SPC56EL70L3, SPC56EL70L5, SPC564L70L3, SPC564L70L5 32-bit Power Architecture®microcontroller for automotive SIL3/ASILD chassis and safety applications Datasheet - production data LQFP144 (20 x 20 x 1.4 mm) LQFP100 (14 x 14x 1.4 mm) – – – – – – Replicated junction temperature sensor Non Maskable Interrupt (NMI) 16-region Memory Protection Unit (MPU) Clock Monitoring Units (CMU) Power Management Unit (PMU) Cyclic Redundancy Check (CRC) unit Decoupled Parallel mode for high performance use of replicated cores Features Nexus Class 3+ interface High-performance e200z4d dual core – 32-bit Power Architecture® technology CPU – Core frequency as high as 120 MHz – Dual issue five-stage pipeline core – Variable Length Encoding (VLE) – Memory Management Unit (MMU) – 4 KB instruction cache with error detection code – Signal Processing Engine (SPE) Interrupts – Replicated 16-priority controller – Replicated 16-channel eDMA controller Memory available – 2 MB flash memory with ECC – 192 KB on-chip SRAM with ECC – Built-in RWW capabilities for EEPROM emulation SIL3/ASILD innovative safety concept: Lock step mode and Fail-safe protection – Sphere of Replication (SoR) for key components (such as CPU core, eDMA, crossbar switch) – Fault Collection and Control Unit (FCCU) – Redundancy Control and Checker Unit (RCCU) on outputs of the SoR connected to FCCU – Boot-time Built-In Self-Test for Memory (MBIST) and Logic (LBIST) triggered by hardware – Boot-time Built-In Self-Test for ADC and flash memory triggered by software – Replicated safety enhanced watchdog July 2015 This is information on a product in full production. GPIOs individually programmable as input, output or special function Three 6-channel general-purpose eTimer units 2 FlexPWM units: Four 16-bit channels per module Communications interfaces – 2 LINFlexD channels – 3 DSPI channels with automatic chip select generation – 3 FlexCAN interfaces (2.0B Active) with 32 message objects – FlexRay module (V2.1 Rev. A) with 2 channels, 64 message buffers and data rates up to 10 Mbit/s Two 12-bit Analog-to-digital Converters (ADC) – 16 input channels – Programmable Cross Triggering Unit (CTU) to synchronize ADCs conversion with timer and PWM Sine wave generator (D/A with low pass filter) On-chip CAN/UART/FlexRay Bootstrap loader Single 3.0 V to 3.6 V voltage supply Ambient temperature range –40 °C to 125 °C Junction temperature range –40 °C to 150 °C DocID023953 Rev 5 1/128 www.st.com Contents SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Contents 1 2/128 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.1 High-performance e200z4d core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.3 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.4 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.5 On-chip flash memory with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.6 On-chip SRAM with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.7 Platform flash memory controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.8 Platform static RAM controller (SRAMC) . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.9 Memory subsystem access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.10 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.11 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.12 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.13 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.14 Frequency-Modulated Phase-Locked Loop (FMPLL) . . . . . . . . . . . . . . 18 1.5.15 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.16 Internal reference clock (RC) oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.17 Clock, reset, power, mode and test control modules (MC_CGM, MC_RGM, MC_PCU, and MC_ME) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.18 Periodic interrupt timer module (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.19 System timer module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.20 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.21 Fault collection and control unit (FCCU) . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.22 System Integration Unit Lite (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.23 Non-maskable interrupt (NMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.24 Boot assist module (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.25 System status and configuration module (SSCM) . . . . . . . . . . . . . . . . . 21 1.5.26 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.27 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 2 3 Contents 1.5.28 Serial communication interface module (LINFlexD) . . . . . . . . . . . . . . . 24 1.5.29 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 25 1.5.30 FlexPWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.31 eTimer module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.32 Sine wave generator (SWG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.33 Analog-to-Digital converter module (ADC) . . . . . . . . . . . . . . . . . . . . . . 28 1.5.34 Cross triggering unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.35 Cyclic redundancy checker (CRC) unit . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.36 Redundancy control and checker unit (RCCU) . . . . . . . . . . . . . . . . . . . 29 1.5.37 Junction temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.38 Nexus port controller (NPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.39 IEEE 1149.1 JTAG controller (JTAGC) . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5.40 Voltage regulator / power management unit (PMU) . . . . . . . . . . . . . . . . 31 1.5.41 Built-In self-test (BIST) capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.4 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5.1 General notes for specifications at maximum junction temperature . . . 79 3.6 Electromagnetic Interference (EMI) characteristics . . . . . . . . . . . . . . . . . 81 3.7 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 82 3.8 Static latch-up (LU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.9 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 83 3.10 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.11 Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . 90 3.12 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 90 DocID023953 Rev 5 3/128 4 Contents SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 3.13 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.14 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . 93 3.15 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.15.1 3.16 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.17 SWG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.18 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.18.1 3.19 3.20 4 Input Impedance and ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Reset sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.19.1 Reset sequence duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.19.2 Reset sequence description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.19.3 Reset sequence trigger mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.19.4 Reset sequence — start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.19.5 External watchdog window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.20.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.20.2 WKUP/NMI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.20.3 IEEE 1149.1 JTAG interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.20.4 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.20.5 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.20.6 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. SPC56XL70/SPC56X64 device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Platform memory access time summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 LQFP100 pin function summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 LQFP144 pin function summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Thermal characteristics for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Thermal characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 EMI configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 EMI emission testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ESD ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Recommended operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Voltage regulator electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Current consumption characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Flash memory program and erase electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 99 Flash memory timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 SPC56XL70 SWG Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Pad AC specifications (3.3 V, IPP_HVE = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 RESET sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Reset sequence trigger — Reset sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Voltage thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 WKUP/NMI glitch filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 DocID023953 Rev 5 5/128 5 List of figures SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. 