Output function Input function SIUL GPIO[122] GPIO[122] FlexPWM_1 X[2] X[2] eTimer_2 ETC[2] ETC[2] SIUL GPIO[126] GPIO[126] FlexPWM_1 A[3] A[3] eTimer_2 ETC[4] ETC[4] SIUL GPIO[10] GPIO[10] DSPI_2 CS0 CS0 FlexPWM_0 B[0] B[0] FlexPWM_0 X[2] X[2] SIUL — EIRQ[9] SIUL GPIO[18] GPIO[18] LINFlexD_0 TXD — SSCM DEBUG[2] — SIUL — EIRQ[17] SIUL GPIO[42] GPIO[42] DSPI_2 CS2 — FlexPWM_0 A[3] A[3] FlexPWM_0 — FAULT[1] B[2] C[10] A16 VSS_HV_IO_RING — A17 VSS_HV_IO_RING — B1 VSS_HV_IO_RING — B2 VSS_HV_IO_RING — B3 B4 B5 SIUL GPIO[22] GPIO[22] MC_CGM clk_out — DSPI_2 CS2 — SIUL — EIRQ[18] SIUL GPIO[14] GPIO[14] FlexCAN_1 TXD — eTimer_1 ETC[4] ETC[4] SIUL — EIRQ[13] SIUL GPIO[83] GPIO[83] DSPI_0 CS6 — B[6] A[14] F[3] DocID026934 Rev 1 47/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 4. LFBGA257 pin function summary (continued) Pin # B6 B7 B8 H[12] B14 B15 Input function SIUL GPIO[9] GPIO[9] DSPI_2 CS1 — FlexPWM_0 B[3] B[3] FlexPWM_0 — FAULT[0] SIUL GPIO[52] GPIO[52] FlexRay CB_TR_EN — eTimer_1 ETC[5] ETC[5] FlexPWM_0 B[3] B[3] SIUL GPIO[48] GPIO[48] FlexRay CA_TX — eTimer_1 ETC[1] ETC[1] FlexPWM_0 B[1] B[1] D[0] B10 B13 Output function D[4] VSS_HV_IO_RING B12 Peripheral A[9] B9 B11 48/137 Port/function E[15] E[14] B[3] F[13] B[0] — SIUL GPIO[124] GPIO[124] FlexPWM_1 B[2] B[2] SIUL GPIO[79] GPIO[79] DSPI_0 CS1 — SIUL — EIRQ[27] SIUL GPIO[78] GPIO[78] eTimer_1 ETC[5] ETC[5] SIUL — EIRQ[26] SIUL GPIO[19] GPIO[19] SSCM DEBUG[3] — LINFlexD_0 — RXD SIUL GPIO[93] GPIO[93] eTimer_1 ETC[4] ETC[4] SIUL — EIRQ[31] SIUL GPIO[16] GPIO[16] FlexCAN_0 TXD — eTimer_1 ETC[2] ETC[2] SSCM DEBUG[0] — SIUL — EIRQ[15] B16 VDD_HV_IO_RING — B17 VSS_HV_IO_RING — C1 VDD_HV_IO_RING — DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 4. LFBGA257 pin function summary (continued) Pin # Port/function C2 Not connected — C3 VSS_HV_IO_RING — C4 FCCU_F[1] C5 C6 Peripheral Output function FCCU F[1] F[1] SIUL GPIO[50] GPIO[50] eTimer_1 ETC[3] ETC[3] FlexPWM_0 X[3] X[3] FlexRay — CB_RX SIUL GPIO[13] GPIO[13] FlexPWM_0 B[2] B[2] DSPI_2 — SIN FlexPWM_0 — FAULT[0] SIUL — EIRQ[12] D[2] A[13] C7 VDD_HV_REG_2 — C8 VDD_HV_REG_2 — C9 JCOMP C11 H[11] C13 C14 C15 SIUL GPIO[128] GPIO[128] eTimer_2 ETC[0] ETC[0] DSPI_0 CS4 — FlexPWM_1 — FAULT[0] — — JCOMP SIUL GPIO[123] GPIO[123] FlexPWM_1 A[2] A[2] SIUL GPIO[129] GPIO[129] eTimer_2 ETC[1] ETC[1] DSPI_0 CS5 — FlexPWM_1 — FAULT[1] SIUL GPIO[94] GPIO[94] LINFlexD_1 TXD — SIUL GPIO[17] GPIO[17] eTimer_1 ETC[3] ETC[3] SSCM DEBUG[1] — FlexCAN_0 — RXD FlexCAN_1 — RXD SIUL — EIRQ[16] I[0] C10 C12 Input function I[1] F[14] B[1] — VSS_HV_IO_RING DocID026934 Rev 1 49/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 4. LFBGA257 pin function summary (continued) Pin # C16 C17 D1 D2 D3 D4 Peripheral Output function Input function SIUL GPIO[4] GPIO[4] eTimer_1 ETC[0] ETC[0] DSPI_2 CS1 — eTimer_0 ETC[4] ETC[4] MC_RGM — FAB SIUL — EIRQ[4] SIUL GPIO[92] GPIO[92] eTimer_1 ETC[3] ETC[3] SIUL — EIRQ[30] SIUL GPIO[85] GPIO[85] NPC MDO[2] — SIUL GPIO[84] GPIO[84] NPC MDO[3] — SIUL GPIO[15] GPIO[15] eTimer_1 ETC[5] ETC[5] FlexCAN_1 — RXD FlexCAN_0 — RXD SIUL — EIRQ[14] SIUL GPIO[38] GPIO[38] DSPI_0 SOUT — FlexPWM_0 B[1] B[1] SSCM DEBUG[6] — SIUL — EIRQ[24] A[4] F[12] F[5] F[4] A[15] C[6] D5 VSS_LV_CORE_RING — D6 VDD_LV_CORE_RING — D7 50/137 Port/function SIUL GPIO[80] GPIO[80] FlexPWM_0 A[1] A[1] eTimer_0 — ETC[2] SIUL — EIRQ[28] F[0] D8 VDD_HV_IO_RING — D9 VSS_HV_IO_RING — D10 Not connected — DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 4. LFBGA257 pin function summary (continued) Pin # D11 D12 D13 Port/function A[11] Peripheral Output function Input function SIUL GPIO[11] GPIO[11] DSPI_2 SCK SCK FlexPWM_0 A[0] A[0] FlexPWM_0 A[2] A[2] SIUL — EIRQ[10] SIUL GPIO[77] GPIO[77] eTimer_0 ETC[5] ETC[5] DSPI_2 CS3 — SIUL — EIRQ[25] SIUL GPIO[95] GPIO[95] LINFlexD_1 — RXD E[13] F[15] D14 VDD_HV_IO_RING — D15 VPP_TEST(1) — D16 D17 D[14] G[3] E1 MDO0 E2 F[6] E3 SIUL GPIO[62] GPIO[62] FlexPWM_0 B[1] B[1] eTimer_0 — ETC[3] SIUL GPIO[99] GPIO[99] FlexPWM_0 A[2] A[2] eTimer_0 — ETC[4] — SIUL GPIO[86] GPIO[86] NPC MDO[1] — SIUL GPIO[49] GPIO[49] eTimer_1 ETC[2] ETC[2] CTU_0 EXT_TGR — FlexRay — CA_RX D[1] E4 NMI — E14 Not connected — E15 E16 C[14] G[2] SIUL GPIO[46] GPIO[46] eTimer_1 ETC[2] ETC[2] CTU_0 EXT_TGR — SIUL GPIO[98] GPIO[98] FlexPWM_0 X[2] X[2] DSPI_1 CS1 — DocID026934 Rev 1 51/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 4. LFBGA257 pin function summary (continued) Pin # E17 F1 F2 F3 F4 I[3] Peripheral Output function Input function SIUL GPIO[131] GPIO[131] eTimer_2 ETC[3] ETC[3] DSPI_0 CS7 — CTU_0 EXT_TGR — FlexPWM_1 — FAULT[3] SIUL GPIO[113] GPIO[113] NPC MDO[6] — SIUL GPIO[108] GPIO[108] NPC MDO[11] — SIUL GPIO[7] GPIO[7] DSPI_1 SOUT — SIUL — EIRQ[7] SIUL GPIO[8] GPIO[8] DSPI_1 — SIN SIUL — EIRQ[8] H[1] G[12] A[7] A[8] F6 VDD_LV_CORE_RING — F7 VDD_LV_CORE_RING — F8 VDD_LV_CORE_RING — F9 VDD_LV_CORE_RING — F10 VDD_LV_CORE_RING — F11 VDD_LV_CORE_RING — F12 VDD_LV_CORE_RING — F14 Not connected — F15 F16 F17 52/137 Port/function SIUL GPIO[45] GPIO[45] eTimer_1 ETC[1] ETC[1] CTU_0 — EXT_IN FlexPWM_0 — EXT_SYNC SIUL GPIO[130] GPIO[130] eTimer_2 ETC[2] ETC[2] DSPI_0 CS6 — FlexPWM_1 — FAULT[2] SIUL GPIO[100] GPIO[100] FlexPWM_0 B[2] B[2] eTimer_0 — ETC[5] C[13] I[2] G[4] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 4. LFBGA257 pin function summary (continued) Pin # Port/function G1 H[3] G2 G3 G4 Peripheral Output function Input function SIUL GPIO[115] GPIO[115] NPC MDO[4] — VDD_HV_IO_RING C[5] A[6] — SIUL GPIO[37] GPIO[37] DSPI_0 SCK SCK SSCM DEBUG[5] — FlexPWM_0 — FAULT[3] SIUL — EIRQ[23] SIUL GPIO[6] GPIO[6] DSPI_1 SCK SCK SIUL — EIRQ[6] G6 VDD_LV_CORE_RING — G7 VSS_LV_CORE_RING — G8 VSS_LV_CORE_RING — G9 VSS_LV_CORE_RING — G10 VSS_LV_CORE_RING — G11 VSS_LV_CORE_RING — G12 VDD_LV_CORE_RING — G14 G15 G16 G17 H1 H2 D[12] H[13] H[9] SIUL GPIO[60] GPIO[60] FlexPWM_0 X[1] X[1] LINFlexD_1 — RXD SIUL GPIO[125] GPIO[125] FlexPWM_1 X[3] X[3] eTimer_2 ETC[3] ETC[3] SIUL GPIO[121] GPIO[121] FlexPWM_1 B[1] B[1] DSPI_0 CS7 — SIUL GPIO[102] GPIO[102] FlexPWM_0 A[3] A[3] SIUL GPIO[109] GPIO[109] NPC MDO[10] — G[6] G[13] — VSS_HV_IO_RING DocID026934 Rev 1 53/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 4. LFBGA257 pin function summary (continued) Pin # H3 H4 C[4] A[5] Peripheral Output function Input function SIUL GPIO[36] GPIO[36] DSPI_0 CS0 CS0 FlexPWM_0 X[1] X[1] SSCM DEBUG[4] — SIUL — EIRQ[22] SIUL GPIO[5] GPIO[5] DSPI_1 CS0 CS0 eTimer_1 ETC[5] ETC[5] DSPI_0 CS7 — SIUL — EIRQ[5] H6 VDD_LV — H7 VSS_LV — H8 VSS_LV — H9 VSS_LV — H10 VSS_LV — H11 VSS_LV — H12 VDD_LV — H14 VSS_LV — H15 VDD_HV_REG_1 — H16 VDD_HV_FLA — H17 J1 J2 54/137 Port/function H[6] SIUL GPIO[118] GPIO[118] FlexPWM_1 B[0] B[0] DSPI_0 CS5 — SIUL GPIO[87] GPIO[87] NPC MCKO — SIUL GPIO[111] GPIO[111] NPC MDO[8] — F[7] G[15] J3 VDD_HV_REG_0 — J4 VDD_HV_REG_0 — J6 VDD_LV — J7 VSS_LV — J8 VSS_LV — J9 VSS_LV — J10 VSS_LV — J11 VSS_LV — DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 4. LFBGA257 pin function summary (continued) Pin # Port/function J12 VDD_LV — J14 VDD_LV — J15 VDD_HV_REG_1 — J16 VSS_HV_FLA — J17 K1 K2 K3 K4 H[15] Peripheral Output function SIUL GPIO[127] GPIO[127] FlexPWM_1 B[3] B[3] eTimer_2 ETC[5] ETC[5] SIUL GPIO[89] GPIO[89] NPC MSEO[0] — SIUL GPIO[88] GPIO[88] NPC MSEO[1] — NPC RDY — SIUL GPIO[132] GPIO[132] SIUL GPIO[39] GPIO[39] FlexPWM_0 A[1] A[1] SSCM DEBUG[7] — DSPI_0 — SIN F[9] F[8] RDY C[7] K6 VDD_LV — K7 VSS_LV — K8 VSS_LV — K9 VSS_LV — K10 VSS_LV — K11 VSS_LV — K12 VDD_LV — K14 Not connected — K15 K16 Input function H[8] H[7] SIUL GPIO[120] GPIO[120] FlexPWM_1 A[1] A[1] DSPI_0 CS6 — SIUL GPIO[119] GPIO[119] FlexPWM_1 X[1] X[1] eTimer_2 ETC[1] ETC[1] DocID026934 Rev 1 55/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 4. LFBGA257 pin function summary (continued) Pin # K17 L1 L2 L3 Peripheral Output function Input function SIUL GPIO[3] GPIO[3] eTimer_0 ETC[3] ETC[3] DSPI_2 CS0 CS0 FlexPWM_0 B[3] B[3] MC_RGM — ABS[2] SIUL — EIRQ[3] SIUL GPIO[90] GPIO[90] NPC EVTO — SIUL GPIO[91] GPIO[91] NPC — EVTI SIUL GPIO[57] GPIO[57] FlexPWM_0 X[0] X[0] LINFlexD_1 TXD — A[3] F[10] F[11] D[9] L4 Not connected — L6 VDD_LV — L7 VSS_LV — L8 VSS_LV — L9 VSS_LV — L10 VSS_LV — L11 VSS_LV — L12 VDD_LV — L14 Not connected — L15 TCK — L16 L17 H[4] SIUL GPIO[116] GPIO[116] FlexPWM_1 X[0] X[0] eTimer_2 ETC[0] ETC[0] SIUL GPIO[20] GPIO[20] JTAGC TDO — B[4] M1 VDD_HV_OSC — M2 VDD_HV_IO_RING — M3 56/137 Port/function D[8] SIUL GPIO[56] GPIO[56] DSPI_1 CS2 — eTimer_1 ETC[4] ETC[4] DSPI_0 CS5 — FlexPWM_0 — FAULT[3] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 4. LFBGA257 pin function summary (continued) Pin # Port/function M4 Not connected — M6 VDD_LV — M7 VDD_LV — M8 VDD_LV — M9 VDD_LV — M10 VDD_LV — M11 VDD_LV — M12 VDD_LV — M14 M15 M16 M17 C[11] Peripheral Output function SIUL GPIO[43] GPIO[43] eTimer_0 ETC[4] ETC[4] DSPI_2 CS2 — SIUL GPIO[21] GPIO[21] JTAGC — TDI B[5] TMS H[5] — SIUL GPIO[117] GPIO[117] FlexPWM_1 A[0] A[0] DSPI_0 CS4 — N1 XTAL — N2 VSS_HV_IO_RING — N3 D[5] SIUL GPIO[53] GPIO[53] DSPI_0 CS3 — FlexPWM_0 — FAULT[2] N4 VSS_LV_PLL0_PLL1 — N14 Not connected — N15 N16 Input function C[12] SIUL GPIO[44] GPIO[44] eTimer_0 ETC[5] ETC[5] DSPI_2 CS3 — SIUL GPIO[2] GPIO[2] eTimer_0 ETC[2] ETC[2] FlexPWM_0 A[3] A[3] DSPI_2 — SIN MC_RGM — ABS[0] SIUL — EIRQ[2] A[2] DocID026934 Rev 1 57/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 4. LFBGA257 pin function summary (continued) Pin # N17 G[5] Peripheral Output function Input function SIUL GPIO[101] GPIO[101] FlexPWM_0 X[3] X[3] DSPI_2 CS3 — P1 VSS_HV_OSC — P2 RESET — P3 SIUL GPIO[54] GPIO[54] DSPI_0 CS2 — FlexPWM_0 X[3] X[3] FlexPWM_0 — FAULT[1] D[6] P4 VDD_LV_PLL0_PLL1 — P5 VDD_LV_CORE_RING — P6 VSS_LV_CORE_RING — P7 B[8] SIUL — GPIO[24] eTimer_0 — ETC[5] ADC_0 — AN[1] P8 Not connected — P9 VSS_HV_IO_RING — P10 VDD_HV_IO_RING — P11 SIUL — GPIO[30] eTimer_0 — ETC[4] SIUL — EIRQ[19] ADC_1 — AN[1] B[14] P12 VDD_LV_CORE_RING — P13 VSS_LV_CORE_RING — P14 VDD_HV_IO_RING — P15 P16 58/137 Port/function SIUL GPIO[106] GPIO[106] FlexRay DBG2 — DSPI_2 CS3 — FlexPWM_0 — FAULT[2] SIUL GPIO[104] GPIO[104] FlexRay DBG0 — DSPI_0 CS1 — FlexPWM_0 — FAULT[0] SIUL — EIRQ[21] G[10] G[8] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 4. LFBGA257 pin function summary (continued) Pin # Port/function P17 G[7] R1 EXTAL R2 FCCU_F[0] R3 VSS_HV_IO_RING R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 Peripheral Output function Input function SIUL GPIO[103] GPIO[103] FlexPWM_0 B[3] B[3] — FCCU F[0] F[0] — SIUL GPIO[55] GPIO[55] DSPI_1 CS3 — DSPI_0 CS4 — SWG analog output — SIUL — GPIO[23] LINFlexD_0 — RXD ADC_0 — AN[0] SIUL — GPIO[70] ADC_0 — AN[4] D[7] B[7] E[6] — VDD_HV_ADR0 B[10] SIUL — GPIO[26] ADC_0 ADC_1 — AN[12] VDD_HV_ADR1 B[13] B[15] — SIUL — GPIO[29] LINFlexD_1 — RXD ADC_1 — AN[0] SIUL — GPIO[31] SIUL — EIRQ[20] ADC_1 — AN[2] SIUL — GPIO[32] ADC_1 — AN[3] C[0] BCTRL — SIUL GPIO[1] GPIO[1] eTimer_0 ETC[1] ETC[1] DSPI_2 SOUT — SIUL — EIRQ[1] A[1] — VSS_HV_IO_RING DocID026934 Rev 1 59/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 4. LFBGA257 pin function summary (continued) Pin # R16 R17 D[11] G[9] Peripheral Output function Input function SIUL GPIO[59] GPIO[59] FlexPWM_0 B[0] B[0] eTimer_0 — ETC[1] SIUL GPIO[105] GPIO[105] FlexRay DBG1 — DSPI_1 CS1 — FlexPWM_0 — FAULT[1] SIUL — EIRQ[29] T1 VSS_HV_IO_RING — T2 VDD_HV_IO_RING — T3 Not connected — T4 C[1] T5 T6 T7 T8 B[11] E[9] T14 GPIO[33] ADC_0 — AN[2] SIUL — GPIO[69] ADC_0 — AN[8] SIUL — GPIO[71] ADC_0 — AN[6] VSS_HV_ADR0 T10 T13 — E[7] VSS_HV_ADR1 T12 SIUL E[5] T9 T11 60/137 Port/function — SIUL — GPIO[27] ADC_0 ADC_1 — AN[13] — SIUL — GPIO[73] ADC_1 — AN[7] SIUL — GPIO[74] ADC_1 — AN[8] SIUL — GPIO[76] ADC_1 — AN[6] SIUL — GPIO[64] ADC_1 — AN[5] SIUL GPIO[0] GPIO[0] eTimer_0 ETC[0] ETC[0] DSPI_2 SCK SCK SIUL — EIRQ[0] E[10] E[12] E[0] A[0] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 