6/128 SPC56EL70 block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SPC56XL70 LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 SPC56XL70 LQFP144 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 BCP68 board schematic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Input Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Transient Behavior during Sampling Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Pad output delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Destructive Reset Sequence, BIST enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Destructive Reset Sequence, BIST disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 External Reset Sequence Long, BIST enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Functional Reset Sequence Long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Functional Reset Sequence Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Reset sequence start for destructive resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Reset sequence start via RESET assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Reset sequence - External watchdog trigger window position . . . . . . . . . . . . . . . . . . . . . 108 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Nexus DDR Mode output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 DSPI classic SPI timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 DSPI classic SPI timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DSPI classic SPI timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DSPI classic SPI timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 DSPI modified transfer format timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . 118 DSPI modified transfer format timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . 119 DSPI modified transfer format timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 119 DSPI modified transfer format timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . 120 DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP144 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1 Introduction 1.1 Document overview Introduction This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the devices. This document provides electrical specifications, pin assignments, and package diagrams for the SPC56EL70x/SPC564L70x series of microcontroller units (MCUs). For functional characteristics, see the SPC56XL70 Microcontroller Reference Manual. For use of the SPC56XL70 in a fail-safe system according to safety standard ISO26262, see the Safety Application Guide for SPCEL70. 1.2 Description The SPC56EL70x/SPC564L70x series microcontrollers are system-on-chip devices that are built on Power Architecture technology and contain enhancements that improve the architecture’s fit in embedded applications, include additional instruction support for digital signal processing (DSP) and integrate technologies such as an enhanced time processor unit, enhanced queued analog-to-digital converter, Controller Area Network, and an enhanced modular input-output system. The SPC56EL70x/SPC564L70x family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address electrical hydraulic power steering (EHPS), electric power steering (EPS) and airbag applications. The advanced and costefficient host processor core of the SPC56XL70 automotive controller family complies with the Power Architecture embedded category. It operates at speeds as high as 120 MHz and offers high-performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users’ implementations. DocID023953 Rev 5 7/128 127 Introduction 1.3 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Device comparison Table 1. SPC56XL70/SPC56X64 device summary Feature SPC56EL64 SPC56EL70 SPC564L64 SPC564L70 Type 2 × e200z4 (in lock-step or decoupled operation) 2 × e200z4 (in lock-step or decoupled operation) 1 × e200z4 1 × e200z4 Architecture Harvard Execution speed 0–120 MHz (+2% FM) DMIPS intrinsic performance >240 MIPS SIMD (DSP + FPU) CPU Yes MMU 16 entry Instruction set PPC Yes Instruction set VLE Yes Instruction cache 4 KB, EDC MPU-16 regions Yes, replicated module Semaphore unit (SEMA4) Yes Core bus Buses Crossbar Memory 8/128 AHB, 32-bit address, 64-bit data Internal periphery bus Master × slave ports 32-bit address, 32-bit data Lock Step Mode: 4 × 3 Decoupled Parallel Mode: 6 × 3 4x3 Code/data flash 1.5 MB, ECC, RWW 2 MB, ECC, RWW 1.5 MB, ECC, RWW 2 MB, ECC, RWW Static RAM (SRAM) 160 KB, ECC 192 KB, ECC 160 KB, ECC 192 KB, ECC DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Introduction Table 1. SPC56XL70/SPC56X64 device summary (continued) Feature Interrupt Controller (INTC) SPC56EL70 SPC564L64 1 × 4 channels System Timer Module (STM) 1 × 4 channels, replicated module eDMA Yes, replicated module 16 channels, replicated module FlexRay 1 × 64 message buffers, dual channel FlexCAN 3 × 32 message buffers LINFlexD (UART and LIN with DMA support) 2 Clock out Yes Fault Collection and Control Unit (FCCU) Yes Cross Triggering Unit (CTU) Yes eTimer SPC564L70 16 interrupt levels, replicated module Periodic Interrupt Timer (PIT) Software Watchdog Timer (SWT) Modules SPC56EL64 3 × 6 channels(1) FlexPWM 2 Module 4 × (2 + 1) channels(2) Analog-toDigital Converter (ADC) 2 × 12-bit ADC, 16 channels per ADC (3 internal, 4 shared and 9 external) Sine Wave Generator (SWG) 32 point DocID023953 Rev 5 9/128 127 Introduction SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 1. SPC56XL70/SPC56X64 device summary (continued) Feature Modules (cont.) SPC56EL70 SPC564L64 Deserial Serial Peripheral Interface (DSPI) 3 × DSPI as many as 8 chip selects Cyclic Redundancy Checker (CRC) unit Yes Junction temperature sensor (TSENS) Yes, replicated module Digital I/Os 16 Device power supply Supply SPC56EL64 Analog reference voltage 3.3 V with integrated bypassable ballast transistor External ballast transistor not needed for bare die 3.0 V – 3.6 V and 4.5 V – 5.5 V Frequencymodulated phase-locked loop (FMPLL) Clocking 2 Internal RC oscillator External crystal oscillator SPC564L70 16 MHz 4 – 40 MHz Debug Nexus Level 3+ Package s LQFP 100 pins 144 pins Temperature range (junction) –40 to 150 °C Ambient Temperat temperature ure range using external ballast transistor (LQFP) –40 to 125 °C 1. The third eTimer is not connected to any pins on the package. Its usage is confined internally to the device. 2. The second FlexPWM is not connected to any pins on the package. Its usage is confined internally to the device. 10/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.4 Introduction Block diagram Figure 1 shows a top-level block diagram of the SPC56EL70x/SPC564L70x device. Figure 1. SPC56EL70 block diagram PMU JTAG Nexus e200z4 SWT ECSM STM INTC SPE VLE VLE ECSM STM INTC MMU FlexRay I-CACHE eDMA SWT SPE MMU SEMA4 e200z4 SEMA4 I-CACHE eDMA RC Crossbar Switch Crossbar Switch Memory Protection Unit Memory Protection Unit ECC logic for SRAM ECC logic for SRAM PBRIDGE RC TSENS PBRIDGE RC Flash memory ECC bits + logic TSENS SRAM ECC bits ADC BAM CMU CRC CTU DSPI ECC ECSM eDMA FCCU FlexCAN FMPLL INTC IRCOSC JTAG – Analog-to-Digital Converter – Boot Assist Module – Clock Monitoring Unit – Cyclic Redundancy Check unit – Cross Triggering Unit – Serial Peripherals Interface – Error Correction Code – Error Correction Status Module – Enhanced Direct Memory Access controller – Fault Collection and Control Unit – Controller Area Network controller – Frequency Modulated Phase Locked Loop – Interrupt Controller – Internal RC Oscillator – Joint Test Action Group interface LINFlexD MC PBRIDGE PIT PMU RC RTC SEMA4 SIUL SSCM STM SWG SWT TSENS XOSC DocID023953 Rev 5 PIT FCCU SWG CRC DSPI DSPI DSPI LINFlexD LINFlexD FlexCAN FlexCAN FlexCAN eTimer eTimer eTimer FlexPWM FlexPWM CMU CTU CMU CMU IRCOSC ADC ADC Secondary FMPLL SIUL FMPLL SSCM XOSC WakeUp BAM MC RC – LIN controller with DMA support – Mode Entry, Clock, Reset, & Power – Peripheral bridge – Periodic Interrupt Timer – Power Management Unit – Redundancy Checker – Real Time Clock – Semaphore Unit – System Integration Unit Lite – System Status and Configuration Module – System Timer Module – Sine Wave Generator – Software Watchdog Timer – Temperature Sensor – Crystal Oscillator 11/128 127 Introduction SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.5 Feature details 1.5.1 High-performance e200z4d core The e200z4d Power Architecture® core provides the following features: 2 independent execution units, both supporting fixed-point and floating-point operations Dual issue 32-bit Power Architecture technology compliant – 5-stage pipeline (IF, DEC, EX1, EX2, WB) – In-order execution and instruction retirement Full support for Power Architecture instruction set and Variable Length Encoding (VLE) – Mix of classic 32-bit and 16-bit instruction allowed – Optimization of code size possible Thirty-two 64-bit general purpose registers (GPRs) Harvard bus (32-bit address, 64-bit data) – I-Bus interface capable of one outstanding transaction plus one piped with no waiton-data return – D-Bus interface capable of two transactions outstanding to fill AHB pipe I-cache and I-cache controller – No data cache 16-entry MMU 8-entry branch table buffer Branch look-ahead instruction