4. LFBGA257 pin function summary (continued) Pin # T15 Port/function D[10] Peripheral Output function Input function SIUL GPIO[58] GPIO[58] FlexPWM_0 A[0] A[0] eTimer_0 — ETC[0] T16 VDD_HV_IO_RING — T17 VSS_HV_IO_RING — U1 VSS_HV_IO_RING — U2 VSS_HV_IO_RING — U3 Not connected — U4 E[4] U5 U6 U7 U8 SIUL — GPIO[68] ADC_0 — AN[7] SIUL — GPIO[34] ADC_0 — AN[3] SIUL — GPIO[66] ADC_0 — AN[5] SIUL — GPIO[25] ADC_0 ADC_1 — AN[11] SIUL — GPIO[28] ADC_0 ADC_1 — AN[14] C[2] E[2] B[9] B[12] U9 VDD_HV_ADV — U10 VSS_HV_ADV — U11 E[11] SIUL — GPIO[75] ADC_1 — AN[4] U12 Not connected — U13 Not connected — U14 VDD_HV_PMU — U15 G[11] SIUL GPIO[107] GPIO[107] FlexRay DBG3 — FlexPWM_0 — FAULT[3] U16 VSS_HV_IO_RING — U17 VSS_HV_IO_RING — 1. VPP_TEST should always be tied to ground (VSS) for normal operations. DocID026934 Rev 1 61/137 136 Package pinouts and signal descriptions 2.2 RPC56EL60L5 Supply pins Table 5. Supply pins Supply Pin # 144 pkg 257 pkg Voltage regulator external NPN ballast base control pin 69 R13 VDD_LV_COR Core logic supply 70 VDD_LV(1) VSS_LV_COR Core regulator ground 71 VSS_LV(2) VDD_HV_PMU Voltage regulator supply 72 U14 Symbol Description VREG control and power supply pins BCTRL ADC_0/ADC_1 reference voltage and ADC supply VDD_HV_ADR0 ADC_0 high reference voltage 50 R7 VSS_HV_ADR0 ADC_0 low reference voltage 51 T7 VDD_HV_ADR1 ADC_1 high reference voltage 56 R9 VSS_HV_ADR1 ADC_1 low reference voltage 57 T9 VDD_HV_ADV ADC voltage supply for ADC_0 and ADC_1 58 U9 VSS_HV_ADV ADC ground for ADC_0 and ADC_1 59 U10 Power supply pins (3.3 V) VDD_HV_IO 3.3 V Input/Output supply voltage 6 VDD_HV(3) VSS_HV_IO 3.3 V Input/Output ground 7 VSS_HV(4) VDD_HV_REG_0 16 J3 VDD_HV_IO 3.3 V Input/Output supply voltage 21 VDD_HV(3) VSS_HV_IO 3.3 V Input/Output ground 22 VSS_HV(4) VDD_HV_OSC Crystal oscillator amplifier supply voltage 27 M1 VSS_HV_OSC Crystal oscillator amplifier ground 28 P1 VSS_HV_IO 3.3 V Input/Output ground 90 VSS_HV(4) VDD_HV_IO 3.3 V Input/Output supply voltage 91 VDD_HV(3) VDD_HV_REG_1 95 H15 VSS_HV_FLA VSS_HV_FLA 96 J16 VDD_HV_FLA VDD_HV_FLA 97 H16 VDD_HV_IO VDD_HV_IO 126 VDD_HV(3) VSS_HV_IO VSS_HV_IO 127 VSS_HV(4) VDD_HV_REG_2 130 C7 17 VSS_HV(2) VDD_HV_REG_0 VDD_HV_REG_1 VDD_HV_REG_2 Power supply pins (1.2 V) VSS_LV_COR 62/137 VSS_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 5. Supply pins (continued) Supply Symbol Description Pin # 144 pkg 257 pkg VDD_LV_COR VDD_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 18 VDD_LV(1) VSS 1V2 VSS_LV_PLL0_PLL1 / 1.2 V Decoupling pins for on-chip FMPLL modules. Decoupling capacitor must be connected between this pin and VDD_LV_PLL. 35 N4 VDD 1V2 VDD_LV_PLL0_PLL1 Decoupling pins for on-chip FMPLL modules. Decoupling capacitor must be connected between this pin and VSS_LV_PLL. 36 P4 VDD_LV_COR VDD_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 39 VDD_LV(1) VSS_LV_COR VSS_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 40 VSS_LV(2) VDD_LV_COR VDD_LV_COR Decoupling pins for core logic and Regulator feedback. Decoupling capacitor must be connected between this pins and VSS_LV_REGCOR. 70 VDD_LV(1) VSS_LV_COR VSS_LV_REGCOR0 Decoupling pins for core logic and Regulator feedback. Decoupling capacitor must be connected between this pins and VDD_LV_REGCOR. 71 VSS_LV(2) VDD_LV_COR VDD_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 93 VDD_LV(1) VSS_LV_COR VSS_LV_COR / 1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 94 VSS_LV(2) VDD 1V2 VDD_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 131 VDD_LV(1) VSS 1V2 VSS_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 132 VSS_LV(2) VDD 1V2 VDD_LV_COR / Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 135 VDD_LV(1) VSS 1V2 VSS_LV_COR / Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 137 VSS_LV(2) 1. VDD_LV balls are tied together on the LFBGA257 substrate. 2. VSS_LV balls are tied together on the LFBGA257 substrate. 3. VDD_HV balls are tied together on the LFBGA257 substrate. 4. VSS_HV balls are tied together on the LFBGA257 substrate. DocID026934 Rev 1 63/137 136 Package pinouts and signal descriptions 2.3 RPC56EL60L5 System pins Table 6. System pins Pin # Symbol Description Direction 144 pkg 257 pkg Output only 9 E1 Non Maskable Interrupt Input only 1 E4 Input for oscillator amplifier circuit and internal clock generator Input only 29 N1 Input/Output(4) 30 R1 Dedicated pins MDO0(1) NMI (2) XTAL EXTAL(3) Nexus Message Data Output — line Oscillator amplifier output (2) JTAG state machine control Input only 87 M16 (2) JTAG clock Input only 88 L15 JTAG compliance select Input only 123 C10 Bidirectional 31 P2 107 D15 TMS TCK JCOMP(5) Reset pin RESET Bidirectional reset with Schmitt-Trigger characteristics and noise filter. This pin has medium drive strength. Output drive is open drain and must be terminated by an external resistor of value 1KOhm.(6) Test pin VPP TEST Pin for testing purpose only. To be tied to ground in normal operating mode. 1. This pad is configured for Fast (F) pad speed. 2. This pad contains a weak pull-up. 3. EXTAL is an "Output" in "crystal" mode, and is an "Input" in "ext clock" mode. 4. In XOSC Bypass Mode, the analog portion of crystal oscillator (amplifier) is disabled. An external clock can be applied at EXTAL as an input. In XOSC Normal Mode, EXTAL is an output 5. This pad contains a weak pull-down. 6. RESET output shall be considered valid only after the 3.3V supply reaches its stable value. Note: None of system pins (except RESET) provides an open drain output. 2.4 Pin muxing Table 7 defines the pin list and muxing for this device. Each entry of Table 7 shows all the possible configurations for each pin, via the alternate functions. The default function assigned to each pin after reset is indicated by ALT0. Note: Pins labeled “NC” are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable device behavior or damage. Note: Pins labeled “Reserved” are to be tied to ground. Not doing so may cause unpredictable device behavior. 64/137 DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing Port name PCR Peripheral Alternate output function Output Input mux sel functions Input mux select Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g Port A A[0] A[1] A[2] SIUL GPIO[0] ALT0 GPIO[0] — eTimer_0 ETC[0] ALT1 ETC[0] PSMI[35]; PADSEL= 0 PCR[0] DSPI_2 SCK ALT2 SCK PSMI[1]; PADSEL= 0 SIUL — — EIRQ[0] — SIUL GPIO[1] ALT0 GPIO[1] — eTimer_0 ETC[1] ALT1 ETC[1] PSMI[36]; PADSEL= 0 PCR[1] DSPI_2 SOUT ALT2 — — SIUL — — EIRQ[1] — SIUL GPIO[2] ALT0 GPIO[2] — eTimer_0 ETC[2] ALT1 ETC[2] PSMI[37]; PADSEL= 0 FlexPWM_0 A[3] ALT3 A[3] PSMI[23]; PADSEL= 0 PCR[2] DSPI_2 — — SIN PSMI[2]; PADSEL= 0 MC_RGM — — ABS[0] — SIUL — — EIRQ[2] — DocID026934 Rev 1 — M S 73 T14 — M S 74 R1 4 Pull down M S 84 N1 6 65/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name A[3] A[4] A[5] A[6] A[7] 66/137 PCR Peripheral Alternate output function SIUL GPIO[3] ALT0 GPIO[3] — eTimer_0 ETC[3] ALT1 ETC[3] PSMI[38]; PADSEL= 0 DSPI_2 CS0 ALT2 CS0 PSMI[3]; PADSEL= 0 Output Input mux sel functions PCR[3] Input mux select FlexPWM_0 B[3] ALT3 B[3] PSMI[27]; PADSEL= 0 MC_RGM — — ABS[2] — SIUL — — EIRQ[3] — SIUL GPIO[4] ALT0 GPIO[4] — eTimer_1 ETC[0] ALT1 ETC[0] PSMI[9]; PADSEL= 0 DSPI_2 CS1 ALT2 — — PCR[4] PCR[5] PCR[6] PCR[7] eTimer_0 ETC[4] ALT3 ETC[4] PSMI[7]; PADSEL= 0 MC_RGM — — FAB — SIUL — — EIRQ[4] — SIUL GPIO[5] ALT0 GPIO[5] — DSPI_1 CS0 ALT1 CS0 — eTimer_1 ETC[5] ALT2 ETC[5] PSMI[14]; PADSEL= 0 DSPI_0 CS7 ALT3 — — SIUL — — EIRQ[5] — SIUL GPIO[6] ALT0 GPIO[6] — DSPI_1 SCK ALT1 SCK — SIUL — — EIRQ[6] — SIUL GPIO[7] ALT0 GPIO[7] — DSPI_1 SOUT ALT1 — — SIUL — — EIRQ[7] — DocID026934 Rev 1 Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g Pull down M S 92 K1 7 Pull down M S 108 C1 6 — M S 14 H4 — M S 2 G4 — M S 10 F3 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name A[8] A[9] A[10] A[11] Peripheral Alternate output function SIUL GPIO[8] ALT0 GPIO[8] — DSPI_1 — — SIN — SIUL — — EIRQ[8] — SIUL GPIO[9] ALT0 GPIO[9] — DSPI_2 CS1 ALT1 — — B[3] ALT3 B[3] PSMI[27]; PADSEL= 1 FlexPWM_0 — — FAULT[0] PSMI[16]; PADSEL= 0 SIUL GPIO[10] ALT0 GPIO[10] — DSPI_2 CS0 ALT1 CS0 PSMI[3]; PADSEL= 1 PCR[10 FlexPWM_0 ] B[0] ALT2 B[0] PSMI[24]; PADSEL= 0 FlexPWM_0 X[2] ALT3 X[2] PSMI[29]; PADSEL= 0 SIUL — — EIRQ[9] — SIUL GPIO[11] ALT0 GPIO[11] — DSPI_2 SCK ALT1 SCK PSMI[1]; PADSEL= 1 PCR[11 FlexPWM_0 ] A[0] ALT2 A[0] PSMI[20]; PADSEL= 0 FlexPWM_0 A[2] ALT3 A[2] PSMI[22]; PADSEL= 0 SIUL — — EIRQ[10] — PCR PCR[8] PCR[9] FlexPWM_0 Output Input mux sel functions DocID026934 Rev 1 Input mux select Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S 12 F4 — M S 134 B6 — M S 118 A1 3 — M S 120 D1 1 67/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name A[12] A[13] A[14] A[15] 68/137 PCR PCR[12 ] Peripheral Alternate output function SIUL GPIO[12] ALT0 GPIO[12] — DSPI_2 SOUT ALT1 — — FlexPWM_0 A[2] ALT2 A[2] PSMI[22]; PADSEL= 1 Output Input mux sel functions Input mux select FlexPWM_0 B[2] ALT3 B[2] PSMI[26]; PADSEL= 0 SIUL — — EIRQ[11] — SIUL GPIO[13] ALT0 GPIO[13] — FlexPWM_0 B[2] ALT2 B[2] PSMI[26]; PADSEL= 1 DSPI_2 — — SIN PSMI[2]; PADSEL= 1 FlexPWM_0 — — FAULT[0] PSMI[16]; PADSEL= 1 SIUL — — EIRQ[12] — SIUL GPIO[14] ALT0 GPIO[14] — FlexCAN_1 TXD ALT1 — — eTimer_1 ETC[4] ALT2 ETC[4] PSMI[13]; PADSEL= 0 SIUL — — EIRQ[13] — SIUL GPIO[15] ALT0 GPIO[15] — eTimer_1 ETC[5] ALT2 ETC[5] PSMI[14]; PADSEL= 1 PCR[15 FlexCAN_1 ] — — RXD PSMI[34]; PADSEL= 0 FlexCAN_0 — — RXD PSMI[33]; PADSEL= 0 SIUL — — EIRQ[14] — PCR[13 ] PCR[14 ] DocID026934 Rev 1 Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g A1 0 — M S 122 — M S 136 C6 — M S 143 B4 — M S 144 D3 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function Output Input mux sel functions Input mux select Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g Port B B[0] B[1] B[2] B[3] B[4](2) B[5] PCR[16 ] SIUL GPIO[16] ALT0 GPIO[16] — FlexCAN_0 TXD ALT1 — — eTimer_1 ETC[2] ALT2 ETC[2] PSMI[11]; PADSEL= 0 SSCM DEBUG[0] ALT3 — — SIUL — — EIRQ[15] — SIUL GPIO[17] ALT0 GPIO[17] — eTimer_1 ETC[3] ALT2 ETC[3] PSMI[12]; PADSEL= 0 SSCM DEBUG[1] ALT3 — — PCR[17 ] FlexCAN_0 — — RXD PSMI[33]; PADSEL= 1 FlexCAN_1 — — RXD PSMI[34]; PADSEL= 1 SIUL — — EIRQ[16] — SIUL GPIO[18] ALT0 GPIO[18] — TXD ALT1 — — DEBUG[2] ALT3 — — SIUL — — EIRQ[17] — SIUL GPIO[19] ALT0 GPIO[19] — SSCM DEBUG[3] ALT3 — — PCR[18 LINFlexD_0 ] SSCM PCR[19 ] PCR[20 ] PCR[21 ] LINFlexD_0 — — RXD PSMI[31]; PADSEL= 0 SIUL GPIO[20] ALT0 GPIO[20] — JTAGC TDO ALT1 — — SIUL GPIO[21] ALT0 GPIO[21] — JTAGC — — TDI DocID026934 Rev 1 — — M S 109 B1 5 — M S 110 C1 4 — M S 114 A1 4 — M S 116 B1 3 — F S 89 L17 Pull up M S 86 M1 5 69/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name B[6] B[7] B[8] B[9] B[10] B[11] B[12] B[13] PCR PCR[22 ] Peripheral Alternate output function SIUL GPIO[22] ALT0 GPIO[22] — MC_CGM clk_out ALT1 — — DSPI_2 CS2 ALT2 — — SIUL — EIRQ[18] — SIUL — ALT0 GPI[23] — — — RXD PSMI[31]; PADSEL= 1 ADC_0 — — AN[0](3) — SIUL — ALT0 GPI[24] — eTimer_0 — — ETC[5] PSMI[8]; PADSEL= 2 ADC_0 — — AN[1](3) — SIUL — ALT0 GPI[25] — ADC_0 ADC_1 — — AN[11](3) — SIUL — ALT0 GPI[26] — ADC_0 ADC_1 — — AN[12](3) — SIUL — ALT0 GPI[27] — ADC_0 ADC_1 — — AN[13](3) — SIUL — ALT0 GPI[28] — ADC_0 ADC_1 — — AN[14](3) — SIUL — ALT0 GPI[29] — — — RXD PSMI[32]; PADSEL= 0 — — AN[0](3) — PCR[23 LINFlexD_0 ] PCR[24 ] PCR[25 ] PCR[26 ] PCR[27 ] PCR[28 ] PCR[29 LINFlexD_1 ] ADC_1 70/137 Output Input mux sel functions DocID026934 Rev 1 Input mux select Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — F S 138 B3 — — — 43 R5 — — — 47 P7 — — — 52 U7 — — — 53 R8 — — — 54 T8 — — — 55 U8 — — — 60 R1 0 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name B[14] PCR PCR[30 ] Peripheral Alternate output function SIUL — ALT0 GPI[30] — eTimer_0 — — ETC[4] PSMI[7]; PADSEL= 2 SIUL B[15] PCR[31 ] — Output Input mux sel functions Input mux select — EIRQ[19] — — ADC_1 — — AN[1](3) SIUL — ALT0 GPI[31] — SIUL — — EIRQ[20] — ADC_1 — — AN[2](3) — Weak pull config during reset Pad speed(1) Pin # SR C =1 SR 144 257 C pk pk =0 g g — — — 64 P11 — — — 62 R1 1 — — — 66 R1 2 — — — 41 T4 — — — 45 U5 — M S 11 H3 — M S 13 G3 Port C C[0] C[1] C[2] C[4] C[5] PCR[32 ] PCR[33 ] PCR[34 ] SIUL ALT0 GPI[32] AN[3] — (3) — ADC_1 — — SIUL — ALT0 GPI[33] — — ADC_0 — — AN[2](3) SIUL — ALT0 GPI[34] — ADC_0 — — AN[3](3) — SIUL GPIO[36] ALT0 GPIO[36] — DSPI_0 CS0 ALT1 CS0 — X[1] ALT2 X[1] PSMI[28]; PADSEL= 0 SSCM DEBUG[4] ALT3 — — SIUL — — EIRQ[22] — SIUL GPIO[37] ALT0 GPIO[37] — DSPI_0 SCK ALT1 SCK — SSCM DEBUG[5] ALT3 — — PCR[36 FlexPWM_0 ] PCR[37 ] — FlexPWM_0 — — FAULT[3] PSMI[19]; PADSEL= 0 SIUL — — EIRQ[23] — DocID026934 Rev 1 71/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name C[6] C[7] C[10] C[11] C[12] 72/137 PCR Peripheral Alternate output function SIUL GPIO[38] ALT0 GPIO[38] — DSPI_0 SOUT ALT1 — — B[1] ALT2 B[1] PSMI[25]; PADSEL= 0 SSCM DEBUG[6] ALT3 — — SIUL — — EIRQ[24] — SIUL GPIO[39] ALT0 GPIO[39] — A[1] ALT2 A[1] PSMI[21]; PADSEL= 0 PCR[38 FlexPWM_0 ] PCR[39 FlexPWM_0 ] SSCM DEBUG[7] ALT3 — — DSPI_0 — — SIN — SIUL GPIO[42] ALT0 GPIO[42] — DSPI_2 CS2 ALT1 — — A[3] ALT3 A[3] PSMI[23]; PADSEL= 1 FlexPWM_0 — — FAULT[1] PSMI[17]; PADSEL= 0 SIUL GPIO[43] ALT0 GPIO[43] — eTimer_0 ETC[4] ALT1 ETC[4] PSMI[7]; PADSEL= 1 DSPI_2 CS2 ALT2 — — SIUL GPIO[44] ALT0 GPIO[44] — eTimer_0 ETC[5] ALT1 ETC[5] PSMI[8]; PADSEL= 0 DSPI_2 CS3 ALT2 — — PCR[42 FlexPWM_0 ] PCR[43 ] PCR[44 ] Output Input mux sel functions Input mux select DocID026934 Rev 1 Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S 142 D4 — M S 15 K4 — M S 111 A1 5 — M S 80 M1 4 — M S 82 N1 5 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name C[13] C[14] C[15] PCR PCR[45 ] PCR[46 ] Peripheral Alternate output function SIUL GPIO[45] ALT0 GPIO[45] — eTimer_1 ETC[1] ALT1 ETC[1] PSMI[10]; PADSEL= 0 CTU_0 — — EXT_IN PSMI[0]; PADSEL= 0 FlexPWM_0 — — EXT_SYN C PSMI[15]; PADSEL= 0 SIUL GPIO[46] ALT0 GPIO[46] — eTimer_1 ETC[2] ALT1 ETC[2] PSMI[11]; PADSEL= 1 CTU_0 EXT_TGR ALT2 — — SIUL GPIO[47] ALT0 GPIO[47] — FlexRay CA_TR_E N ALT1 — — eTimer_1 ETC[0] ALT2 ETC[0] PSMI[9]; PADSEL= 1 A[1] ALT3 A[1] PSMI[21]; PADSEL= 1 CTU_0 — — EXT_IN PSMI[0]; PADSEL= 1 FlexPWM_0 — — EXT_SYN C PSMI[15]; PADSEL= 1 PCR[47 FlexPWM_0 ] Output Input mux sel functions Input mux select Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S 101 F15 — M S 103 — SY M S 124 A8 — SY M S 125 B8 E1 5 Port D D[0] PCR[48 ] SIUL GPIO[48] ALT0 GPIO[48] — FlexRay CA_TX ALT1 — — eTimer_1 ETC[1] ALT2 ETC[1] PSMI[10]; PADSEL= 1 FlexPWM_0 B[1] ALT3 B[1] PSMI[25]; PADSEL= 1 DocID026934 Rev 1 73/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name D[1] D[2] D[3] D[4] D[5] PCR PCR[49 ] Peripheral Alternate output function SIUL GPIO[49] ALT0 GPIO[49] — eTimer_1 ETC[2] ALT2 ETC[2] PSMI[11]; PADSEL= 2 CTU_0 EXT_TGR ALT3 — — FlexRay — — CA_RX — SIUL GPIO[50] ALT0 GPIO[50] — eTimer_1 ETC[3] ALT2 ETC[3] PSMI[12]; PADSEL= 1 PCR[50 ] PCR[51 ] PCR[52 ] PCR[53 ] FlexPWM_0 X[3] ALT3 X[3] PSMI[30]; PADSEL= 0 FlexRay — — CB_RX — SIUL GPIO[51] ALT0 GPIO[51] — FlexRay CB_TX ALT1 — — eTimer_1 ETC[4] ALT2 ETC[4] PSMI[13]; PADSEL= 1 FlexPWM_0 A[3] ALT3 A[3] PSMI[23]; PADSEL= 2 SIUL GPIO[52] ALT0 GPIO[52] — FlexRay CB_TR_E N ALT1 — — eTimer_1 ETC[5] ALT2 ETC[5] PSMI[14]; PADSEL= 2 FlexPWM_0 B[3] ALT3 B[3] PSMI[27]; PADSEL= 2 SIUL GPIO[53] ALT0 GPIO[53] — DSPI_0 CS3 ALT1 — — FAULT[2] PSMI[18]; PADSEL= 0 FlexPWM_0 74/137 Output Input mux sel functions Input mux select — — DocID026934 Rev 1 Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S 3 E3 — M S 140 C5 — SY M S 128 A7 — SY M S 129 B7 — M S 33 N3 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name D[6] D[7] D[8] D[9] D[10] PCR Peripheral Alternate output function SIUL GPIO[54] ALT0 GPIO[54] — DSPI_0 CS2 ALT1 — — X[3] ALT3 X[3] PSMI[30]; PADSEL= 1 FlexPWM_0 — — FAULT[1] PSMI[17]; PADSEL= 1 SIUL GPIO[55] ALT0 GPIO[55] — DSPI_1 CS3 ALT1 — — DSPI_0 CS4 ALT3 — — SWG analog output — — — SIUL GPIO[56] ALT0 GPIO[56] — DSPI_1 CS2 ALT1 — — eTimer_1 ETC[4] ALT2 ETC[4] PSMI[13]; PADSEL= 2 PCR[54 FlexPWM_0 ] PCR[55 ] PCR[56 ] DSPI_0 CS5 ALT3 — — FlexPWM_0 — — FAULT[3] PSMI[19]; PADSEL= 1 GPIO[57] ALT0 GPIO[57] — X[0] ALT1 X[0] — TXD ALT2 — — SIUL GPIO[58] ALT0 GPIO[58] — FlexPWM_0 A[0] ALT1 A[0] PSMI[20]; PADSEL= 1 SIUL PCR[57 FlexPWM_0 ] LINFlexD_1 PCR[58 ] Output Input mux sel functions Input mux select eTimer_0 — — ETC[0] DocID026934 Rev 1 Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S 34 P3 — M S 37 R4 — M S 32 M3 — M S 26 L3 — M S 76 T15 PSMI[35]; PADSEL= 1 75/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name D[11] D[12] D[14] PCR PCR[59 ] PCR[60 ] PCR[62 ] Peripheral Alternate output function SIUL GPIO[59] ALT0 GPIO[59] — FlexPWM_0 B[0] ALT1 B[0] PSMI[24]; PADSEL= 1 Output Input mux sel functions eTimer_0 — — ETC[1] SIUL GPIO[60] ALT0 GPIO[60] FlexPWM_0 X[1] ALT1 X[1] Input mux select PSMI[28]; PADSEL= 1 — — RXD PSMI[32]; PADSEL= 1 SIUL GPIO[62] ALT0 GPIO[62] — FlexPWM_0 B[1] ALT1 B[1] PSMI[25]; PADSEL= 2 — — ETC[3] Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S 78 R1 6 — M S 99 G1 4 — M S 105 D1 6 — — — 68 T13 — — — 49 U6 — — — 42 U4 — — — 44 T5 — — — 46 R6 — — — 48 T6 — — — 61 T10 PSMI[36]; PADSEL= 1 LINFlexD_1 eTimer_0 Weak pull config during reset PSMI[38]; PADSEL= 1 Port E E[0] E[2] E[4] E[5] E[6] E[7] E[9] 76/137 PCR[64 ] PCR[66 ] PCR[68 ] PCR[69 ] PCR[70 ] PCR[71 ] PCR[73 ] SIUL — ALT0 GPI[64] — ADC_1 — — AN[5](3) — SIUL — ALT0 GPI[66] — — ADC_0 — — AN[5](3) SIUL — ALT0 GPI[68] — ADC_0 — — AN[7](3) — SIUL — ALT0 GPI[69] — (3) — ADC_0 — — AN[8] SIUL — ALT0 GPI[70] — ADC_0 — — AN[4](3) — SIUL — ALT0 GPI[71] — (3) — ADC_0 — — AN[6] SIUL — ALT0 GPI[73] — ADC_1 — — AN[7](3) — DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function PCR[74 ] SIUL — E[10] E[11] E[12] E[13] E[14] E[15] PCR[75 ] PCR[76 ] PCR[77 ] PCR[78 ] PCR[79 ] Output Input mux sel functions ALT0 ADC_1 — — SIUL — ALT0 Input mux select GPI[74] — (3) — GPI[75] — AN[8] AN[4] (3) — ADC_1 — — SIUL — ALT0 GPI[76] — — ADC_1 — — AN[6](3) SIUL GPIO[77] ALT0 GPIO[77] — eTimer_0 ETC[5] ALT1 ETC[5] PSMI[8]; PADSEL= 1 DSPI_2 CS3 ALT2 — — SIUL — — EIRQ[25] — SIUL GPIO[78] ALT0 GPIO[78] — eTimer_1 ETC[5] ALT1 ETC[5] PSMI[14]; PADSEL= 3 SIUL — — EIRQ[26] — SIUL GPIO[79] ALT0 GPIO[79] — DSPI_0 CS1 ALT1 — — SIUL — — EIRQ[27] — Weak pull config during reset Pad speed(1) Pin # SR C =1 SR 144 257 C pk pk =0 g g — — — 63 T11 — — — 65 U1 1 — — — 67 T12 — M S 117 D1 2 — M S 119 B1 2 — M S 121 B11 — M S 133 D7 — M S 139 B5 — F S Port F F[0] F[3] F[4] SIUL GPIO[80] ALT0 GPIO[80] — FlexPWM_0 A[1] ALT1 A[1] PSMI[21]; PADSEL= 2 PCR[80 ] PCR[83 ] PCR[84 ] eTimer_0 — — ETC[2] PSMI[37]; PADSEL= 1 SIUL — — EIRQ[28] — SIUL GPIO[83] ALT0 GPIO[83] — DSPI_0 CS6 ALT1 — — SIUL GPIO[84] ALT0 GPIO[84] — NPC MDO[3] ALT2 — — DocID026934 Rev 1 4 D2 77/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function PCR[85 ] SIUL GPIO[85] ALT0 GPIO[85] — F[5] NPC MDO[2] ALT2 — — PCR[86 ] SIUL GPIO[86] ALT0 GPIO[86] — NPC MDO[1] ALT2 — — PCR[87 ] SIUL GPIO[87] ALT0 GPIO[87] — NPC MCKO ALT2 — — PCR[88 ] SIUL GPIO[88] ALT0 GPIO[88] — NPC MSEO[1] ALT2 — — PCR[89 ] SIUL GPIO[89] ALT0 GPIO[89] — NPC MSEO[0] ALT2 — — PCR[90 ] SIUL GPIO[90] ALT0 GPIO[90] — NPC EVTO ALT2 — — PCR[91 ] SIUL GPIO[91] ALT0 GPIO[91] — NPC — ALT2 EVTI — SIUL GPIO[92] ALT0 GPIO[92] — eTimer_1 ETC[3] ALT1 ETC[3] PSMI[12]; PADSEL= 2 SIUL — — EIRQ[30] — SIUL GPIO[93] ALT0 GPIO[93] — eTimer_1 ETC[4] ALT1 ETC[4] PSMI[13]; PADSEL= 3 SIUL — — EIRQ[31] — GPIO[94] ALT0 GPIO[94] — TXD ALT1 — — GPIO[95] ALT0 GPIO[95] — — — RXD F[6] F[7] F[8] F[9] F[10] F[11] F[12] F[13] F[14] PCR[92 ] PCR[93 ] SIUL PCR[94 ] LINFlexD_1 SIUL F[15] PCR[95 ] LINFlexD_1 Output Input mux sel functions Input mux select Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — F S 5 D1 — F S 8 E2 — F S 19 J1 — F S 20 K2 — F S 23 K1 — F S 24 L1 — M S 25 L2 — M S 106 C1 7 — M S 112 B1 4 — M S 115 C1 3 PSMI[32]; PADSEL= 2 — M S 113 D1 3 — — S S 38 R2 FCCU FCCU _ F[0] 78/137 — FCCU F[0] ALT0 F[0] DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function FCCU _ F[1] — FCCU F[1] Output Input mux sel functions ALT0 F[1] Pad speed(1) Pin # Input mux select Weak pull config during reset — — S S 141 C4 — M S 102 E1 6 — M S 104 D1 7 — M S 100 F17 — M S 85 N1 7 SR C =1 SR 144 257 C pk pk =0 g g Port G SIUL G[2] G[3] G[4] G[5] G[6] GPIO[98] ALT0 GPIO[98] — X[2] ALT1 X[2] PSMI[29]; PADSEL= 1 DSPI_1 CS1 ALT2 — — SIUL GPIO[99] ALT0 GPIO[99] — FlexPWM_0 A[2] ALT1 A[2] PSMI[22]; PADSEL= 2 PCR[98 FlexPWM_0 ] PCR[99 ] PCR[10 0] eTimer_0 — — ETC[4] PSMI[7]; PADSEL= 3 SIUL GPIO[100] ALT0 GPIO[100] — FlexPWM_0 B[2] ALT1 B[2] PSMI[26]; PADSEL= 2 eTimer_0 — — ETC[5] PSMI[8]; PADSEL= 3 SIUL GPIO[101] ALT0 GPIO[101] — X[3] ALT1 X[3] PSMI[30]; PADSEL= 2 DSPI_2 CS3 ALT2 — — SIUL GPIO[102] ALT0 GPIO[102] — PSMI[23]; PADSEL= 3 — M S 98 G1 7 PSMI[27]; PADSEL= 3 — M S 83 P1 7 PCR[10 FlexPWM_0 1] PCR[10 2] FlexPWM_0 SIUL G[7] PCR[10 3] FlexPWM_0 A[3] ALT1 A[3] GPIO[103] ALT0 GPIO[103] B[3] ALT1 B[3] DocID026934 Rev 1 79/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name G[8] G[9] PCR PCR[10 4] PCR[10 5] PCR[10 G[10] 6] G[11] G[12] G[13] G[14] G[15] 80/137 PCR[10 7] Peripheral Alternate output function SIUL GPIO[104] ALT0 GPIO[104] — FlexRay DBG0 ALT1 — — DSPI_0 CS1 ALT2 — — Output Input mux sel functions Input mux select FlexPWM_0 — — FAULT[0] PSMI[16]; PADSEL= 2 SIUL — — EIRQ[21] — SIUL GPIO[105] ALT0 GPIO[105] — FlexRay DBG1 ALT1 — — DSPI_1 CS1 ALT2 — — FlexPWM_0 — — FAULT[1] PSMI[17]; PADSEL= 2 SIUL — — EIRQ[29] — SIUL GPIO[106] ALT0 GPIO[106] — FlexRay DBG2 ALT1 — — DSPI_2 CS3 ALT2 — — FlexPWM_0 — — FAULT[2] PSMI[18]; PADSEL= 1 SIUL GPIO[107] ALT0 GPIO[107] — FlexRay DBG3 ALT1 — — FlexPWM_0 — — FAULT[3] PSMI[19]; PADSEL= 2 PCR[10 8] SIUL GPIO[108] ALT0 GPIO[108] — NPC MDO[11] ALT2 — — PCR[10 9] SIUL GPIO[109] ALT0 GPIO[109] — NPC MDO[10] ALT2 — — PCR[11 0] SIUL GPIO[110] ALT0 GPIO[110] — NPC MDO[9] ALT2 — — PCR[11 1] SIUL GPIO[111] ALT0 GPIO[111] — NPC MDO[8] ALT2 — — DocID026934 Rev 1 Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S 81 P1 6 — M S 79 R1 7 — M S 77 P1 5 — M S 75 U1 5 — F S — F2 — F S — H1 — F S — A6 — F S — J2 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function Output Input mux sel functions Input mux select Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g Port H H[0] H[1] H[2] H[3] H[4] PCR[11 2] SIUL GPIO[112] ALT0 GPIO[112] — NPC MDO[7] ALT2 — — PCR[11 3] SIUL GPIO[113] ALT0 GPIO[113] — NPC MDO[6] ALT2 — — PCR[11 4] SIUL GPIO[114] ALT0 GPIO[114] — NPC MDO[5] ALT2 — — PCR[11 5] SIUL GPIO[115] ALT0 GPIO[115] — NPC MDO[4] ALT2 — — SIUL GPIO[116] ALT0 GPIO[116] — FlexPWM_1 X[0] ALT1 X[0] — PCR[11 6] ETC[0] ALT2 ETC[0] PSMI[39]; PADSEL= 0 SIUL PCR[11 FlexPWM_1 7] DSPI_0 GPIO[117] ALT0 GPIO[117] — A[0] ALT1 A[0] — CS4 ALT3 — — SIUL PCR[11 FlexPWM_1 8] DSPI_0 GPIO[118] ALT0 GPIO[118] — B[0] ALT1 B[0] — CS5 ALT3 — — SIUL GPIO[119] ALT0 GPIO[119] — FlexPWM_1 X[1] ALT1 X[1] — eTimer_2 H[5] H[6] H[7] PCR[11 9] ETC[1] ALT2 ETC[1] PSMI[40]; PADSEL= 0 SIUL PCR[12 FlexPWM_1 0] DSPI_0 GPIO[120] ALT0 GPIO[120] — A[1] ALT1 A[1] — CS6 ALT3 — — SIUL PCR[12 FlexPWM_1 1] DSPI_0 GPIO[121] ALT0 GPIO[121] — B[1] ALT1 B[1] — CS7 ALT3 — — eTimer_2 H[8] H[9] DocID026934 Rev 1 — F S — A5 — F S — F1 — F S — A4 — F S — G1 — M S — L16 — M S — M1 7 — M S — H1 7 — M S — K1 6 — M S — K1 5 — M S — G1 6 81/137 136 Package pinouts and signal descriptions RPC56EL60L5 Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function Output Input mux sel functions Input mux select SIUL PCR[12 H[10] FlexPWM_1 2] eTimer_2 GPIO[122] ALT0 GPIO[122] — X[2] ALT1 X[2] — ETC[2] ALT2 ETC[2] — SIUL PCR[12 3] FlexPWM_1 GPIO[123] ALT0 GPIO[123] — A[2] ALT1 A[2] — SIUL PCR[12 4] FlexPWM_1 GPIO[124] ALT0 GPIO[124] — B[2] ALT1 B[2] — SIUL GPIO[125] ALT0 GPIO[125] — FlexPWM_1 X[3] ALT1 X[3] — H[11] H[12] H[13] PCR[12 5] ETC[3] ALT2 ETC[3] PSMI[42]; PADSEL= 0 SIUL PCR[12 H[14] FlexPWM_1 6] eTimer_2 GPIO[126] ALT0 GPIO[126] — A[3] ALT1 A[3] — ETC[4] ALT2 ETC[4] — SIUL PCR[12 H[15] FlexPWM_1 7] eTimer_2 GPIO[127] ALT0 GPIO[127] — B[3] ALT1 B[3] — ETC[5] ALT2 ETC[5] — eTimer_2 Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S — A11 — M S — C1 1 — M S — B1 0 — M S — G1 5 — M S — A1 2 — M S — J17 — M S — C9 — M S — C1 2 Port I I[0] I[1] 82/137 PCR[12 8] PCR[12 9] SIUL GPIO[128] ALT0 GPIO[128] — eTimer_2 ETC[0] ALT1 ETC[0] PSMI[39]; PADSEL= 1 DSPI_0 CS4 ALT2 — — FlexPWM_1 — — FAULT[0] — SIUL GPIO[129] ALT0 GPIO[129] — eTimer_2 ETC[1] ALT1 ETC[1] PSMI[40]; PADSEL= 1 DSPI_0 CS5 ALT2 — — FlexPWM_1 — — FAULT[1] — DocID026934 Rev 1 RPC56EL60L5 Package pinouts and signal descriptions Table 7. Pin muxing (continued) Port name I[2] I[3] RDY PCR PCR[13 0] PCR[13 1] PCR[13 2] Peripheral Alternate output function SIUL GPIO[130] ALT0 GPIO[130] — eTimer_2 ETC[2] ALT1 ETC[2] PSMI[41]; PADSEL= 1 Output Input mux sel functions Input mux select DSPI_0 CS6 ALT2 — — FlexPWM_1 — — FAULT[2] — SIUL GPIO[131] ALT0 GPIO[131] — eTimer_2 ETC[3] ALT1 ETC[3] PSMI[42]; PADSEL= 1 DSPI_0 CS7 ALT2 — — CTU_0 EXT_TGR ALT3 — — FlexPWM_1 — — FAULT[3] — SIUL GPIO[132] ALT0 GPIO[132] — NPC RDY ALT2 — Weak pull config during reset Pad speed(1) SR C =1 Pin # SR 144 257 C pk pk =0 g g — M S — F16 — M S — E1 7 — F S — K3 — 1. Programmable via the SRC (Slew Rate Control) bit in the respective Pad Configuration Register; S = Slow, M = Medium, F = Fast, SYM = Symmetric (for FlexRay) 2. The default function of this pin out of reset is ALT1 (TDO). 3. Analog Note: Open Drain can be configured by the PCRn for all pins used as output (except FCCU_F[0] and FCCU_F[1] ). DocID026934 Rev 1 83/137 136 Electrical characteristics RPC56EL60L5 3 Electrical characteristics 3.1 Introduction This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for this device. This device is designed to operate at 120 MHz. The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after complete characterization and device qualifications have been completed. The “Symbol” column of the electrical parameter and timings tables contains an additional column containing “SR”, “CC”, “P”, “C”, “T”, or “D”. 3.2 “SR” identifies system requirements—conditions that must be provided to ensure normal device operation. An example is the input voltage of a voltage regulator. “CC” identifies controller characteristics—indicating the characteristics and timing of the signals that the chip provides. “P”, “C”, “T”, or “D” apply only to controller characteristics—specifications that define normal device operation. They specify how each characteristic is guaranteed. – P: parameter is guaranteed by production testing of each individual device. – C: parameter is guaranteed by design characterization. Measurements are taken from a statistically relevant sample size across process variations. – T: parameter is guaranteed by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values are shown in the typical (“typ”) column are within this category. – D: parameters are derived mainly from simulations. Absolute maximum ratings Table 8. Absolute maximum ratings(1) Symbol VDD_HV_REG Parameter SR 3.3 V voltage regulator supply voltage Conditions Min Max Unit — –0.3 4.5(2), (3) V (2), (3) V VDD_HV_IOx SR 3.3 V input/output supply voltage — –0.3 VSS_HV_IOx SR Input/output ground voltage — –0.1 4.5 0.1 (2), (3) V VDD_HV_FLA SR 3.3 V flash supply voltage — –0.3 VSS_HV_FLA SR Flash memory ground — –0.1 0.1 V VDD_HV_OSC SR 3.3 V crystal oscillator amplifier supply voltage — –0.3 4.5 (2), (3) V SR 3.3 V crystal oscillator amplifier reference voltage — –0.1 0.1 V SR 3.3 V / 5.0 V ADC_0 high reference voltage 3.3 V / 5.0 V ADC_1 high reference voltage — –0.3 6.4 (2) V VSS_HV_OSC VDD_HV_ADR0 (2)(3) VDD_HV_ADR1 84/137 DocID026934 Rev 1 4.5 V RPC56EL60L5 Electrical characteristics Table 8. Absolute maximum ratings(1) (continued) Symbol Parameter Conditions Min Max Unit VSS_HV_ADR0 VSS_HV_ADR1 SR ADC_0 ground and low reference voltage ADC_1 ground and low reference voltage — –0.1 0.1 V VDD_HV_ADV SR 3.3 V ADC supply voltage — –0.3 4.5 (4), (3) V VSS_HV_ADV SR 3.3 V ADC supply ground — –0.1 0.1 V TVDD SR Supply ramp rate — 3.0 × 10-6 (3.0 V/sec) 0.5 V/s V/ s –0.3 6.0 (4) SR — Voltage on any pin with respect to ground (VSS_HV_IOx) or Vss_HV_ADRx Relative to VDD VDD + 0.3(4), V –0.3 VIN (5) IINJPAD SR Injected input current on any pin during overload condition — –10 10 mA IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 mA TSTG SR Storage temperature — –55 150 °C 1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect device reliability or cause permanent damage to the device. 2. Any voltage between operating condition and absolute max rating can be sustained for maximum cumulative time of 10 hours. 3. Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance. 4. Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the maximum injection current specification is met and VDDE is within the operating voltage specifications. 5. VDD has to be considered equal to to VDD_HV_ADRx in case of ADC pins, whilst it is VDD_HV_IOx for any other pin. 3.3 Recommended operating conditions Table 9. Recommended operating conditions (3.3 V) Symbol Parameter Conditions Min(1) Max Unit VDD_HV_REG SR 3.3 V voltage regulator supply voltage — 3.0 3.63 V VDD_HV_IOx SR 3.3 V input/output supply voltage — 3.0 3.63 V VSS_HV_IOx SR Input/output ground voltage — 0 0 V VDD_HV_FLA SR 3.3 V flash supply voltage — 3.0 3.63 V VSS_HV_FLA SR Flash memory ground — 0 0 V VDD_HV_OSC SR 3.3 V crystal oscillator amplifier supply voltage — 3.0 3.63 V VSS_HV_OSC SR 3.3 V crystal oscillator amplifier reference voltage — 0 0 V SR 3.3 V / 5.0 V ADC_0 high reference voltage 3.3 V / 5.0 V ADC_1 high reference voltage — 4.5 to 5.5 or 3.0 to 3.63 V VDD_HV_ADR0(2), (3) VDD_HV_ADR1 VDD_HV_ADV SR 3.3 V ADC supply voltage DocID026934 Rev 1 — 3.0 3.63 V 85/137 136 Electrical characteristics RPC56EL60L5 Table 9. Recommended operating conditions (3.3 V) (continued) Symbol Parameter ADC_0 ground and low reference voltage ADC_1 ground and low reference voltage Conditions Min(1) Max Unit — 0 0 V VSS_HV_AD0 VSS_HV_AD1 SR VSS_HV_ADV SR 3.3 V ADC supply ground — 0 0 V VDD_LV_REGCOR SR Internal supply voltage — — — V VSS_LV_REGCOR SR Internal reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V –40 125 °C –40 150 °C (4) (5) VDD_LV_CORx2 VSS_LV_CORx 3 VDD_LV_PLL2 VSS_LV_PLL 3 TA SR Ambient temperature under bias TJ SR Junction temperature under bias fCPU 120 MHz — 1. Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. VDD_HV_ADR0 and VDD_HV_ADR1 cannot be operated at different voltages, and need to be supplied by the same voltage source. 3. must always be applied and should be stable before LBIST starts. If this supply is not above its absolute minimum level, LBIST operations can fail. VDD_HV_ADRx 4. Can be connected to emitter of external NPN. Low voltage supplies are not under user control. They are produced by an onchip voltage regulator. 5. For the device to function properly, the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter, if one is used. 3.4 Thermal characteristics Table 10. Thermal characteristics for LQFP144 package(1) Symbol Parameter Conditions Valu e Unit Single layer board – 1s 44 Four layer board – 2s2p 36 Thermal resistance, junction-to-ambient forced Single layer board – 1s convection at 200 ft/min Four layer board – 2s2p 35 D Thermal resistance junction-to-board(3) — 24 °C/ W RJC D Thermal resistance junction-to-case(4) — 8 °C/ W JT D Junction-to-package-top natural convection(5) — 2 °C/ W RJA D RJMA D RJB 86/137 Thermal resistance, junction-to-ambient natural convection(2) DocID026934 Rev 1 30 °C/ W °C/ W RPC56EL60L5 Electrical characteristics 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Table 11. Thermal characteristics for LFBGA257 package(1) Symbol Parameter Conditions Value Unit Thermal resistance junction-to-ambient natural Single layer board – 1s convection(2) Four layer board – 2s2p 46 °C/ W Thermal resistance, junction-to-ambient forced Single layer board – 1s convection at 200 ft/min Four layer board – 2s2p 37 RJA D RJMA D RJB D Thermal resistance junction-to-board(3) — 13 °C/ W RJC D Thermal resistance junction-to-case(4) — 8 °C/ W JT D Junction-to-package-top natural convection(5) — 2 °C/ W 26 °C/ W 22 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 3.4.1 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: Equation 1: TJ = TA + (RJA × PD) where: TA= ambient temperature for the package (oC) RJA= junction to ambient thermal resistance (oC/W) PD= power dissipation in the package (W) The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in DocID026934 Rev 1 87/137 136 Electrical characteristics RPC56EL60L5 common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: Equation 2: RJA = RJC + RCA where: RJA = junction to ambient thermal resistance (°C/W) RJC= junction to case thermal resistance (°C/W) RCA= case to ambient thermal resistance (°C/W) RJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3: Equation 3 TJ = TT + (JT × PD) where: TT= thermocouple temperature on top of the package (°C) JT= thermal characterization parameter (°C/W) PD= power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. References Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 USA (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. 88/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics 1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54. 2. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic Packaging and Production, pp. 53–58, March 1998. 3. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212–220. 3.5 Electromagnetic Interference (EMI) characteristics The characteristics in Table 13 were measured using: Device configuration, tet conditions, and EM testing per standard IEC61967-2 Supply voltage of 3.3 V DC Ambient temperature of 25 C The configuration information referenced in Table 13 is explained in Table 12. Table 12. EMI configuration summary Configuration name Description Configuration A • • • • • High emission = all pads have max slew rate, LVDS pads running at 40 MHz Oscillator frequency = 40 MHz System bus frequency = 80 MHz No PLL frequency modulation IEC level I ( 36 dBV) Configuration B • • • • • Reference emission = pads use min, mid and max slew rates, LVDS pads disabled Oscillator frequency = 40 MHz System bus frequency = 80 MHz 2% PLL frequency modulation IEC level K( 30 dBV) DocID026934 Rev 1 89/137 136 Electrical characteristics RPC56EL60L5 Table 13. EMI emission testing specifications Symbol VEME Parameter Conditions Min Typ Max Configuration A; frequency range 150 kHz–50 MHz — 16 — Configuration A; frequency range 50– 150 MHz — 16 — Configuration A; frequency range 150– 500 MHz — 32 — Configuration A; frequency range 500– 1000 MHz — 25 — Configuration B; frequency range 50– 150 MHz — 15 — Configuration B; frequency range 50– 150 MHz — 21 — Configuration B; frequency range 150– 500 MHz — 30 — Configuration B; frequency range 500– 1000 MHz — 24 — CC Radiated emissions Unit dBV EMC testing was performed and documented according to these standards: [IEC61508-27.4.5.1.b, IEC61508-2-7.2.3.2.e, IEC61508-2-Table-A.17 (partially), IEC61508-2-TableB.5(partially),SRS2110] EME testing was performed and documented according to these standards: [IEC 61967-2 & -4] EMS testing was performed and documented according to these standards: [IEC 62132-2 & -4] Refer RPC56EL60 for detailed information pertaining to the EMC, EME, and EMS testing and results. 