buffer to accelerate branching Dedicated branch address calculator 3 cycles worst case for missed branch Load/store unit – Fully pipelined – Single-cycle load latency – Big- and little-endian modes supported – Misaligned access support – Single stall cycle on load to use Single-cycle throughput (2-cycle latency) integer 32 × 32 multiplication 4 – 14 cycles integer 32 × 32 division (average division on various benchmark of nine cycles) Single precision floating-point unit – 1 cycle throughput (2-cycle latency) floating-point 32 × 32 multiplication – Target 9 cycles (worst case acceptable is 12 cycles) throughput floating-point 32 × 32 division – Special square root and min/max function implemented Signal processing support: APU-SPE 1.1 – 12/128 4 KB, 256-bit cache line (programmable for 2- or 4-way) Support for vectorized mode: as many as two floating-point instructions per clock Vectored interrupt support Reservation instruction to support read-modify-write constructs DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.5.2 Introduction Extensive system development and tracing support via Nexus debug port Crossbar switch (XBAR) The XBAR multi-port crossbar switch supports simultaneous connections between four master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width. The crossbar allows four concurrent transactions to occur from any master port to any slave port, although one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. The crossbar provides the following features: 4 masters and 3 slaves supported per each replicated crossbar – Masters allocation for each crossbar: e200z4d core with two independent bus interface units (BIU) for I and D access (2 masters), one eDMA, one FlexRay – Slaves allocation for each crossbar: a redundant flash-memory controller with 2 slave ports to guarantee maximum flexibility to handle Instruction and Data array, one redundant SRAM controller with 1 slave port each and 1 redundant peripheral bus bridge 32-bit address bus and 64-bit data bus Programmable arbitration priority – Requesting masters can be treated with equal priority and are granted access to a slave port in round-robin method, based upon the ID of the last master to be granted access or a priority order can be assigned by software at application run time Temporary dynamic priority elevation of masters The XBAR is replicated for each processing channel. 1.5.3 Memory protection unit (MPU) The Memory Protection Unit splits the physical memory into 16 different regions. Each master (eDMA, FlexRay, CPU) can be assigned different access rights to each region. 16-region MPU with concurrent checks against each master access 32-byte granularity for protected address region The memory protection unit is replicated for each processing channel. 1.5.4 Enhanced direct memory access (eDMA) The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is used to minimize the overall block size. DocID023953 Rev 5 13/128 127 Introduction SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 The eDMA module provides the following features: 16 channels supporting 8-, 16-, and 32-bit value single or block transfers Support variable sized queues and circular buffered queue Source and destination address registers independently configured to post-increment or stay constant Support major and minor loop offset Support minor and major loop done signals DMA task initiated either by hardware requestor or by software Each DMA task can optionally generate an interrupt at completion and retirement of the task Signal to indicate closure of last minor loop Transfer control descriptors mapped inside the SRAM The eDMA controller is replicated for each processing channel. 1.5.5 On-chip flash memory with ECC This device includes programmable, non-volatile flash memory. The non-volatile memory (NVM) can be used for instruction storage or data storage, or both. The flash memory module interfaces with the system bus through a dedicated flash memory array controller. It supports a 64-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains four 128-bit prefetch buffers. Prefetch buffer hits allow no-wait responses. Buffer misses incur a 3 wait state response at 120 MHz. The flash memory module provides the following features: 1.5.6 2 MB of flash memory in unique multi-partitioned hard macro Sectorization: – Partition 1 (low address): 16 KB + 16 KB + 16 KB + 16 KB – Partition 2 (low address): 16 KB + 16 KB + 16 KB + 16 KB – Partition 3 (low address): 64 KB + 64 KB – Partition 4 (mid address): 128 KB + 128 KB – Partition 5 (high address): 256 KB + 256 KB – Partition 6 (high address): 256 KB + 256 KB – Partition 7 (high address): 256 KB + 256 KB EEPROM emulation (in software) within same module but on different partition 16 KB test sector and 16 KB shadow sector for test, censorship device and user option bits Wait states: – Access time less or equal to 3 WS at 120 MHz + 4% FM (4-1-2-1 access) – Access time less or equal to 2 WS at 80 MHz + 4% FM Flash memory line 128-bit wide with 8-bit ECC on 64-bit word (total 144 bits) Accessed via a 64-bit wide bus for write and a 128-bit wide array for read operations 1-bit error correction, 2-bit error detection On-chip SRAM with ECC The SPC56XL70 SRAM provides a general-purpose single port memory. 14/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Introduction ECC handling is done on a 32-bit boundary for data and it is extended to the address to have the highest possible diagnostic coverage including the array internal address decoder. The SRAM module provides the following features: System SRAM: 192 KB ECC on 32-bit word (syndrome of 7 bits) – 1.5.7 ECC covers SRAM bus address 1-bit error correction, 2-bit error detection Wait states: – 1 wait state at 120 MHz – 0 wait states at 80 MHz Platform flash memory controller The following list summarizes the key features of the flash memory controller: Single AHB port interface supports a 64-bit data bus. All AHB aligned and unaligned reads within the 32-bit container are supported. Only aligned word writes are supported. Array interfaces support a 128-bit read data bus and a 64-bit write data bus for each bank. Code flash (bank0) interface provides configurable read buffering and page prefetch support. – Four page-read buffers (each 128 bits wide) and a prefetch controller support speculative reading and optimized flash access. Single-cycle read responses (0 AHB data-phase wait states) for hits in the buffers. The buffers implement a least-recently-used replacement algorithm to maximize performance. Data flash (bank1) interface includes a 128-bit register to temporarily hold a single flash page. This logic supports single-cycle read responses (0 AHB data-phase wait states) for accesses that hit in the holding register. – No prefetch support is provided for this bank. Programmable response for read-while-write sequences including support for stallwhile-write, optional stall notification interrupt, optional flash operation abort and optional abort notification interrupt. Separate and independent configurable access timing (on a per bank basis) to support use across a wide range of platforms and frequencies. Support of address-based read access timing for emulation of other memory types. Support for reporting of single- and multi-bit error events. Typical operating configuration loaded into programming model by system reset. The platform flash controller is replicated for each processor. 1.5.8 Platform static RAM controller (SRAMC) The SRAMC module is the platform SRAM array controller, with integrated error detection and correction. DocID023953 Rev 5 15/128 127 Introduction SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 The main features of the SRAMC provide connectivity for the following interfaces: XBAR Slave Port (64-bit data path) ECSM (ECC Error Reporting, error injection and configuration) SRAM array The following functions are implemented: ECC encoding (32-bit boundary for data and complete address bus) ECC decoding (32-bit boundary and entire address) Address translation from the AHB protocol on the XBAR to the SRAM array The platform SRAM controller is replicated for each processor. 1.5.9 Memory subsystem access time Every memory access the CPU performs requires at least one system clock cycle for the data phase of the access. Slower memories or peripherals may require additional data phase wait states. Additional data phase wait states may also occur if the slave being accessed is not parked on the requesting master in the crossbar. Table 2 shows the number of additional data phase wait states required for a range of memory accesses. Table 2. Platform memory access time summary AHB transfer Data phase wait states Description e200z4d instruction fetch 0 Flash memory prefetch buffer hit (page hit) e200z4d instruction fetch 3 Flash memory prefetch buffer miss (based on 4-cycle random flash array access time) e200z4d data read 0–1 SRAM read e200z4d data write 0 SRAM 32-bit write e200z4d data write 0 SRAM 64-bit write (executed as 2 x 32-bit writes) e200z4d data write 0–2 SRAM 8-,16-bit write (Read-modify-Write for ECC) e200z4d flash memory read 0 Flash memory prefetch buffer hit (page hit) e200z4d flash memory read 3 Flash memory prefetch buffer miss (at 120 MHz; includes 1 cycle of program flash memory controller arbitration) 1.5.10 Error correction status module (ECSM) The ECSM on this device manages the ECC configuration and reporting for the platform memories (flash memory and SRAM). It does not implement the actual ECC calculation. A detected error (double error for flash memory or SRAM) is also reported to the FCCU. The following errors and indications are reported into the ECSM dedicated registers: 16/128 ECC error status and configuration for flash memory and SRAM ECC error reporting for flash memory ECC error reporting for SRAM ECC error injection for SRAM DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.5.11 Introduction Peripheral bridge (PBRIDGE) The PBRIDGE implements the following features: 1.5.12 Duplicated periphery Master access right per peripheral (per master: read access enable; write access enable) Checker applied on PBRIDGE output toward periphery Byte endianess swap capability Interrupt controller (INTC) The INTC provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. For high-priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource can not preempt each other. The INTC provides the following features: Duplicated periphery Unique 9-bit vector per interrupt source 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source Priority elevation for shared resource The INTC is replicated for each processor. DocID023953 Rev 5 17/128 127 Introduction 1.5.13 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 System clocks and clock generation The following list summarizes the system clock and clock generation on this device: Lock status continuously monitored by lock detect circuitry Loss-of-clock (LOC) detection for reference and feedback clocks On-chip loop filter (for improved electromagnetic interference performance and fewer external components required) Programmable output clock divider of system clock (1, 2, 4, 8) FlexPWM module and as many as three eTimer modules running on an auxiliary clock independent from system clock (with max frequency 120 MHz) On-chip crystal oscillator with automatic level control Dedicated internal 16 MHz internal RC oscillator for rapid start-up – 1.5.14 Supports automated frequency trimming by hardware during device startup and by user application Auxiliary clock domain for motor control periphery (FlexPWM, eTimer, CTU, ADC, and SWG) Frequency-Modulated Phase-Locked Loop (FMPLL) Each device has two FMPLLs. Each FMPLL allows the user to generate high speed system clocks starting from a minimum reference of 4 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The FMPLL multiplication factor, output clock divider ratio are all software configurable. The FMPLLs have the following major features: 18/128 Input frequency: 4–40 MHz continuous range (limited by the crystal oscillator) Voltage controlled oscillator (VCO) range: 256–512 MHz Frequency modulation via software control to reduce and control emission peaks – Modulation depth ±2% if centered or 0% to –4% if downshifted via software control register – Modulation frequency: triangular modulation with 25 KHz nominal rate Option to switch modulation on and off via software interface Reduced frequency divider (RFD) for reduced frequency operation without re-lock 3 modes of operation – Bypass mode – Normal FMPLL mode with crystal reference (default) – Normal FMPLL mode with external reference Lock monitor circuitry with lock status Loss-of-lock detection for reference and feedback clocks Self-clocked mode (SCM) operation On-chip loop filter Auxiliary FMPLL – Used for FlexRay due to precise symbol rate requirement by the protocol – Used for motor control periphery and connected IP (A/D digital interface CTU) to allow independent frequencies of operation for PWM and timers and jitter-free control DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.5.15 Introduction – Option to enable/disable modulation to avoid protocol violation on jitter and/or potential unadjusted error in electric motor control loop – Allows to run motor control periphery at different (precisely lower, equal or higher as required) frequency than the system to ensure higher resolution Main oscillator The main oscillator provides these features: 1.5.16 Input frequency range 4–40 MHz Crystal input mode External reference clock (3.3 V) input mode FMPLL reference Internal reference clock (RC) oscillator The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared to the stable bandgap reference voltage. The RC oscillator is the device safe clock. The RC oscillator provides these features: 1.5.17 Nominal frequency 16 MHz ±5% variation over voltage and temperature after process trim Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the FMPLL RC oscillator is used as the default system clock during startup and can be used as back-up input source of FMPLL(s) in case XOSC fails Clock, reset, power, mode and test control modules (MC_CGM, MC_RGM, MC_PCU, and MC_ME) These modules provide the following: 1.5.18 Clock gating and clock distribution control Halt, stop mode control Flexible configurable system and auxiliary clock dividers Various execution modes – HALT and STOP mode as reduced activity low power mode – Reset, Idle, Test, Safe – Various RUN modes with software selectable powered modules – No stand-by mode implemented (no internal switchable power domains) Periodic interrupt timer module (PIT) The PIT module implements the following features: 4 general purpose interrupt timers 32-bit counter resolution Can be used for software tick or DMA trigger operation DocID023953 Rev 5 19/128 127 Introduction 1.5.19 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 System timer module (STM) The STM implements the following features: Up-counter with 4 output compare registers OS task protection and hardware tick implementation per AUTOSAR(a) requirement The STM is replicated for each processor. 1.5.20 Software watchdog timer (SWT) This module implements the following features: Fault tolerant output Safe internal RC oscillator as reference clock Windowed watchdog Program flow control monitor with 16-bit pseudorandom key generation Allows a high level of safety (SIL3 monitor) The SWT module is replicated for each processor. 1.5.21 Fault collection and control unit (FCCU) The FCCU module has the following features: 1.5.22 Redundant collection of hardware checker results Redundant collection of error information and latch of faults from critical modules on the device Collection of self-test results Configurable and graded fault control – Internal reactions (no internal reaction, IRQ, Functional Reset, Destructive Reset, or Safe mode entered) – External reaction (failure is reported to the external/surrounding system via configurable output pins) System Integration Unit Lite (SIUL) The SIUL controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and system reset operation. The reset configuration block contains the external pin boot configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. a. Automotive Open System Architecture 20/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Introduction The SIU provides the following features: 1.5.23 Centralized pad control on a per-pin basis – Pin function selection – Configurable weak pull-up/down – Configurable slew rate control (slow/medium/fast) – Hysteresis on GPIO pins – Configurable automatic safe mode pad control Input filtering for external interrupts Non-maskable interrupt (NMI) The non-maskable interrupt with de-glitching filter supports high-priority core exceptions. 1.5.24 Boot assist module (BAM) The BAM is a block of read-only memory with hard-coded content. The BAM program is executed only if serial booting mode is selected via boot configuration pins. The BAM provides the following features: 1.5.25 Enables booting via serial mode (FlexCAN or LINFlex-UART) Supports programmable 64-bit password protection for serial boot mode Supports serial bootloading of either Power Architecture code (default) or VLE code Automatic switch to serial boot mode if internal flash memory is blank or invalid System status and configuration module (SSCM) The SSCM on this device features the following: 1.5.26 System configuration and status Debug port status and debug port enable Multiple boot code starting locations out of reset through implementation of search for valid Reset Configuration Half Word Sets up the MMU to allow user boot code to execute as either Power Architecture code (default) or as VLE code out of flash memory Triggering of device self-tests during reset phase of device boot FlexCAN The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: realtime processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. DocID023953 Rev 5 21/128 127 Introduction SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 The FlexCAN module provides the following features: – Standard data and remote frames – Extended data and remote frames – 0 to 8 bytes data length – Programmable bit rate as fast as 1Mbit/s 32 message buffers of 0 to 8 bytes data length Each message buffer configurable as receive or transmit buffer, all supporting standard and extended messages Programmable loop-back mode supporting self-test operation 3 programmable mask registers