3.6 Electrostatic discharge (ESD) characteristics Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. For more details, the application note Electrostatic Discharge Sensitivity Measurement is available on request. Table 14. ESD ratings(1), (2) No . Symbol Parameter Conditions Clas s Max value(3) Unit 1 VESD(HBM) SR Electrostatic discharge (Human Body Model) TA = 25 °C H1C conforming to AEC-Q100-002 2000 V 2 VESD(MM) SR Electrostatic discharge (Machine Model) TA = 25 °C conforming to AEC-Q100-003 200 V 90/137 DocID026934 Rev 1 M2 RPC56EL60L5 Electrical characteristics Table 14. ESD ratings(1), (2) (continued) No . 3 Symbol VESD(CDM) Parameter SR Conditions Clas s Electrostatic discharge TA = 25 °C (Charged Device Model) conforming to AEC-Q100-011 Max value(3) Unit 500 C3A V 750 (corners) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3. Data based on characterization results, not tested in production. 3.7 Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance: A supply overvoltage is applied to each power supply pin. A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 15. Latch-up results No. 1 3.8 Symbol LU Parameter SR Static latch-up class Conditions TA = 125 °C conforming to JESD 78 Class II level A Voltage regulator electrical characteristics The voltage regulator is composed of the following blocks: High power regulator HPREG1 (internal ballast to support core current) High power regulator HPREG2 (external NPN to support core current) Low voltage detector (LVD_MAIN_1) for 3.3 V supply to IO (VDDIO) Low voltage detector (LVD_MAIN_2) for 3.3 V supply (VDDREG) Low voltage detector (LVD_MAIN_3) for 3.3 V flash supply (VDDFLASH) Low voltage detector (LVD_DIG_MAIN) for 1.2 V digital core supply (HPVDD) Low voltage detector (LVD_DIG_BKUP) for the self-test of LVD_DIG_MAIN High voltage detector (HVD_DIG_MAIN) for 1.2 V digital CORE supply (HPVDD) High voltage detector (HVD_DIG_BKUP) for the self-test of HVD_DIG_MAIN. Power on Reset (POR) HPREG1 uses an internal ballast to support the core current. HPREG2 is used only when external NPN transistor is present on board to supply core current. The RPC56EL60L5 always powers up using HPREG1 if an external NPN transistor is present. Then the RPC56EL60L5 makes a transition from HPREG1 to HPREG2. This transition is dynamic. Once HPREG2 is fully operational, the controller part of HPREG1 is switched off. DocID026934 Rev 1 91/137 136 Electrical characteristics RPC56EL60L5 The following bipolar transistors are supported: BCP68 from ON Semiconductor BCX68 from Infineon Table 16. Characteristics Symbol hFE( ) Parameter DC current gain (Beta) Maximum power dissipation @ TA=25°C(1) PD Value Unit 85 - 375 — 1.5 W 1.0 A ICMaxDC Maximum peak collector current VCESAT Collector-to-emitter saturation voltage(Max) 600(2) mV VBE Base-to-emitter voltage (Max) 1.0 V 1. derating factor 12mW/degC 2. Adjust resistor at bipolar transistor collector for 3.3V to avoid VCE<VCESAT The recommended external ballast transistor is the bipolar transistor BCP68 with the gain range of 85 up to 375 (for IC=500mA, VCE=1V) provided by several suppliers. This includes the gain variations BCP68-10, BCP68-16 and BCP68-25.The most important parameters for the interoperability with the integrated voltage regulator are the DC current gain (hFE) and the temperature coefficient of the gain (XTB). While the specified gain range of most BCP68 vendors is the same, there are slight variations in the temperature coefficient parameter. RPC56EL60L5 Voltage regulator operation was simulated against the typical variation on temperature coefficient and against the specified gain range to have a robust design. Table 17. Voltage regulator electrical specifications Symbol Parameter Cex t CV1V2 tSU 92/137 External decoupling/ stability capacitor Conditions Min Typ Max Unit Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations. 12 — 40 µF SR Combined ESR of external capacitor — 1 — 100 m SR Number of pins for external decoupling/ stability capacitor — 5 — — — 300 — 900 nF — — 2.5 ms SR Total capacitance on 1.2 V pins Start-up time after main supply stabilization Ceramic capacitors, taking into account tolerance, aging, voltage and temperature variation Cload = 10 µF × 4 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics Table 17. Voltage regulator electrical specifications (continued) Symbol — — — — D D D Parameter Conditions Min Typ Max Unit Main High Voltage Power - Low Voltage Detection, upper threshold — — — 2.93 V Main supply low voltage detector, lower threshold — 2.6 — — V 1.355 — 1.495 Digital supply high voltage detector upper threshold Digital supply high voltage detector lower threshold Before a destructive reset initialization phase completion V After a destructive reset initialization phase completion 1.39 — 1.47 Before a destructive reset initialization phase completion 1.315 — 1.455 V After a destructive reset initialization phase completion 1.35 — 1.38 — D Digital supply low voltage detector lower threshold After a destructive reset initialization phase completion 1.080 — 1.140 V — D Digital supply low voltage detector upper threshold After a destructive reset initialization phase completion 1.16 — 1.22 V — D Digital supply low voltage detector lower threshold Before a destructive reset initialization phase 1.080 — 1.226 V — D Digital supply low voltage detector upper threshold Before a destructive reset initialization phase 1.160 — 1.306 V — D POR rising/ falling supply threshold voltage 1.6 — 2.6 V — DocID026934 Rev 1 93/137 136 Electrical characteristics RPC56EL60L5 Table 17. Voltage regulator electrical specifications (continued) Symbol Parameter Supply ramp rate Conditions Min Typ Max Unit — 3 V/s — 0.5 V/µs — — SR — D LVD_MAIN: Time constant of RC filter at LVD input 3.3V noise rejection at the input of LVD comparator 1.1 — — µs — D HVD_DIG: Time constant of RC filter at LVD input 1.2V noise rejection at the input of LVD comparator 0.1 — — µs — D LVD_DIG: Time constant of RC filter at LVD input 1.2V noise rejection at the input of LVD comparator 0.1 — — µs VDD BCP68 BCRTL V1V2 ring on board Rb Rs Cint Lb ESR Cv1v2 Cext V1V2 pin RPC56EL60L5 Figure 4. BCP68 board schematic example Note: 94/137 The minimum value of the ESR is constrained by the resonance caused by the external components, bonding inductance, and internal decoupling. The minimum ESR is required to avoid the resonance and make the regulator stable. DocID026934 Rev 1 RPC56EL60L5 3.9 Electrical characteristics DC electrical characteristics Table 18 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IOx < 3.6 V). Table 18. DC electrical characteristics(1) Symbol Parameter Conditions Min Typ Max Unit VIL D Minimum low level input voltage — –0.1(2) — — V VIL P Maximum level input voltage — — — 0.35 VDD_HV_IOx V VIH P Minimum high level input voltage — 0.65 VDD_HV_IO — — V VIH D Maximum high level input voltage — — — VDD_HV_IOx + 0.1(2) ,(3) V VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — — V VOL_S P Slow, low level output voltage IOL = 1.5 mA — — 0.5 V VOH_S P Slow, high level output voltage IOH = – 1.5 mA VDD_HV_IOx – 0.8 — — V VOL_M P Medium, low level output voltage IOL = 2 mA — — 0.5 V VOH_M P Medium, high level output voltage IOH = –2 mA VDD_HV_IOx – 0.8 — — V VOL_F P Fast, high level output voltage IOL = 11 mA — — 0.5 V VOH_F P Fast, high level output voltage IOH = – 11 mA VDD_HV_IOx – 0.8 — — V x VOL_SYM P Symmetric, high level output voltage IOL = 1.5 mA — — 0.5 V VOH_SYM P Symmetric, high level output voltage IOH = – 1.5 mA VDD_HV_IOx – 0.8 — — V IINJ T DC injection current per pin (all bi-directional ports) — –1 — 1 mA — — P Equivalent pull-up current VIN = VIL –130 IPU VIN = VIH — — –10 — — P Equivalent pull-down current VIN = VIL 10 IPD VIN = VIH — — 130 -1 — 1 -0.25 — 0.25 -0.3 — 0.3 –0.1(2) — 0.35 VDD_HV_IOx Input leakage current (all bidirectional ports) IIL P Input leakage current (all ADC input-only ports)(4) TJ = –40 to +150 °C Input leakage current (shared ADC input-only ports) VILR P RESET, low level input voltage — DocID026934 Rev 1 µA µA A V 95/137 136 Electrical characteristics RPC56EL60L5 Table 18. DC electrical characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit RESET, high level input voltage — 0.65 VDD_HV_IO — VDD_HV_IOx+0.1(2) V VIHR P VHYSR D RESET, Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — — V VOLR D RESET, low level output voltage IOL = 2 mA — — 0.5 V VIN = VIL — — D RESET, equivalent pull-down current 10 IPD VIN = VIH — — 130 x µA 1. These specifications are design targets and subject to change per device characterization. 2. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 8. 3. The max input voltage on the ADC pins is the ADC reference voltage VDD_HV_ADRx. 4. Measured values are applicable to all modes of the pad i.e. IBE = 0/1 and / or APC= 0/1. 3.10 Supply current characteristics Current consumption data is given in Table 19. These specifications are design targets and are subject to change per device characterization. Table 19. Current consumption characteristics Symbol IDD_LV_FULL + IDD_LV_PLL Parameter T Operating current IDD_LV_TYP T Operating current + IDD_LV_PLL(2) IDD_LV_BIST + IDD_LV_PLL 96/137 T Operating current Conditions(1) 1.2 V supplies TJ = 25 C VDD_LV_COR = 1.32 V Min Typ Max — — 50 mA+ 2.18 mA*fCPU[MH z] mA 1.2 V supplies TJ = 150 C VDD_LV_COR = 1.32 V — — 80 mA+ 2.50 mA*fCPU[MH z] 1.2 V supplies TJ = 25 C VDD_LV_COR = 1.32 V — — 26 + 2.10 mA*fCPU[MH z] mA 1.2 V supplies TJ = 150 C VDD_LV_COR = 1.32 V — — 41 mA+ 2.30 mA*fCPU[MH z] 1.2 V supplies during LBIST (full LBIST configuration) TJ = 25 C VDD_LV_COR = 1.32 V — — 250 1.2 V supplies during LBIST (full LBIST configuration) TJ = 150 C VDD_LV_COR = 1.32 V — DocID026934 Rev 1 Unit mA — 290 RPC56EL60L5 Electrical characteristics Table 19. Current consumption characteristics (continued) Symbol Parameter Min Typ Max Unit 1.2 V supplies TJ = 25 C VDD_LV_COR = 1.32 V LSM mode — — 279 mA TJ = 150 C VDD_LV_COR = 1.32 V LSM mode — — 318 mA 1.2V supplies Tj=105C VDD_LV_COR = 1.2V LSM mode — — 275 mA 1.2V supplies Tj=125C VDD_LV_COR = 1.2V LSM mode — — 299 mA 1.2V supplies Tj=105C VDD_LV_COR = 1.2V DPM Mode — — 189 mA 1.2V supplies Tj=125C VDD_LV_COR = 1.2V DPM Mode — — 214 mA 1.2V supplies Tj=150C VDD_LV_COR = 1.2V DPM Mode — — 235 mA T TJ = 25 C VDD_LV_COR = 1.32 V — — 20 T TJ = 55 C Operating current in VDD STOP mode VDD_LV_COR = 1.32 V — — 57 P TJ = 150 C VDD_LV_COR = 1.32 V — — 105 T TJ = 25 C VDD_LV_COR = 1.32 V — — 25 T TJ = 55 C Operating current in VDD HALT mode VDD_LV_COR = 1.32 V — — 64 P TJ = 150 C VDD_LV_COR = 1.32 V — — 115 IDD_LV_TYP P Operating current + IDD_LV_PLL(2) IDD_LV_TYP + IDD_LV_PLL(2) IDD_LV_TYP + IDD_LV_PLL(2) IDD_LV_STOP IDD_LV_HALT Conditions(1) T Operating current T Operating current DocID026934 Rev 1 mA mA 97/137 136 Electrical characteristics RPC56EL60L5 Table 19. Current consumption characteristics (continued) Symbol Conditions(1) Min Typ Max Unit TJ = 150 C 120 MHz ADC operating at 60 MHz VDD_HV_ADC = 3.6 V — — 10 mA TJ = 150 C 120 MHz ADC operating at 60 MHz VDD_HV_REF = 3.6 V — — 3 TJ = 150 C 120 MHz ADC operating at 60 MHz VDD_HV_REF = 5.5 V — — 5 TJ = 150 C 3.3 V supplies 120 MHz — — 900 A D Operating current TJ = 150 C 3.3 V supplies 120 MHz — — 3.5 mA IDD_HV_FLASH (5) T Operating current TJ = 150 C 3.3 V supplies 120 MHz — — 4 mA IDD_HV_PMU T Operating current TJ = 150 C 3.3 V supplies 120 MHz — — 10 mA IDD_HV_ADC(3), (4) Parameter T Operating current IDD_HV_AREF(4) T Operating current IDD_HV_OSC (oscillator T Operating current bypass mode) IDD_HV_OSC (crystal oscillator mode) mA 1. Devices configured for DPM mode, single core only with Core 0 executing typical code at 120 MHz from SRAM and Core 1 in reset. If core execution mode not specified, the device is configured for LSM mode with both cores executing typical code at 120 MHz from SRAM. 2. Enabled Modules in 'Typical mode': FlexPWM0, ETimer0/1/2, CTU, SWG, DMA, FlexCAN0/1, LINFlex, ADC1, DSPI0/1, PIT, CRC, PLL0/1, I/O supply current excluded. If DPM mode is configured, Core_0 is active while Core_1 is in reset during the measurements. 