Programmable transmit-first scheme: lowest ID or lowest buffer number Time stamp based on 16-bit free-running timer Global network time, synchronized by a specific message Maskable interrupts Independent of the transmission medium (an external transceiver is assumed) High immunity to EMI Short latency time due to an arbitration scheme for high-priority messages Transmit features 22/128 Full implementation of the CAN protocol specification, version 2.0B – Supports configuration of multiple mailboxes to form message queues of scalable depth – Arbitration scheme according to message ID or message buffer number – Internal arbitration to guarantee no inner or outer priority inversion – Transmit abort procedure and notification Receive features – Individual programmable filters for each mailbox – 8 mailboxes configurable as a 6-entry receive FIFO – 8 programmable acceptance filters for receive FIFO Programmable clock source – System clock – Direct oscillator clock to avoid FMPLL jitter DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.5.27 Introduction FlexRay The FlexRay module provides the following features: Full implementation of FlexRay Protocol Specification 2.1 Rev. A 64 configurable message buffers can be handled Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate Message buffers configurable as transmit or receive Message buffer size configurable Message filtering for all message buffers based on Frame ID, cycle count, and message ID Programmable acceptance filters for receive FIFO Message buffer header, status, and payload data stored in system memory (SRAM) Internal FlexRay memories have error detection and correction DocID023953 Rev 5 23/128 127 Introduction 1.5.28 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Serial communication interface module (LINFlexD) The LINFlexD module (LINFlex with DMA support) on this device features the following: Supports LIN Master mode, LIN Slave mode and UART mode LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications Manages LIN frame transmission and reception without CPU intervention LIN features 24/128 – Autonomous LIN frame handling – Message buffer to store as many as 8 data bytes – Supports messages as long as 64 bytes – Detection and flagging of LIN errors (Sync field, delimiter, ID parity, bit framing, checksum and Time-out errors) – Classic or extended checksum calculation – Configurable break duration of up to 50-bit times – Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional) – Diagnostic features (Loop back, LIN bus stuck dominant detection) – Interrupt driven operation with 16 interrupt sources LIN slave mode features – Autonomous LIN header handling – Autonomous LIN response handling UART mode – Full-duplex operation – Standard non return-to-zero (NRZ) mark/space format – Data buffers with 4-byte receive, 4-byte transmit – Configurable word length (8-bit, 9-bit, or 16-bit words) – Configurable parity scheme: none, odd, even, always 0 – Speed as fast as 2 Mbit/s – Error detection and flagging (Parity, Noise and Framing errors) – Interrupt driven operation with four interrupt sources – Separate transmitter and receiver CPU interrupt sources – 16-bit programmable baud-rate modulus counter and 16-bit fractional – 2 receiver wake-up methods Support for DMA enabled transfers DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.5.29 Introduction Deserial serial peripheral interface (DSPI) The DSPI modules provide a synchronous serial interface for communication between the SPC56XL70 and external devices. A DSPI module provides these features: 1.5.30 Full duplex, synchronous transfers Master or slave operation Programmable master bit rates Programmable clock polarity and phase End-of-transmission interrupt flag Programmable transfer baud rate Programmable data frames from 4 to 16 bits As many as 8 chip select lines available, depending on package and pin multiplexing 4 clock and transfer attributes registers Chip select strobe available as alternate function on one of the chip select pins for deglitching FIFOs for buffering as many as 5 transfers on the transmit and receive side Queueing operation possible through use of the eDMA General purpose I/O functionality on pins when not used for SPI FlexPWM The pulse width modulator module (FlexPWM) contains four PWM channels, each of which is configured to control a single half-bridge power stage. One module is present in LQFP144 package. Additionally, four fault input channels are provided per FlexPWM module. This PWM is capable of controlling most motor types, including: AC induction motors (ACIM) Permanent Magnet AC motors (PMAC) Brushless (BLDC) and brush DC motors (BDC) Switched (SRM) and variable reluctance motors (VRM) Stepper motors DocID023953 Rev 5 25/128 127 Introduction SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 A FlexPWM module implements the following features: 16 bits of resolution for center, edge aligned, and asymmetrical PWMs Maximum operating frequency as high as 120 MHz – Fine granularity control for enhanced resolution of the PWM period PWM outputs can operate as complementary pairs or independent channels Ability to accept signed numbers for PWM generation Independent control of both edges of each PWM output Synchronization to external hardware or other PWM supported Double buffered PWM registers – Integral reload rates from 1 to 16 – Half cycle reload capability Multiple ADC trigger events can be generated per PWM cycle via hardware Fault inputs can be assigned to control multiple PWM outputs Programmable filters for fault inputs Independently programmable PWM output polarity Independent top and bottom deadtime insertion Each complementary pair can operate with its own PWM frequency and deadtime values Individual software control for each PWM output All outputs can be forced to a value simultaneously PWMX pin can optionally output a third signal from each channel Channels not used for PWM generation can be used for buffered output compare functions Channels not used for PWM generation can be used for input capture functions Enhanced dual edge capture functionality Option to supply the source for each complementary PWM signal pair from any of the following: 26/128 Clock source not modulated and independent from system clock (generated via secondary FMPLL) – External digital pin – Internal timer channel – External ADC input, taking into account values set in ADC high- and low-limit registers DMA support DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.5.31 Introduction eTimer module The SPC56XL70 provides two eTimer modules on the LQFP144 package. Six 16-bit general purpose up/down timer/counters per module are implemented with the following features: Maximum clock frequency of 120 MHz Individual channel capability 1.5.32 – Input capture trigger – Output compare – Double buffer (to capture rising edge and falling edge) – Separate prescaler for each counter – Selectable clock source – 0–100% pulse measurement – Rotation direction flag (Quad decoder mode) Maximum count rate – Equals peripheral clock divided by 2 for external event counting – Equals peripheral clock for internal clock counting Cascadeable counters Programmable count modulo Quadrature decode capabilities Counters can share available input pins Count once or repeatedly Preloadable counters Pins available as GPIO when timer functionality not in use DMA support Sine wave generator (SWG) A digital-to-analog converter is available to generate a sine wave based on 32 stored values for external devices (ex: resolver). Frequency range from 1 KHz to 50 KHz Sine wave amplitude from 0.47 V to 2.26 V DocID023953 Rev 5 27/128 127 Introduction 1.5.33 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Analog-to-Digital converter module (ADC) The ADC module features include: Analog part: 2 on-chip ADCs – 12-bit resolution SAR architecture – Same digital interface as in the SPC560P family – A/D Channels: 9 external, 3 internal and 4 shared with other A/D (total 16 channels) – One channel dedicated to each T-sensor to enable temperature reading during application – Separated reference for each ADC – Shared analog supply voltage for both ADCs – One sample and hold unit per ADC – Adjustable sampling and conversion time Digital part: 4 analog watchdogs comparing ADC results against predefined levels (low, high, range) before results are stored in the appropriate ADC result location 2 modes of operation: CPU Mode or CTU Mode CPU mode features 1.5.34 – Register based interface with the CPU: one result register per channel – ADC state machine managing three request flows: regular command, hardware injected command, software injected command – Selectable priority between software and hardware injected commands – 4 analog watchdogs comparing ADC results against predefined levels (low, high, range) – DMA compatible interface CTU mode features – Triggered mode only – 4 independent result queues (116 entries, 28 entries, 14 entries) – Result alignment circuitry (left justified; right justified) – 32-bit read mode allows to have channel ID on one of the 16-bit parts – DMA compatible interfaces Built-in self-test features triggered by software Cross triggering unit (CTU) The ADC cross triggering unit allows automatic generation of ADC conversion requests on user selected conditions without CPU load during the PWM period and with minimized CPU load for dynamic configuration. 28/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Introduction The CTU implements the following features: 1.5.35 Cross triggering between ADC, FlexPWM, eTimer, and external pins Double buffered trigger generation unit with as many as 8 independent triggers generated from external triggers Maximum operating frequency less than or equal to 120 MHz Trigger generation unit configurable in sequential mode or in triggered mode Trigger delay unit to compensate the delay of external low pass filter Double buffered global trigger unit allowing eTimer synchronization and/or ADC command generation Double buffered ADC command list pointers to minimize ADC-trigger unit update Double buffered ADC conversion command list with as many as 24 ADC commands Each trigger capable of generating consecutive commands ADC conversion command allows control of ADC channel from each ADC, single or synchronous sampling, independent result queue selection DMA support with safety features Cyclic redundancy checker (CRC) unit The CRC module is a configurable multiple data flow unit to compute CRC signatures on data written to its input register. The CRC unit has the following features: 1.5.36 3 sets of registers to allow 3 concurrent contexts with possibly different CRC computations, each with a selectable polynomial and seed Computes 16- or 32-bit wide CRC on the fly (single-cycle computation) and stores result in internal register. The following standard CRC polynomials are implemented: – x8 + x4 + x3 + x2 + 1 [8-bit CRC] – x16 + x12 + x5 + 1 [16-bit CRC-CCITT] – x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 [32-bit CRC-ethernet(32)] Key engine to be coupled with communication periphery where CRC application is added to allow implementation of safe communication protocol Offloads core from cycle-consuming CRC and helps checking configuration signature for safe start-up or periodic procedures CRC unit connected as peripheral bus on internal peripheral bus DMA support Redundancy control and checker unit (RCCU) The RCCU checks all outputs of the sphere of replication (addresses, data, control signals). It has the following features: Duplicated module to guarantee highest possible diagnostic coverage (check of checker) Multiple times replicated IPs are used as checkers on the SoR outputs DocID023953 Rev 5 29/128 127 Introduction 1.5.37 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Junction temperature sensor The junction temperature sensor provides a value via an ADC channel that can be used by software to calculate the device junction temperature. The key parameters of the junction temperature sensor include: 1.5.38 Nominal temperature range from –40 to 150 °C Software temperature alarm via analog ADC comparator possible Nexus port controller (NPC) The NPC module provides real-time development support capabilities for this device in compliance with the IEEE-ISTO 5001-2008 standard. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NPC block interfaces to the host processor and internal buses to provide development support as per the IEEE-ISTO 5001-2008 Class 3+, including selected features from Class 4 standard. The development support provided includes program trace, data trace, watchpoint trace, ownership trace, run-time access to the MCUs internal memory map and access to the Power Architecture internal registers during halt. The Nexus interface also supports a JTAG only mode using only the JTAG pins. The following features are implemented: Full and reduced port modes MCKO (message clock out) pin 4 or 12 MDO (message data out) pins(b) 2 MSEO (message start/end out) pins EVTO (event out) pin – Auxiliary input port EVTI (event in) pin 5-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK) – Supports JTAG mode Host processor (e200) development support features – Data trace via data write messaging (DWM) and data read messaging (DRM). This allows the development tool to trace reads or writes, or both, to selected internal memory resources. – Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by providing visibility of which process ID or operating system task is activated. An ownership trace message is transmitted when a new process/task is activated, allowing development tools to trace ownership flow. – Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow discontinuities (direct branches, indirect branches, exceptions, etc.), allowing the development tool to interpolate what transpires between the discontinuities. Thus, static code may be traced. – Watchpoint messaging (WPM) via the auxiliary port b. 4 MDO pins on LQFP144 package 30/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 1.5.39 – Watchpoint trigger enable of program and/or data trace messaging – Data tracing of instruction fetches via private opcodes Introduction IEEE 1149.1 JTAG controller (JTAGC) The JTAGC block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard. The JTAG controller provides the following features: 1.5.40 IEEE Test Access Port (TAP) interface with 5 pins: – TDI – TMS – TCK – TDO – JCOMP Selectable modes of operation include JTAGC/debug or normal system operation 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions: – BYPASS – IDCODE – EXTEST – SAMPLE – SAMPLE/PRELOAD 3 test data registers: a bypass register, a boundary scan register, and a device identification register. The size of the boundary scan register is parameterized to support a variety of boundary scan chain lengths. TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry Voltage regulator / power management unit (PMU) The on-chip voltage regulator module provides the following features: Single external rail required Single high supply required: nominal 3.3 V both for packaged and Known Good Die option – Packaged option requires external ballast transistor due to reduced dissipation capacity at high temperature but can use embedded transistor if power dissipation is maintained within package dissipation capacity (lower frequency of operation) – Known Good Die option uses embedded ballast transistor as dissipation capacity is increased to reduce system cost All I/Os are at same voltage as external supply (3.3 V nominal) Duplicated Low-Voltage Detectors (LVD) to guarantee proper operation at all stages (reset, configuration, normal operation) and, to maximize safety coverage, one LVD can be tested while the other operates (on-line self-testing feature) DocID023953 Rev 5 31/128 127 Introduction 1.5.41 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Built-In self-test (BIST) capability This device includes the following protection against latent faults: 32/128 Boot-time Memory Built-In Self-Test (MBIST) Boot-time scan-based Logic Built-In Self-Test (LBIST) Run-time ADC Built-In Self-Test (BIST) Run-time Built-In Self Test of LVDs DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- 2 Package pinouts and signal descriptions 2.1 Package pinouts Figure 2 shows the SPC56XL70 in the LQFP100 package. 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 A[15] A[14] C[6] FCCU_F[1] B[6] A[13] A[9] VSS_LV_COR VDD_LV_COR VDD_HV_REG_2 D[4] D[3] VSS_HV_IO VDD_HV_IO D[0] C[15] JCOMP A[12] A[11] A[10] B[3] B[2] C[10] B[1] B[0] Figure 2. SPC56XL70 LQFP100 package 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2 71 74 70 73 69 72 68 71 67 70 66 69 65 68 64 67 63 66 62 65 61 64 60 63 59 62 58 61 57 60 56 59 55 58 54 57 53 56 52 55 51 54 3 4 LQFP100 package LQFP100 package 5 6 7 3 0 2 9 2 8 A[4] VPP_TEST D[14] C[14] C[13] D[12] VDD_HV_FLA VSS_HV_FLA VDD_HV_REG_1 VSS_LV_COR VDD_LV_COR A[3] VDD_HV_IO VSS_HV_IO B[4] TCK TMS B[5] A[2] C[12] C[11] D[11] D[10] A[1] A[0] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 2 7 8 2 6 775 74 573 72 D[7] FCCU_F[0] VDD_LV_COR VSS_LV_COR B[7] B[8] E[2] VDD_HV_ADR0 VSS_HV_ADR0 B[9] B[10] B[11] B[12] VDD_HV_ADR1 VSS_HV_ADR1 VDD_HV_ADV VSS_HV_ADV B[13] B[14] C[0] E[0] BCTRL VDD_LV_COR VSS_LV_COR VDD_HV_PMU NMI A[6] D[1] A[7] C[4] A[8] C[5] A[5] C[7] VDD_HV_REG_0 VSS_LV_COR VDD_LV_COR VDD_HV_IO VSS_HV_IO D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET D[8] D[5] D[6] VSS_LV_PLL0_PLL1 VDD_LV_PLL0_PLL1 DocID023953 Rev 5 33/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Figure 3 shows the SPC56XL70 in the LQFP144 package. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 package 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 A[4] VPP_TEST F[12] D[14] G[3] C[14] G[2] C[13] G[4] D[12] G[6] VDD_HV_FLA VSS_HV_FLA VDD_HV_REG_1 VSS_LV_COR VDD_LV_COR A[3] VDD_HV_IO VSS_HV_IO B[4] TCK TMS B[5] G[5] A[2] G[7] C[12] G[8] C[11] G[9] D[11] G[10] D[10] G[11] A[1] A[0] D[7] FCCU_F[0] VDD_LV_COR VSS_LV_COR C[1] E[4] B[7] E[5] C[2] E[6] B[8] E[7] E[2] VDD_HV_ADR0 VSS_HV_ADR0 B[9] B[10] B[11] B[12] VDD_HV_ADR1 VSS_HV_ADR1 VDD_HV_ADV VSS_HV_ADV B[13] E[9] B[15] E[10] B[14] E[11] C[0] E[12] E[0] BCTRL VDD_LV_COR VSS_LV_COR VDD_HV_PMU 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 NMI A[6] D[1] F[4] F[5] VDD_HV_IO VSS_HV_IO F[6] MDO0 A[7] C[4] A[8] C[5] A[5] C[7] VDD_HV_REG_0 VSS_LV_COR VDD_LV_COR F[7] F[8] VDD_HV_IO VSS_HV_IO F[9] F[10] F[11] D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET D[8] D[5] D[6] VSS_LV_PLL0_PLL1 VDD_LV_PLL0_PLL1 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 A[15] A[14] C[6] FCCU_F[1] D[2] F[3] B[6] VSS_LV_COR A[13] VDD_LV_COR A[9] F[0] VSS_LV_COR VDD_LV_COR VDD_HV_REG_2 D[4] D[3] VSS_HV_IO VDD_HV_IO D[0] C[15] JCOMP A[12] E[15] A[11] E[14] A[10] E[13] B[3] F[14] B[2] F[15] F[13] C[10] B[1] B[0] Figure 3. SPC56XL70 LQFP144 pinout (top view) Table 3 and Table 4 provides the pin function summaries for the 100-pin and 144-pin packages respectively, listing all the signals multiplexed to each pin Table 3. LQFP100 pin function summary Pin # Port/function 1 NMI 2 3 34/128 A[6] D[1] Peripheral Output function Input function — SIUL GPIO[6] GPIO[6] DSPI_1 SCK SCK SIUL — EIRQ[6] SIUL GPIO[49] GPIO[49] eTimer_1 ETC[2] ETC[2] CTU_0 EXT_TGR — FlexRay — CA_RX DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 3. LQFP100 pin function summary (continued) Pin # 4 5 6 7 8 9 Port/function A[7] C[4] A[8] C[5] A[5] C[7] Peripheral Output function Input function SIUL GPIO[7] GPIO[7] DSPI_1 SOUT — SIUL — EIRQ[7] FlexCan_2 — RXD SIUL GPIO[36] GPIO[36] DSPI_0 CS0 CS0 FlexPWM_0 X[1] X[1] SSCM DEBUG[4] — SIUL — EIRQ[22] SIUL GPIO[8] GPIO[8] DSPI_1 — SIN SIUL — EIRQ[8] FlexCan_2 TXD — SIUL GPIO[37] GPIO[37] DSPI_0 SCK SCK SSCM DEBUG[5] — FlexPWM_0 — FAULT[3] SIUL — EIRQ[23] SIUL GPIO[5] GPIO[5] DSPI_1 CS0 CS0 eTimer_1 ETC[5] ETC[5] DSPI_0 CS7 — SIUL — EIRQ[5] SIUL GPIO[39] GPIO[39] FlexPWM_0 A[1] A[1] SSCM DEBUG[7] — DSPI_0 — SIN 10 VDD_HV_REG_0 — 11 VSS_LV_COR — 12 VDD_LV_COR — 13 VDD_HV_IO — 14 VSS_HV_IO — 15 D[9] SIUL GPIO[57] GPIO[57] FlexPWM_0 X[0] X[0] LINFlexD_1 TXD — DocID023953 Rev 5 35/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 3. LQFP100 pin function summary (continued) Pin # Port/function 16 VDD_HV_OSC — 17 VSS_HV_OSC — 18 XTALIN — 19 XTALOUT — 20 RESET — 21 22 23 D[8] D[5] D[6] Peripheral Output function SIUL GPIO[56] GPIO[56] DSPI_1 CS2 — eTimer_1 ETC[4] ETC[4] DSPI_0 CS5 — FlexPWM_0 — FAULT[3] SIUL GPIO[53] GPIO[53] DSPI_0 CS3 — FlexPWM_0 — FAULT[2] SIUL GPIO[54] GPIO[54] DSPI_0 CS2 — FlexPWM_0 X[3] X[3] FlexPWM_0 — FAULT[1] 24 VSS_LV_PLL0_PLL1 — 25 VDD_LV_PLL0_PLL1 — 26 D[7] SIUL GPIO[55] GPIO[55] DSPI_1 CS3 — DSPI_0 CS4 — SWG Analog output — FCCU F[0] F[0] 27 FCCU_F[0] 28 VDD_LV_COR — 29 VSS_LV_COR — 30 31 B[7] B[8] 32 E[2] 33 VDD_HV_ADR0 36/128 Input function SIUL — GPIO[23] LINFlexD_0 — RXD ADC_0 — AN[0] SIUL — GPIO[24] eTimer_0 — ETC[5] ADC_0 — AN[1] SIUL — GPIO[66] ADC_0 — AN[5] — DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 3. LQFP100 pin function summary (continued) Pin # Port/function 34 VSS_HV_ADR0 Peripheral Output function — SIUL 35 B[9] ADC_0 ADC_1 SIUL 36 B[10] ADC_0 ADC_1 SIUL 37 B[11] ADC_0 ADC_1 SIUL 38 B[12] ADC_0 ADC_1 — GPIO[25] — AN[11] — GPIO[26] — AN[12] — GPIO[27] — AN[13] — GPIO[28] — AN[14] 39 VDD_HV_ADR1 — 40 VSS_HV_ADR1 — 41 VDD_HV_ADV — 42 VSS_HV_ADV — 43 44 B[13] B[14] Input function SIUL — GPIO[29] LINFlexD_1 — RXD ADC_1 — AN[0] SIUL — GPIO[30] eTimer_0 — ETC[4] SIUL — EIRQ[19] ADC_1 — AN[1] SIUL — GPIO[32] ADC_1 — AN[3] SIUL — GPIO[64] ADC_1 — AN[5] 45 C[0] 46 E[0] 47 BCTRL — 48 VDD_LV_COR — 49 VSS_LV_COR — 50 VDD_HV_PMU — DocID023953 Rev 5 37/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 3. LQFP100 pin function summary (continued) Pin # 51 52 53 54 55 56 57 Port/function A[0] A[1] D[10] D[11] C[11] C[12] A[2] Peripheral Output function Input function SIUL GPIO[0] GPIO[0] eTimer_0 ETC[0] ETC[0] DSPI_2 SCK SCK SIUL — EIRQ[0] SIUL GPIO[1] GPIO[1] eTimer_0 ETC[1] ETC[1] DSPI_2 SOUT — SIUL — EIRQ[1] SIUL GPIO[58] GPIO[58] FlexPWM_0 A[0] A[0] eTimer_0 — ETC[0] SIUL GPIO[59] GPIO[59] FlexPWM_0 B[0] B[0] eTimer_0 — ETC[1] SIUL GPIO[43] GPIO[43] eTimer_0 ETC[4] ETC[4] DSPI_2 CS2 — SIUL GPIO[44] GPIO[44] eTimer_0 ETC[5] ETC[5] DSPI_2 CS3 — SIUL GPIO[2] GPIO[2] eTimer_0 ETC[2] ETC[2] FlexPWM_0 A[3] A[3] DSPI_2 — SIN MC_RGM — ABS[0] SIUL — EIRQ[2] SIUL GPIO[21] GPIO[21] JTAGC — TDI 58 B[5] 59 TMS — 60 TCK — 61 B[4] 62 VSS_HV_IO — 63 VDD_HV_IO — 38/128 SIUL GPIO[20] GPIO[20] JTAGC TDO — DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 3. LQFP100 pin function summary (continued) Pin # 64 Port/function A[3] Peripheral Output function Input function SIUL GPIO[3] GPIO[3] eTimer_0 ETC[3] ETC[3] DSPI_2 CS0 CS0 FlexPWM_0 B[3] B[3] MC_RGM — ABS[2] SIUL — EIRQ[3] 65 VDD_LV_COR — 66 VSS_LV_COR — 67 VDD_HV_REG_1 — 68 VSS_HV_FLA — 69 VDD_HV_FLA — 70 71 72 73 74 75 D[12] C[13] C[14] D[14] VPP_TEST A[4] SIUL GPIO[60] GPIO[60] FlexPWM_0 X[1] X[1] LINFlexD_1 — RXD SIUL GPIO[45] GPIO[45] eTimer_1 ETC[1] ETC[1] CTU_0 — EXT_IN FlexPWM_0 — EXT_SYNC SIUL GPIO[46] GPIO[46] eTimer_1 ETC[2] ETC[2] CTU_0 EXT_TGR — SIUL GPIO[62] GPIO[62] FlexPWM_0 B[1] B[1] eTimer_0 — ETC[3] (1) — SIUL GPIO[4] GPIO[4] eTimer_1 ETC[0] ETC[0] DSPI_2 CS1 — eTimer_0 ETC[4] ETC[4] MC_RGM — FAB SIUL — EIRQ[4] DocID023953 Rev 5 39/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 3. LQFP100 pin function summary (continued) Pin # 76 77 78 79 80 81 82 40/128 Port/function B[0] B[1] C[10] B[2] B[3] A[10] A[11] Peripheral Output function Input function SIUL GPIO[16] GPIO[16] FlexCAN_0 TXD — eTimer_1 ETC[2] ETC[2] SSCM DEBUG[0] — SIUL — EIRQ[15] SIUL GPIO[17] GPIO[17] eTimer_1 ETC[3] ETC[3] SSCM DEBUG[1] — FlexCAN_0 — RXD FlexCAN_1 — RXD SIUL — EIRQ[16] SIUL GPIO[42] GPIO[42] DSPI_2 CS2 — FlexPWM_0 A[3] A[3] FlexPWM_0 — FAULT[1] SIUL GPIO[18] GPIO[18] LINFlexD_0 TXD — SSCM DEBUG[2] DEBUG[2] SIUL — EIRQ[17] SIUL GPIO[19] GPIO[19] SSCM DEBUG[3] DEBUG[3] LINFlexD_0 — RXD SIUL GPIO[10] GPIO[10] DSPI_2 CS0 CS0 FlexPWM_0 B[0] B[0] FlexPWM_0 X[2] X[2] SIUL — EIRQ[9] SIUL GPIO[11] GPIO[11] DSPI_2 SCK SCK FlexPWM_0 A[0] A[0] FlexPWM_0 A[2] A[2] SIUL — EIRQ[10] DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 3. LQFP100 pin function summary (continued) Pin # 83 84 85 86 Port/function A[12] JCOMP C[15] D[0] Peripheral Output function Input function SIUL GPIO[12] GPIO[12] DSPI_2 SOUT — FlexPWM_0 A[2] A[2] FlexPWM_0 B[2] B[2] SIUL — EIRQ[11] — — JCOMP SIUL GPIO[47] GPIO[47] FlexRay CA_TR_EN — eTimer_1 ETC[0] ETC[0] FlexPWM_0 A[1] A[1] CTU_0 — EXT_IN FlexPWM_0 — EXT_SYNC SIUL GPIO[48] GPIO[48] FlexRay CA_TX — eTimer_1 ETC[1] ETC[1] FlexPWM_0 B[1] B[1] 87 VDD_HV_IO — 88 VSS_HV_IO — 89 90 D[3] D[4] SIUL GPIO[51] GPIO[51] FlexRay CB_TX — eTimer_1 ETC[4] ETC[4] FlexPWM_0 A[3] A[3] SIUL GPIO[52] GPIO[52] FlexRay CB_TR_EN — eTimer_1 ETC[5] ETC[5] FlexPWM_0 B[3] B[3] 91 VDD_HV_REG_2 — 92 VDD_LV_COR — 93 VSS_LV_COR — 94 A[9] SIUL GPIO[9] GPIO[9] DSPI_2 CS1 — FlexPWM_0 B[3] B[3] FlexPWM_0 — FAULT[0] DocID023953 Rev 5 41/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 3. LQFP100 pin function summary (continued) Pin # 95 96 97 98 99 100 Port/function A[13] B[6] FCCU_F[1] C[6] A[14] A[15] Peripheral Output function Input function SIUL GPIO[13] GPIO[13] FlexPWM_0 B[2] B[2] DSPI_2 — SIN FlexPWM_0 — FAULT[0] SIUL — EIRQ[12] SIUL GPIO[22] GPIO[22] MC_CGM clk_out — DSPI_2 CS2 — SIUL — EIRQ[18] FCCU F[1] F[1] SIUL GPIO[38] GPIO[38] DSPI_0 SOUT — FlexPWM_0 B[1] B[1] SSCM DEBUG[6] — SIUL — EIRQ[24] SIUL GPIO[14] GPIO[14] FlexCAN_1 TXD — eTimer_1 ETC[4] ETC[4] SIUL — EIRQ[13] SIUL GPIO[15] GPIO[15] eTimer_1 ETC[5] ETC[5] FlexCAN_1 — RXD FlexCAN_0 — RXD SIUL — EIRQ[14] 1. VPP_TEST should always be tied to ground (VSS) for normal operations. Table 4. LQFP144 pin function summary Pin # Port/function 1 NMI 2 42/128 A[6] Peripheral Output function Input function — SIUL GPIO[6] GPIO[6] DSPI_1 SCK SCK SIUL — EIRQ[6] DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 4. LQFP144 pin function summary (continued) Pin # 3 Port/function D[1] Peripheral Output function Input function SIUL GPIO[49] GPIO[49] eTimer_1 ETC[2] ETC[2] CTU_0 EXT_TGR — FlexRay — CA_RX SIUL GPIO[84] GPIO[84] NPC MDO[3] — SIUL GPIO[85] GPIO[85] NPC MDO[2] — 4 F[4] 5 F[5] 6 VDD_HV_IO — 7 VSS_HV_IO — 8 F[6] 9 MDO0 10 11 12 13 A[7] C[4] A[8] C[5] SIUL GPIO[86] GPIO[86] NPC MDO[1] — — SIUL GPIO[7] GPIO[7] DSPI_1 SOUT — SIUL — EIRQ[7] FlexCAN_2 — RXD SIUL GPIO[36] GPIO[36] DSPI_0 CS0 CS0 FlexPWM_0 X[1] X[1] SSCM DEBUG[4] — SIUL — EIRQ[22] SIUL GPIO[8] GPIO[8] DSPI_1 — SIN SIUL — EIRQ[8] FlexCAN_2 TXD — SIUL GPIO[37] GPIO[37] DSPI_0 SCK SCK SSCM DEBUG[5] — FlexPWM_0 — FAULT[3] SIUL — EIRQ[23] DocID023953 Rev 5 43/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 4. LQFP144 pin function summary (continued) Pin # 14 15 Port/function A[5] C[7] Peripheral Output function Input function SIUL GPIO[5] GPIO[5] DSPI_1 CS0 CS0 eTimer_1 ETC[5] ETC[5] DSPI_0 CS7 — SIUL — EIRQ[5] SIUL GPIO[39] GPIO[39] FlexPWM_0 A[1] A[1] SSCM DEBUG[7] — DSPI_0 — SIN 16 VDD_HV_REG_0 — 17 VSS_LV_COR — 18 VDD_LV_COR — 19 F[7] 20 F[8] 21 VDD_HV_IO — 22 VSS_HV_IO — 23 F[9] 24 F[10] 25 F[11] 26 D[9] SIUL GPIO[87] GPIO[87] NPC MCKO — SIUL GPIO[88] GPIO[88] NPC MSEO[1] — SIUL GPIO[89] GPIO[89] NPC MSEO[0] — SIUL GPIO[90] GPIO[90] NPC EVTO — SIUL GPIO[91] GPIO[91] NPC EVTI — SIUL GPIO[57] GPIO[57] FlexPWM_0 X[0] X[0] LINFlexD_1 TXD — 27 VDD_HV_OSC — 28 VSS_HV_OSC — 29 XTALIN — 30 XTALOUT — 31 RESET — 44/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 4. LQFP144 pin function summary (continued) Pin # 32 33 34 Port/function D[8] D[5] D[6] Peripheral Output function Input function SIUL GPIO[56] GPIO[56] DSPI_1 CS2 — eTimer_1 ETC[4] ETC[4] DSPI_0 