3. Internal structures hold the input voltage less than VDDA + 1.0 V on all pads powered by VDDA supplies, if the maximum injection current specification is met and VDDA is within the operating voltage specifications. 4. This value is the total current for both ADCs. 5. VFLASH is only available in the calibration package. 98/137 DocID026934 Rev 1 RPC56EL60L5 3.11 Electrical characteristics Temperature sensor electrical characteristics Table 20. Temperature sensor electrical characteristics Symbol Parameter TJ = –40 °C to 150 °C — P Accuracy TS D Minimum sampling period 3.12 Conditions — Min Max Unit –10 10 °C 4 — µs Main oscillator electrical characteristics The device provides an oscillator/resonator driver. Figure 5 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. EXTAL Crystal CL EXTAL RP XTAL CL DEVICE VDD I EXTAL Resonator R XTAL DEVICE XTAL DEVICE Figure 5. Crystal oscillator and resonator connection scheme Note: XTAL/EXTAL must not be directly used to drive external circuits. DocID026934 Rev 1 99/137 136 Electrical characteristics RPC56EL60L5 MTRANS 1 0 VXTAL 1/fXOSCHS VXOSCHS 90% VXOSCHSOP 10% TXOSCHSSU valid internal clock Figure 6. Main oscillator electrical characteristics Table 21. Main oscillator electrical characteristics Symbol fXOSCHS Parameter S Oscillator frequency R Oscillator transconductance gmXOSCHS P VXOSCHS D Oscillation amplitude Oscillation operating point Unit Min Typ Max 4.0 — 40.0 MHz VDD = 3.3 V ±10% 4.5 — 13.25 mA/V fOSC = 4, 8, 10, 12, 16 MHz 1.3 — — fOSC = 40 MHz 1.1 — — — — 0.82 — — — 6 — — 2 0.65 × VD — VDD + 0.4 V — 0.35 × VD V — VXOSCHSOP D TXOSCHSSU T Oscillator start-up time VIH S Input high level CMOS R Schmitt Trigger Oscillator bypass mode VIL S Input low level CMOS R Schmitt Trigger Oscillator bypass mode fOSC = 4, 8, 10, 12 MHz(2) fOSC = 16, 40 MHz(2) V –0.4 D 2. The recommended configuration for maximizing the oscillator margin are: XOSC_MARGIN = 0 for 4 MHz quartz XOSC_MARGIN = 1 for 8/16/40 MHz quartz x× DocID026934 Rev 1 V ms D 1. VDD = 3.3 V ±10%, TJ = –40 to +150 °C, unless otherwise specified. 100/137 Value Conditions(1) RPC56EL60L5 3.13 Electrical characteristics FMPLL electrical characteristics Table 22. FMPLL electrical characteristics Symbol Parameter fREF_CRYSTA L D fREF_EXT fPLL_IN fFMPLLOU Min Typ Max Unit Crystal reference 4 — 40 MHz — 4 — 16 MHz — 4 — 120(2) MHz 20 — 150 MHz Phase detector input D frequency range (after predivider) D T fFREE FMPLL reference frequency range(1) Conditions Clock frequency range in normal mode P Free running frequency Measured using clock division (typically 16) fsys D On-chip FMPLL frequency2 — 16 — 120 MHz tCYC D System clock period — — — 1 / fsys ns fLORL fLORH Lower limit 1.6 — 3.7 D Upper limit 24 — 56 fSCM D — 20 — 150 MHz tLOCK P Stable oscillator (fPLLIN = 4 MHz), stable VDD — — 200 µs Loss of reference frequency window(3) MHz Self-clocked mode frequency(4),(5) Lock time tlpll D FMPLL lock time (6), (7) — — — 200 s tdc D Duty cycle of reference — 40 — 60 % Long-term jitter (avg. over 2 ms interval), fFMPLLOUT maximum –6 — 6 ns PHI @ 120 MHz, Input clock @ 4 MHz — — 175 ps Single period jitter (peak to PHI @ 100 MHz, peak) Input clock @ 4 MHz — — 185 ps PHI @ 80 MHz, Input clock @ 4 MHz — — 200 ps PHI @ 16 MHz, Input clock @ 4 MHz — — ±6 ns CJITTER tPKJIT tLTJIT T T CLKOUT period jitter(8),(9),(10),(11) T Long term jitter fLCK D Frequency LOCK range — –6 — 6 % fFMPLLOUT fUL D Frequency un-LOCK range — –18 — 18 % fFMPLLOUT fCS fDS Center spread ±0.25 — ±2.0 D Modulation depth Down spread –0.5 — -8.0 % fFMPLLOUT — — 100 kHz fMOD D Modulation frequency(12) — DocID026934 Rev 1 101/137 136 Electrical characteristics RPC56EL60L5 1. Considering operation with FMPLL not bypassed. 2. With FM; the value does not include a possible +2% modulation 3. “Loss of Reference Frequency” window is the reference frequency range outside of which the FMPLL is in self clocked mode. 4. Self clocked mode frequency is the frequency that the FMPLL operates at when the reference frequency falls outside the fLOR window. 5. fVCO is the frequency at the output of the VCO; its range is 256–512 MHz. fSCM is the self-clocked mode frequency (free running frequency); its range is 20–150 MHz. fSYS = fVCOODF 6. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this FMPLL, load capacitors should not exceed these limits. 7. This specification applies to the period required for the FMPLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 8. This value is determined by the crystal manufacturer and board design. 9. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FMPLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 10. Proper PC board layout procedures must be followed to achieve specifications. 11. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 12. Modulation depth is attenuated from depth setting when operating at modulation frequencies above 50 kHz. 3.14 16 MHz RC oscillator electrical characteristics Table 23. 16 MHz RC oscillator electrical characteristics Value Symbol fRC RCMVAR 3.15 C Parameter Conditions P RC oscillator frequency Fast internal RC oscillator variation over P temperature and supply with respect to fRC at TA = 25 °C in high-frequency configuration Unit Min Typ Max TA = 25 °C — 16 — MH z — 6 — 6 % ADC electrical characteristics The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter. 102/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics Offset Error OSE Gain Error GE 4095 4094 4093 4092 4091 4090 ( 2) 1 LSB ideal =(VrefH-VrefL)/ 4096 = 3.3V/ 4096 = 0.806 mV Total Unadjusted Error TUE = +/- 6 LSB = +/- 4.84mV code out 7 ( 1) 6 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) Differential non-linearity error (DNL) (4) Integral non-linearity error (INL) (5) Center of a step of the actual transfer curve 5 (5) 4 (4) 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 4089 4090 4091 4092 4093 4094 4095 Vin(A) (LSBideal) Offset Error OSE Figure 7. ADC characteristics and error definitions 3.15.1 Input Impedance and ADC Accuracy To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS and Cp2 being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with Cp2 + CS equal to 7.5 pF, a resistance of 133 k is obtained (REQ = 1 / (fS*(Cp2+CS)), where fS represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on Cs) and the sum of RS + RF, the external circuit must be designed to respect the Equation 4: DocID026934 Rev 1 103/137 136 Electrical characteristics RPC56EL60L5 Equation 4: R +R VA S F --------------------- 1--- LSB R 2 EQ Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter Current Limiter RF RL CF Channel Selection Sampling RSW1 RAD CP1 CP2 CS RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW1 Channel Selection Switch Impedance RADSampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 8. Input Equivalent Circuit A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 8): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). 104/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics Voltage Transient on CS VCS VA VA2 V <0.5 LSB 1 2 1 < (RSW + RAD) CS << TS 2 = RL (CS + CP1 + CP2) VA1 TS t Figure 9. Transient Behavior during Sampling Phase In particular two different transient periods can be distinguished: A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is Equation 5 1 = R SW + R AD CP CS ---------------------CP + CS Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Equation 6 1 R SW + R AD C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Equation 7 V A1 C S + C P1 + C P2 = V A C P1 + C P2 A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 DocID026934 Rev 1 105/137 136 Electrical characteristics RPC56EL60L5 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Equation 8 2 R L C S + C P1 + C P2 In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: Equation 9 10 2 = 10 R L C S + C P1 + C P2 TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): Equation 10 VA2 C S + C P1 + C P2 + C F = V A C F + V A1 C P1 + C P2 + C S The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. Analog Source Bandwidth (VA) TC 2 RFCF (Conversion Rate vs. Filter Pole) fF f0 (Anti-aliasing Filtering Condition) Noise 2 f0 fC (Nyquist) f0 f Anti-Aliasing Filter (fF = RC Filter pole) fF f Sampled Signal Spectrum (fC = conversion Rate) f0 fC Figure 10. Spectral representation of input signal 106/137 DocID026934 Rev 1 f RPC56EL60L5 Electrical characteristics Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: Equation 11 V A2 C P1 + C P2 + C F ------------ = -------------------------------------------------------VA C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Equation 12 C F 8192 C S Table 24. ADC conversion characteristics Conditions(1) Min ADC Clock frequency (depends on ADC S configuration) R (The duty cycle depends on AD_CK(2) frequency) — 3 — 60 MHz S Sampling frequency R — — — 983. 6(3) KHz Symbol fCK fs Parameter Typ Max Unit D Sample time(4) 60 MHz 383 — — ns teval D Evaluation time(5) 60 MHz 600 — — ns CS(6) D ADC input sampling capacitance — — 7.32 pF pF tsample — CP1(6) D ADC input pin capacitance 1 — — — 5((7)) CP2(6) D ADC input pin capacitance 2 — — — 0.8 pF VREF range = 4.5 to 5.5 V — — 0.3 k VREF range = 3.0 to 3.6 V — — 875 W D Internal resistance of analog source — — — 825 W INL P Integral non linearity — –3 — 3 LSB DNL P Differential non linearity(8) — –1 — 2 LSB OFS T Offset error — –6 — 6 LSB RSW1(6) RAD (6) D Internal resistance of analog source DocID026934 Rev 1 107/137 136 Electrical characteristics RPC56EL60L5 Table 24. ADC conversion characteristics (continued) Symbol GNE Conditions(1) Min — –6 — 6 LSB –3 — 3 mA |Vref_ad0 - Vref_ad1| < 150mV –3.6 — 3.6 mA Parameter T Gain error IS1WINJ Typ Max Unit (single ADC channel) C Max positive/negative injection IS1WWINJ (double ADC channel) C Max positive/negative injection SNR T Signal-to-noise ratio Vref = 3.3V 67 — — dB SNR T Signal-to-noise ratio Vref = 5.0V 69 — — dB THD T Total harmonic distortion — -65 — — dB SINAD T Signal-to-noise and distortion — 65 — — dB ENOB T Effective number of bits — 10.5 — — bits Without current injection –6 — 6 LSB With current injection –8 — 8 LSB Without current injection –8 — 8 LSB With current injection –10 — 10 LSB TUEIS1WINJ T TUEIS1WWI NJ Total unadjusted error for IS1WINJ (single ADC channels) P Total unadjusted error for IS1WWINJ T (double ADC channels) 1. TJ = –40 to +150 °C, unless otherwise specified and analog input voltage from VAGND to VAREF. 2. AD_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC. 3. This is the maximum frequency that the analog portion of the ADC can attain. A sustained conversion at this frequency is not possible. 4. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tsample depend on programming. 5. This parameter does not include the sample time Tsample, but only the time for determining the digital result. 6. See Figure 8. 7. For the 144-pin package 8. No missing codes 3.16 Flash memory electrical characteristics Table 25. Flash memory program and erase electrical specifications No. Symbol Parameter TDWPROGRAM *(4) TPPROGRAM *(4) Page(128 bits) program 3 T16KPPERASE *(4) 4 T48KPPERASE 5 T64KPPERASE 1 2 108/137 Double word (64 bits) program time(4) Typ (1) Initial Lifetime Max Max(3) (2) Unit 30 — 500 µs 40 160 500 µs 16 KB block pre-program and erase time 250 1000 5000 ms *(4) 48 KB block pre-program and erase time 400 1500 5000 ms *(4) 64 KB block pre-program and erase time 450 1800 5000 ms time(4) DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics Table 25. Flash memory program and erase electrical specifications No. 6 7 Symbol Typ Parameter (1) Initial Lifetime Max Max(3) (2) Unit T128KPPERASE *(4) 128 KB block pre-program and erase time 800 2600 7500 ms T256KPPERASE (4) 256 KB block pre-program and erase time 1400 5200 15000 ms * 1. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25C. These values are characterized, but not tested.I 2. Initial Max program and erase times provide guidance for time-out limits used in the factory and apply for <100 program/erase cycles, nominal supply values and operation at 25C. These values are verified at production test. 3. Lifetime Max program and erase times apply across the voltage, temperature, and cycling range of product life. These values are characterized, but not tested. 4. Program times are actual hardware programming times and do not include software overhead. Table 26. Flash memory timing Value Symbol Parameter Unit Min Typ Max TRES D Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low — — 100 ns TDONE D Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared — — 5 ns TPSRT D Time between program suspend resume and the next program suspend request.(1) 100 — — s TESRT D Time between erase suspend resume and the next erase suspend request.(2) 10 ms 1. Repeated suspends at a high frequency may result in the operation timing out, and the flash module will respond by completing the operation with a fail code (MCR[PEG] = 0), or the operation not able to finish (MCR[DONE] = 1 during Program operation). The minimum time between suspends to ensure this does not occur is TPSRT. 2. If Erase suspend rate is less than TESRT, an increase of slope voltage ramp occurs during erase pulse. This improves erase time but reduces cycling figure due to overstress Table 27. Flash memory module life Value No . Symbol Parameter 1 P/E Number of program/erase cycles per block for 16 KB, C 48 KB, and 64 KB blocks over the operating temperature range(1) 2 P/E Number of program/erase cycles per block for 128 KB C and 256 KB blocks over the operating temperature range(1) DocID026934 Rev 1 Unit Minimu m Typical Maximu m 100000 — — cycle s — cycle s 1000 100000 (2) 109/137 136 Electrical characteristics RPC56EL60L5 Table 27. Flash memory module life (continued) Value No . 3 Symbol Parameter Minimum data retention at 85 °C average ambient temperature(3) Retentio C Blocks with 0–1,000 P/E cycles n Blocks with 1,001–10,000 P/E cycles Blocks with 10,001–100,000 P/E cycles Minimu m Typical Maximu m 20 10 5 — — — — — — Unit year s 1. Operating temperature range is TJ from –40 °C to 150 °C. Typical endurance is evaluated at 25 C. 2. Typical P/E cycles is 100,000 cycles for 128 KB and 256 KB blocks. 3. Ambient temperature averaged over duration of application, not to exceed product operating temperature range. 3.17 SWG electrical characteristics Table 28. RPC56EL60L5 SWG Specifications Value Symbol Parameter T Input clock T Frequency Range T Peak to Peak(1) (2) Minimum Typical Maximum 12 MHz 16 MHz 20 MHz 1kHz — 50 kHz 0.4 V — 2.0V -6% — 6% — 1.3 V — T Peak to Peak variation T Common Mode(3) T Common Mode variation -6% — 6% T SiNAD(4) 45 dB — — T Load C 25 pF — 100 pF T Load I 0 A — 100 A 230 — 360 T ESD Pad Resistance (5) 1. Peak to Peak value is measured with no R or I load. 2. Peak to Peak excludes noise, SiNAD must be considered. 3. Common mode value is measured with no R or I load. 4. SiNAD is measured at Max Peak to Peak voltage. 5. Internal device routing resistance. ESD pad resistance is in series and must be considered for max Peak to Peak voltages, depending on application I load and/or R load. 110/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics 3.18 AC specifications 3.18.1 Pad AC specifications Table 29. Pad AC specifications (3.3 V , IPP_HVE = 0 )(1) Tswitchon(1)(ns) No. 1 2 3 4 Pad Slow Medium Fast Symmetric Rise/Fall(2) (ns) Current slew(3) (mA/ns) Frequency (MHz) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 3 — 40 — — 40 — — 4 0.01 — 2 25 3 — 40 — — 50 — — 2 0.01 — 2 50 3 — 40 — — 75 — — 2 0.01 — 2 100 3 — 40 — — 100 — — 2 0.01 — 2 200 1 — 15 — — 12 — — 40 2.5 — 7 25 1 — 15 — — 25 — — 20 2.5 — 7 50 1 — 15 — — 40 — — 13 2.5 — 7 100 1 — 15 — — 70 — — 7 2.5 — 7 200 1 — 6 — — 4 — — 72 3 — 40 25 1 — 6 — — 7 — — 55 7 — 40 50 1 — 6 — — 12 — — 40 7 — 40 100 1 — 6 — — 18 — — 25 7 — 40 200 1 — 8 — — 5 — — 50 3 — 25 25 T T T T 1. Propagation delay from VDD_HV_IOx/2 of internal signal to Pchannel/Nchannel switch-on condition. 2. Slope at rising/falling edge. 3. Data based on characterization results, not tested in production. DocID026934 Rev 1 111/137 136 Electrical characteristics RPC56EL60L5 VDDE/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH Pad Output VOL Figure 11. Pad output delay 3.19 Reset sequence This section shows the duration for different reset sequences. It describes the different reset sequences and it specifies the start conditions and the end indication for the reset sequences. 3.19.1 Reset sequence duration Table 30 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Section 3.19.2. Table 30. RESET sequences TReset No. Symbol Parameter Conditions Unit Min Typ Max(1) 28 34 39 ms 500 4200 5000 s 28 32 37 ms 1 TDRB CC Destructive Reset Sequence, BIST enabled 2 TDR CC Destructive Reset Sequence, BIST disabled 3 TERLB CC External Reset Sequence Long, BIST enabled 4 TFRL CC Functional Reset Sequence Long — 35 150 400 s 5 TFRS CC Functional Reset Sequence Short — 1 4 10 s — 1. The maximum value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET by an external reset generator. 112/137 DocID026934 Rev 1 RPC56EL60L5 3.19.2 Electrical characteristics Reset sequence description The figures in this section show the internal states of the chip during the five different reset sequences. The doted lines in the figures indicate the starting point and the end point for which the duration is specified in Table 30. The start point and end point conditions as well as the reset trigger mapping to the different reset sequences is specified in Section 3.19.3. With the beginning of DRUN mode the first instruction is fetched and executed. At this point application execution starts and the internal reset sequence is finished. The figures below show the internal states of the chip during the execution of the reset sequence and the possible states of the signal pin RESET. Note: RESET is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the chip internal reset circuitry. A high level on this pin can only be generated by an external pull up resistor which is strong enough to overdrive the weak internal pull down resistor. The rising edge on RESET in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in table Table 30 are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET asserted low beyond the last PHASE3. Reset Sequence Trigger Reset Sequence Start Condition RESET RESET_B PHASE0 PHASE1,2 Establish IRC and PWR Flash init PHASE3 BIST Device Self Test Config Setup MBIST PHASE1,2 LBIST Flash init PHASE3 DRUN Device Application Config Execution TDRB, min < TReset < TDRB, max Figure 12. Destructive Reset Sequence, BIST enabled Reset Sequence Trigger Reset Sequence Start Condition RESET_B RESET PHASE0 PHASE1,2 Establish IRC and PWR Flash init PHASE3 DRUN Device Application Config Execution TDR, min < TReset < TDR, max Figure 13. Destructive Reset Sequence, BIST disabled DocID026934 Rev 1 113/137 136 Electrical characteristics RPC56EL60L5 Reset Sequence Trigger Reset Sequence Start Condition RESET RESET_B PHASE1,2 Flash init PHASE3 BIST Device Self Test Config Setup MBIST PHASE1,2 LBIST PHASE3 Flash init Device Application Config Execution TERLB, min < TReset < TERLB, max Figure 14. External Reset Sequence Long, BIST enabled Reset Sequence Trigger Reset Sequence Start Condition RESET_B RESET PHASE1,2 Flash init PHASE3 DRUN Device Application Config Execution TFRL, min < TReset < TFRL, max Figure 15. Functional Reset Sequence Long Reset Sequence Trigger Reset Sequence Start Condition RESET_B RESET PHASE3 DRUN Application Execution TFRS, min < TReset < TFRS, max Figure 16. Functional Reset Sequence Short 114/137 DocID026934 Rev 1 DRUN RPC56EL60L5 Electrical characteristics The reset sequences shown in Figure 15 and Figure 16 are triggered by functional reset events. RESET is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET low for the duration of the internal reset sequence(c). 3.19.3 Reset sequence trigger mapping The following table shows the possible trigger events for the different reset sequences. It specifies the reset sequence start conditions as well as the reset sequence end indications that are the basis for the timing data provided in Table 30. Table 31. Reset sequence trigger — reset sequence Reset Sequence Reset Sequence Trigger All internal destructive reset sources (LVDs or internal HVD during power-up and during operation) Reset Sequence Start Condition Reset Sequence End Indication Destructive Reset Sequence, BIST enabled(1) Destructive reset All internal functional reset sources configured for long reset All internal functional reset sources configured for short reset External Reset Sequence Long, BIST enabled Functional Reset Sequence Long Functional Reset Sequence Short triggers cannot trigger cannot trigger cannot trigger cannot trigger triggers(4) triggers(5) triggers(6) cannot trigger cannot trigger triggers cannot trigger cannot trigger cannot trigger cannot trigger triggers Release of RESET(2) External reset via RESET Assertion of RESET(3) Destructive Reset Sequence, BIST disabled(1) Sequence starts with internal reset trigger Release of RESET(7) 1. Whether BIST is executed or not depends on the chip configuration data stored in the shadow sector of the NVM. 2. End of the internal reset sequence (as specified in Table 30) can only be observed by release of RESET if it is not held low externally beyond the end of the internal sequence which would prolong the internal reset PHASE3 till RESET is released externally. 3. The assertion of RESET can only trigger a reset sequence if the device was running (RESET released) before. RESET does not gate a Destructive Reset Sequence, BIST enabled or a Destructive Reset Sequence, BIST disabled. However, it can prolong these sequences if RESET is held low externally beyond the end of the internal sequence (beyond PHASE3). 4. If RESET is configured for long reset (default) and if BIST is enabled via chip configuration data stored in the shadow sector of the NVM. 5. If RESET is configured for long reset (default) and if BIST is disabled via chip configuration data stored in the shadow sector of the NVM. c. See RGM_FBRE register for more details. DocID026934 Rev 1 115/137 136 Electrical characteristics RPC56EL60L5 6. If RESET is configured for short reset 7. Internal reset sequence can only be observed by state of RESET if bidirectional RESET functionality is enabled for the functional reset source which triggered the reset sequence. 3.19.4 Reset sequence — start condition The impact of the voltage thresholds on the starting point of the internal reset sequence are becoming important if the voltage rails / signals ramp up with a very slow slew rate compared to the overall reset sequence duration. Destructive reset Figure 17 shows the voltage threshold that determines the start of the Destructive Reset Sequence, BIST enabled and the start for the Destructive Reset Sequence, BIST disabled. V Supply Rail Vmax Vmin t TReset, max starts here TReset, min starts here Figure 17. Reset sequence start for Destructive Resets Table 32. Voltage Thresholds Variable name Value Vmin Refer to Table 17 Vmax Refer to Table 17 Supply Rail VDD_HV_PMU External reset via RESET Figure 18 shows the voltage thresholds that determine the start of the reset sequences initiated by the assertion of RESET as specified in Table 31. 116/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics V RESET_B RESET 0.65 * VDD_HV_IO 0.35 * VDD_HV_IO t TReset, max starts here TReset, min starts here Figure 18. Reset sequence start via RESET assertion 3.19.5 External watchdog window If the application design requires the use of an external watchdog the data provided in Section 3.19 can be used to determine the correct positioning of the trigger window for the external watchdog. Figure 19 shows the relationships between the minimum and the maximum duration of a given reset sequence and the position of an external watchdog trigger window. Watchdog needs to be triggered within this window TWDStart, min External Watchdog Window Closed External Watchdog Window Open TWDStart, max External Watchdog Window Closed External Watchdog Window Open Watchdog trigger TReset, min Basic Application Init Application Running TReset, max Earliest Application Start Basic Application Init Application Running Latest Application Start Application time required to prepare watchdog trigger Internal Reset Sequence Start condition (signal or voltage rail) Figure 19. Reset sequence - External watchdog trigger window position DocID026934 Rev 1 117/137 136 Electrical characteristics 3.20 RPC56EL60L5 AC timing characteristics AC Test Timing Conditions: Unless otherwise noted, all test conditions are as follows: 3.20.1 TJ = –40 to 150 C Supply voltages as specified in Table 9 Input conditions: All Inputs: tr, tf = 1 ns Output Loading: All Outputs: 50 pF RESET pin characteristics The RPC56EL60L5 implements a dedicated bidirectional RESET pin. VDD VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase Figure 20. Start-up reset requirements VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Figure 21. Noise filtering on reset signal 118/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics x No . 1 Table 33. RESET electrical characteristics Symbol Parameter Conditions(1) Min Typ Max CL = 25pF — — 12 CL = 50pF — — 25 CL = 100pF — — 40 Output transition time output D pin(2) Ttr Unit ns 2 WFRST P nRESET input filtered pulse — — — 40 ns 3 WNFRS P nRESET input not filtered pulse — 500 — — ns T 1. VDD = 3.3 V ± 10%, TJ = –40 to +150 °C, unless otherwise specified 2. CL includes device and package capacitance (CPKG < 5 pF). 3.20.2 WKUP/NMI timing Table 34. WKUP/NMI glitch filter No. 3.20.3 Symbol Parameter Min Typ Max Unit 1 WFNMI D NMI pulse width that is rejected — — 45 ns 2 WNFNMI D NMI pulse width that is passed 205 — — ns IEEE 1149.1 JTAG interface timing Table 35. JTAG pin AC electrical characteristics No . Symbol Parameter Conditions Min Max Unit 1 tJCYC D TCK cycle time — 62.5 — ns 2 tJDC D TCK clock pulse width (measured at VDDE/2) — 40 60 % 3 tTCKRISE D TCK rise and fall times (40%–70%) — — 3 ns 4 tTMSS, tTDIS D TMS, TDI data setup time — 5 — ns 5 tTMSH, tTDIH D TMS, TDI data hold time — 25 — ns 6 tTDOV D TCK low to TDO data valid — — 20 ns 7 tTDOI D TCK low to TDO data invalid — 0 — ns 8 tTDOHZ D TCK low to TDO high impedance — — 20 ns 11 tBSDV D TCK falling edge to output valid — — 50 ns 12 tBSDVZ D TCK falling edge to output valid out of high impedance — — 50 ns 13 tBSDHZ D TCK falling edge to output high impedance — — 50 ns 14 tBSDST D Boundary scan input valid to TCK rising edge — 50 — ns 15 tBSDHT D TCK rising edge to boundary scan input invalid — 50 — ns DocID026934 Rev 1 119/137 136 Electrical characteristics RPC56EL60L5 TCK 2 3 2 1 3 Figure 22. JTAG test clock input timing TCK 4 5 TMS, TDI 6 8 7 TDO Figure 23. JTAG test access port timing 120/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 24. JTAG boundary scan timing 3.20.4 Nexus timing Table 36. Nexus debug port timing(1) No. Symbol Parameter Conditions Min Max Unit 1 tMCYC D MCKO Cycle Time — 15.6 — ns 2 tMDC D MCKO Duty Cycle — 40 60 % 3 tMDOV D MCKO Low to MDO, MSEO, EVTO Data Valid(2) — –0.1 0.25 tMCY 4 5 C tEVTIPW D EVTI Pulse Width tEVTOPW D EVTO Pulse Width — 4.0 — tTCY C — tMCY 1 C 6 tTCYC D TCK Cycle 7 tTDC 8 tNTDIS, tNTMSS Time(3) — 62.5 — ns D TCK Duty Cycle — 40 60 % D TDI, TMS Data Setup Time — 8 — ns DocID026934 Rev 1 121/137 136 Electrical characteristics RPC56EL60L5 Table 36. Nexus debug port timing(1) (continued) No. Symbol 9 tNTDIH, tNTMSH 10 tJOV Parameter Conditions Min Max Unit D TDI, TMS Data Hold Time 5 — ns D TCK Low to TDO/RDY Data Valid 0 25 ns 1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 3. The system clock frequency needs to be four times faster than the TCK frequency. 1 2 MCKO 3 MDO MSEO EVTO Output Data Valid 5 Figure 25. Nexus output timing 4 EVTI Figure 26. Nexus EVTI Input Pulse Width 122/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics MCKO MDO, MSEO MDO/MSEO data are valid during MCKO rising and falling edge Figure 27. Nexus Double Data Rate (DDR) Mode output timing DocID026934 Rev 1 123/137 136 Electrical characteristics RPC56EL60L5 6 7 TCK 8 9 TMS, TDI 10 TDO/RDY Figure 28. Nexus TDI, TMS, TDO timing 3.20.5 External interrupt timing (IRQ pin) Table 37. External interrupt timing No. Symbol Parameter Conditions Min Max Unit 1 tIPWL D IRQ pulse width low — 3 — tCYC 2 tIPWH D IRQ pulse width high — 3 — tCYC 3 tICYC D IRQ edge to edge time(1) — 6 — tCYC 1. Applies when IRQ pins are configured for rising edge or falling edge events, but not both. 124/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics IRQ 1 2 3 Figure 29. External interrupt timing 3.20.6 DSPI timing Table 38. DSPI timing No. Symbol Parameter D 1 tSCK D Conditions Master (MTFE = 0) DSPI cycle time D Slave (MTFE = 0) Slave Receive Only Mode(1) Min Max 62 — 62 — 16 — Unit ns 2 tCSC D PCS to SCK delay — 16 — ns 3 tASC D After SCK delay — 16 — ns 4 tSDC D SCK duty cycle — tSCK/2 - 10 tSCK/2 + 10 ns 5 tA D Slave access time SS active to SOUT valid — 40 ns 6 tDIS D Slave SOUT disable time SS inactive to SOUT High-Z or invalid — 10 ns 7 tPCS D PCSx to PCSS time — 13 — ns D PCSS to PCSx time — 13 — ns Master (MTFE = 0) 20 — Slave 2 — Master (MTFE = 1, CPHA = 0) 5 — Master (MTFE = 1, CPHA = 1) 20 — Master (MTFE = 0) –5 — Slave 4 — Master (MTFE = 1, CPHA = 0) 11 — Master (MTFE = 1, CPHA = 1) –5 — C 8 tPAS C 9 10 tSUI tHI D D Data setup time for inputs ns Data hold time for inputs ns DocID026934 Rev 1 125/137 136 Electrical characteristics RPC56EL60L5 Table 38. DSPI timing (continued) No. 11 12 Symbol tSUO tHO D D Parameter Conditions Min Max Master (MTFE = 0) — 4 Slave — 23 Master (MTFE = 1, CPHA = 0) — 12 Master (MTFE = 1, CPHA = 1) — 4 Master (MTFE = 0) –2 — Slave 6 — Master (MTFE = 1, CPHA = 0) 6 — Master (MTFE = 1, CPHA = 1) –2 — Data valid (after SCK edge) ns Data hold time for outputs ns 1. Slave Receive Only Mode can operate at a maximum frequency of 60 MHz. In this mode, the DSPI can receive data on SIN, but no valid data is transmitted on SOUT. 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 10 9 SIN First Data Data 12 SOUT First Data Last Data 11 Data Last Data Note: The numbers shown are referenced in Table 38. Figure 30. DSPI classic SPI timing — master, CPHA = 0 126/137 Unit DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 Data First Data SIN Last Data 12 SOUT First Data 11 Data Last Data Note: The numbers shown are referenced in Table 38. Figure 31. DSPI classic SPI timing — master, CPHA = 1 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Note: The numbers shown are referenced in Table 38. Figure 32. DSPI classic SPI timing — slave, CPHA = 0 DocID026934 Rev 1 127/137 136 Electrical characteristics RPC56EL60L5 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 SOUT First Data 9 SIN Data Last Data Data Last Data 10 First Data Note: The numbers shown are referenced in Table 38. Figure 33. DSPI classic SPI timing — slave, CPHA = 1 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN First Data 10 12 SOUT First Data Last Data Data 11 Data Last Data Note: The numbers shown are referenced in Table 38. Figure 34. DSPI modified transfer format timing — master, CPHA = 0 128/137 DocID026934 Rev 1 RPC56EL60L5 Electrical characteristics PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Note: The numbers shown are referenced in Table 38. Figure 35. DSPI modified transfer format timing — master, CPHA = 1 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) SOUT First Data Data First Data 6 Last Data 10 9 SIN 12 11 5 Data Last Data Note: The numbers shown are referenced in Table 38. Figure 36. DSPI modified transfer format timing – slave, CPHA = 0 DocID026934 Rev 1 129/137 136 Electrical characteristics RPC56EL60L5 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Note: The numbers shown are referenced in Table 38. Figure 37. DSPI modified transfer format timing — slave, CPHA = 1 8 7 PCSS PCSx Note: The numbers shown are referenced in Table 38. Figure 38. DSPI PCS strobe (PCSS) timing 130/137 DocID026934 Rev 1 RPC56EL60L5 Package characteristics 4 Package characteristics 4.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 4.2 Package mechanical data Figure 39. LQFP144 package mechanical drawing DocID026934 Rev 1 131/137 136 Package characteristics RPC56EL60L5 Table 39. LQFP144 mechanical data inches(1) mm Symbol Typ Min A Max Typ 1.6 A1 0.05 0.15 Max 0.0630 0.0020 0.0059 A2 1.4 1.35 1.45 0.0551 0.0531 0.0571 b 0.22 0.17 0.27 0.0087 0.0067 0.0106 0.09 0.2 0.0035 0.0079 c D 22 21.8 22.2 0.8661 0.8583 0.8740 D1 20 19.8 20.2 0.7874 0.7795 0.7953 D3 17.5 E 22 21.8 22.2 0.8661 0.8583 0.8740 E1 20 19.8 20.2 0.7874 0.7795 0.7953 E3 17.5 0.6890 e 0.5 0.0197 L 0.6 0.0177 0.0295 L1 1 k 3.5° 0.0° 7.0° 0.6890 0.45 0.75 0.0236 0.0394 0.0° 7.0° 3.5° Tolerance mm inches ccc 0.08 0.0031 1. Values in inches are converted from mm and rounded to four decimal digits. 132/137 Min DocID026934 Rev 1 RPC56EL60L5 Package characteristics Figure 40. LFBGA257 package mechanical drawing Table 40. LFBGA257 mechanical data DocID026934 Rev 1 133/137 136 Package characteristics RPC56EL60L5 TITLE: LFBGA 14x14x1.7 257 F17x17 PITCH 0.8 BALL 0.4 PACKAGE CODE: JEDEC/EIAJ REFERENCE NUMBER: JEDEC STANDARD NO.95 SECTION 4.5 (Fine pitch, Square Ball Grid Array Package Design Guide) DIMENSIONS DATABOOK (mm) REF. MIN. TYP. A A1 DRAWING (mm) MAX. MIN. TYP. 0.25 0.30 0.35 1.14 1.70 0.21 MAX. NOTES 1.45 (1) A2 1.085 1.03 1.085 A3 0.30 0.26 0.30 0.34 0.77 0.785 0.80 A4 0.80 b 0.35 0.40 0.45 0.35 0.40 0.45 D 13.85 14.00 14.15 13.85 14.00 14.15 13.85 14.00 14.15 13.85 14.00 D1 E 12.80 (2) 12.80 E1 12.80 12.80 e 0.80 0.80 F 0.6 14.15 0.6 ddd 0.12 0.12 eee 0.15 0.15 (3) fff 0.08 0.08 (4) NOTES: (1) - LFBGA stands for Low profile Fine Pitch Ball Grid Array. - Low Profile: The total profile height (Dim A) is measured from the seating plane to the top of the component - The maximum total package height is calculated by the following methodology: A2 Typ+A1 Typ +¥ (A1²+A3²+A4² tolerance values) - Low profile: 1.20mm < A 1.70mm / Fine pitch: e < 1.00mm pitch. (2) – The typical ball diameter before mounting is 0.40mm. (3) - The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. (4) - The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball must lie simultaneously in both tolerance zones. (5) - The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. - A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. 134/137 DocID026934 Rev 1 RPC56EL60L5 5 Ordering information Ordering information Figure 41. Commercial product code structure Example code: Product identifier Core Family Memory Package Temperature Device options Conditioning RPC56 E L 60 L5 C B F Q Y Y = Tray R = Tape and Reel Q = Quality management safety level S = ASILD/SIL3 safety level O = No FlexRay F = FlexRay C = 80 MHz B = 120 MHz B = –40 °C to 105 °C C = –40 °C to 125 °C L5 = LQFP144 60 = 1 MB flash memory L = RPC56XL family E = e200z4d dual core 4 = Single core RPC56 = Power Architecture in 90 nm DocID026934 Rev 1 135/137 136 Revision history 6 RPC56EL60L5 Revision history Table 41 summarizes revisions to this document. Table 41. Document revision history 136/137 Date Revision 23-Sep-2014 1 Changes Initial release. DocID026934 Rev 1 RPC56EL60L5 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2014 STMicroelectronics – All rights reserved DocID026934 Rev 1 137/137 137