CS5 — FlexPWM_0 — FAULT[3] SIUL GPIO[53] GPIO[53] DSPI_0 CS3 — FlexPWM_0 — FAULT[2] SIUL GPIO[54] GPIO[54] DSPI_0 CS2 — FlexPWM_0 X[3] X[3] FlexPWM_0 — FAULT[1] 35 VSS_LV_PLL0_PLL1 — 36 VDD_LV_PLL0_PLL1 — 37 D[7] SIUL GPIO[55] GPIO[55] DSPI_1 CS3 — DSPI_0 CS4 — SWG analog output — FCCU F[0] F[0] 38 FCCU_F[0] 39 VDD_LV_COR — 40 VSS_LV_COR — 41 C[1] 42 E[4] 43 B[7] 44 E[5] 45 C[2] 46 E[6] SIUL — GPIO[33] ADC_0 — AN[2] SIUL — GPIO[68] ADC_0 — AN[7] SIUL — GPIO[23] LINFlexD_0 — RXD ADC_0 — AN[0] SIUL — GPIO[69] ADC_0 — AN[8] SIUL — GPIO[34] ADC_0 — AN[3] SIUL — GPIO[70] ADC_0 — AN[4] DocID023953 Rev 5 45/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 4. LQFP144 pin function summary (continued) Pin # 47 Port/function B[8] Peripheral Output function Input function SIUL — GPIO[24] eTimer_0 — ETC[5] ADC_0 — AN[1] SIUL — GPIO[71] ADC_0 — AN[6] SIUL — GPIO[66] ADC_0 — AN[5] 48 E[7] 49 E[2] 50 VDD_HV_ADR0 — 51 VSS_HV_ADR0 — 52 B[9] 53 54 B[10] B[11] SIUL — GPIO[25] ADC_0 ADC_1 — AN[11] SIUL — GPIO[26] ADC_0 ADC_1 — AN[12] SIUL — GPIO[27] ADC_0 ADC_1 — AN[13] SIUL — GPIO[28] ADC_0 ADC_1 — AN[14] 55 B[12] 56 VDD_HV_ADR1 — 57 VSS_HV_ADR1 — 58 VDD_HV_ADV — 59 VSS_HV_ADV — 60 61 62 63 46/128 B[13] E[9] B[15] E[10] SIUL — GPIO[29] LINFlexD_1 — RXD ADC_1 — AN[0] SIUL — GPIO[73] ADC_1 — AN[7] SIUL — GPIO[31] SIUL — EIRQ[20] ADC_1 — AN[2] SIUL — GPIO[74] ADC_1 — AN[8] DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 4. LQFP144 pin function summary (continued) Pin # 64 Port/function B[14] Peripheral Output function Input function SIUL — GPIO[30] eTimer_0 — ETC[4] SIUL — EIRQ[19] ADC_1 — AN[1] SIUL — GPIO[75] ADC_1 — AN[4] SIUL — GPIO[32] ADC_1 — AN[3] SIUL — GPIO[76] ADC_1 — AN[6] SIUL — GPIO[64] ADC_1 — AN[5] 65 E[11] 66 C[0] 67 E[12] 68 E[0] 69 BCTRL — 70 VDD_LV_COR — 71 VSS_LV_COR — 72 VDD_HV_PMU — 73 74 75 76 77 A[0] A[1] G[11] D[10] G[10] SIUL GPIO[0] GPIO[0] eTimer_0 ETC[0] ETC[0] DSPI_2 SCK SCK SIUL — EIRQ[0] SIUL GPIO[1] GPIO[1] eTimer_0 ETC[1] ETC[1] DSPI_2 SOUT — SIUL — EIRQ[1] SIUL GPIO[107] GPIO[107] FlexRay DBG3 — FlexPWM_0 — FAULT[3] SIUL GPIO[58] GPIO[58] FlexPWM_0 A[0] A[0] eTimer_0 — ETC[0] SIUL GPIO[106] GPIO[106] FlexRay DBG2 — DSPI_2 CS3 — FlexPWM_0 — FAULT[2] DocID023953 Rev 5 47/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 4. LQFP144 pin function summary (continued) Pin # 78 79 80 81 82 83 84 85 Port/function D[11] G[9] C[11] G[8] C[12] G[7] A[2] G[5] Peripheral Output function Input function SIUL GPIO[59] GPIO[59] FlexPWM_0 B[0] B[0] eTimer_0 — ETC[1] SIUL GPIO[105] GPIO[105] FlexRay DBG1 — DSPI_1 CS1 — FlexPWM_0 — FAULT[1] SIUL — EIRQ[29] SIUL GPIO[43] GPIO[43] eTimer_0 ETC[4] ETC[4] DSPI_2 CS2 — SIUL GPIO[104] GPIO[104] FlexRay DBG0 — DSPI_0 CS1 — FlexPWM_0 — FAULT[0] SIUL — EIRQ[21] SIUL GPIO[44] GPIO[44] eTimer_0 ETC[5] ETC[5] DSPI_2 CS3 — SIUL GPIO[103] GPIO[103] FlexPWM_0 B[3] B[3] SIUL GPIO[2] GPIO[2] eTimer_0 ETC[2] ETC[2] FlexPWM_0 A[3] A[3] DSPI_2 — SIN MC_RGM — ABS[0] SIUL — EIRQ[2] SIUL GPIO[101] GPIO[101] FlexPWM_0 X[3] X[3] DSPI_2 CS3 — SIUL GPIO[21] GPIO[21] JTAGC — TDI 86 B[5] 87 TMS — 88 TCK — 48/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 4. LQFP144 pin function summary (continued) Pin # Port/function 89 B[4] 90 VSS_HV_IO — 91 VDD_HV_IO — 92 A[3] Peripheral Output function Input function SIUL GPIO[20] GPIO[20] JTAGC TDO — SIUL GPIO[3] GPIO[3] eTimer_0 ETC[3] ETC[3] DSPI_2 CS0 CS0 FlexPWM_0 B[3] B[3] MC_RGM — ABS[2] SIUL — EIRQ[3] 93 VDD_LV_COR — 94 VSS_LV_COR — 95 VDD_HV_REG_1 — 96 VSS_HV_FLA — 97 VDD_HV_FLA — 98 G[6] 99 100 101 102 103 D[12] G[4] C[13] G[2] C[14] SIUL GPIO[102] GPIO[102] FlexPWM_0 A[3] A[3] SIUL GPIO[60] GPIO[60] FlexPWM_0 X[1] X[1] LINFlexD_1 — RXD SIUL GPIO[100] GPIO[100] FlexPWM_0 B[2] B[2] eTimer_0 — ETC[5] SIUL GPIO[45] GPIO[45] eTimer_1 ETC[1] ETC[1] CTU_0 — EXT_IN FlexPWM_0 — EXT_SYNC SIUL GPIO[98] GPIO[98] FlexPWM_0 X[2] X[2] DSPI_1 CS1 — SIUL GPIO[46] GPIO[46] eTimer_1 ETC[2] ETC[2] CTU_0 EXT_TGR — DocID023953 Rev 5 49/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 4. LQFP144 pin function summary (continued) Pin # 104 105 106 107 108 109 110 111 112 50/128 Port/function G[3] D[14] F[12] Peripheral Output function Input function SIUL GPIO[99] GPIO[99] FlexPWM_0 A[2] A[2] eTimer_0 — ETC[4] SIUL GPIO[62] GPIO[62] FlexPWM_0 B[1] B[1] eTimer_0 — ETC[3] SIUL GPIO[92] GPIO[92] eTimer_1 ETC[3] ETC[3] SIUL — EIRQ[30] VPP_TEST(1) A[4] B[0] B[1] C[10] F[13] — SIUL GPIO[4] GPIO[4] eTimer_1 ETC[0] ETC[0] DSPI_2 CS1 — eTimer_0 ETC[4] ETC[4] MC_RGM — FAB SIUL — EIRQ[4] SIUL GPIO[16] GPIO[16] FlexCAN_0 TXD — eTimer_1 ETC[2] ETC[2] SSCM DEBUG[0] — SIUL — EIRQ[15] SIUL GPIO[17] GPIO[17] eTimer_1 ETC[3] ETC[3] SSCM DEBUG[1] — FlexCAN_0 — RXD FlexCAN_1 — RXD SIUL — EIRQ[16] SIUL GPIO[42] GPIO[42] DSPI_2 CS2 — FlexPWM_0 A[3] A[3] FlexPWM_0 — FAULT[1] SIUL GPIO[93] GPIO[93] eTimer_1 ETC[4] ETC[4] SIUL — EIRQ[31] DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 4. LQFP144 pin function summary (continued) Pin # 113 114 115 116 117 118 119 120 121 Port/function F[15] B[2] F[14] B[3] E[13] A[10] E[14] A[11] E[15] Peripheral Output function Input function SIUL GPIO[95] GPIO[95] LINFlexD_1 — RXD FlexCAN_2 TXD — SIUL GPIO[18] GPIO[18] LINFlexD_0 TXD — SSCM DEBUG[2] — SIUL — EIRQ[17] SIUL GPIO[94] GPIO[94] LINFlexD_1 TXD — FlexCAN_2 — RXD SIUL GPIO[19] GPIO[19] SSCM DEBUG[3] — LINFlexD_0 — RXD SIUL GPIO[77] GPIO[77] eTimer_0 ETC[5] ETC[5] DSPI_2 CS3 — SIUL — EIRQ[25] SIUL GPIO[10] GPIO[10] DSPI_2 CS0 CS0 FlexPWM_0 B[0] B[0] FlexPWM_0 X[2] X[2] SIUL — EIRQ[9] SIUL GPIO[78] GPIO[78] eTimer_1 ETC[5] ETC[5] SIUL — EIRQ[26] SIUL GPIO[11] GPIO[11] DSPI_2 SCK SCK FlexPWM_0 A[0] A[0] FlexPWM_0 A[2] A[2] SIUL — EIRQ[10] SIUL GPIO[79] GPIO[79] DSPI_0 CS1 — SIUL — EIRQ[27] DocID023953 Rev 5 51/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 4. LQFP144 pin function summary (continued) Pin # 122 123 124 125 Port/function A[12] JCOMP C[15] D[0] Peripheral Output function Input function SIUL GPIO[12] GPIO[12] DSPI_2 SOUT — FlexPWM_0 A[2] A[2] FlexPWM_0 B[2] B[2] SIUL — EIRQ[11] — — JCOMP SIUL GPIO[47] GPIO[47] FlexRay CA_TR_EN — eTimer_1 ETC[0] ETC[0] FlexPWM_0 A[1] A[1] CTU_0 — EXT_IN FlexPWM_0 — EXT_SYNC SIUL GPIO[48] GPIO[48] FlexRay CA_TX — eTimer_1 ETC[1] ETC[1] FlexPWM_0 B[1] B[1] 126 VDD_HV_IO — 127 VSS_HV_IO — 128 129 D[3] D[4] SIUL GPIO[51] GPIO[51] FlexRay CB_TX — eTimer_1 ETC[4] ETC[4] FlexPWM_0 A[3] A[3] SIUL GPIO[52] GPIO[52] FlexRay CB_TR_EN — eTimer_1 ETC[5] ETC[5] FlexPWM_0 B[3] B[3] 130 VDD_HV_REG_2 — 131 VDD_LV_COR — 132 VSS_LV_COR — 133 52/128 F[0] SIUL GPIO[80] GPIO[80] FlexPWM_0 A[1] A[1] eTimer_0 — ETC[2] SIUL — EIRQ[28] DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 4. LQFP144 pin function summary (continued) Pin # 134 135 136 137 138 139 140 141 142 143 Port/function A[9] Peripheral Output function Input function SIUL GPIO[9] GPIO[9] DSPI_2 CS1 — FlexPWM_0 B[3] B[3] FlexPWM_0 — FAULT[0] — VDD_LV_COR A[13] SIUL GPIO[13] GPIO[13] FlexPWM_0 B[2] B[2] DSPI_2 — SIN FlexPWM_0 — FAULT[0] SIUL — EIRQ[12] — VSS_LV_COR B[6] F[3] D[2] FCCU_F[1] C[6] A[14] SIUL GPIO[22] GPIO[22] MC_CGM clk_out — DSPI_2 CS2 — SIUL — EIRQ[18] SIUL GPIO[83] GPIO[83] DSPI_0 CS6 — SIUL GPIO[50] GPIO[50] eTimer_1 ETC[3] ETC[3] FlexPWM_0 X[3] X[3] FlexRay — CB_RX FCCU F[1] F[1] SIUL GPIO[38] GPIO[38] DSPI_0 SOUT — FlexPWM_0 B[1] B[1] SSCM DEBUG[6] — SIUL — EIRQ[24] SIUL GPIO[14] GPIO[14] FlexCAN_1 TXD — eTimer_1 ETC[4] ETC[4] SIUL — EIRQ[13] DocID023953 Rev 5 53/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 4. LQFP144 pin function summary (continued) Pin # Port/function 144 A[15] Peripheral Output function Input function SIUL GPIO[15] GPIO[15] eTimer_1 ETC[5] ETC[5] FlexCAN_1 — RXD FlexCAN_0 — RXD SIUL — EIRQ[14] 1. VPP_TEST should always be tied to ground (VSS) for normal operations. 2.2 Supply pins Table 5. Supply pins Supply Pin # 100 Pkg 144 Pkg Voltage regulator external NPN ballast base control pin 47 69 VDD_LV_COR Core logic supply 48 70 VSS_LV_COR Core regulator ground 49 71 VDD_HV_PMU Voltage regulator supply 50 72 Symbol Description VREG control and power supply pins BCTRL ADC_0/ADC_1 reference voltage and ADC supply VDD_HV_ADR0 ADC_0 high reference voltage 33 50 VSS_HV_ADR0 ADC_0 low reference voltage 34 51 VDD_HV_ADR1 ADC_1 high reference voltage 39 56 VSS_HV_ADR1 ADC_1 low reference voltage 40 57 VDD_HV_ADV ADC voltage supply for ADC_0 and ADC_1 41 58 VSS_HV_ADV ADC ground for ADC_0 and ADC_1 42 59 Power supply pins (3.3 V) VDD_HV_IO 3.3 V Input/Output supply voltage — 6 VSS_HV_IO 3.3 V Input/Output ground — 7 VDD_HV_REG_0 10 16 VDD_HV_IO 3.3 V Input/Output supply voltage 13 21 VSS_HV_IO 3.3 V Input/Output ground 14 22 VDD_HV_OSC Crystal oscillator amplifier supply voltage 16 27 VSS_HV_OSC Crystal oscillator amplifier ground 17 28 VSS_HV_IO 3.3 V Input/Output ground 62 90 VDD_HV_IO 3.3 V Input/Output supply voltage 63 91 VDD_HV_REG_0 54/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 5. Supply pins (continued) Supply Pin # 100 Pkg 144 Pkg VDD_HV_REG_1 67 95 VSS_HV_FLA VSS_HV_FLA 68 96 VDD_HV_FLA VDD_HV_FLA 69 97 VDD_HV_IO VDD_HV_IO 87 126 VSS_HV_IO VSS_HV_IO 88 127 VDD_HV_REG_2 91 130 Symbol VDD_HV_REG_1 VDD_HV_REG_2 Description Power supply pins (1.2 V) VSS_LV_COR VSS_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 11 17 VDD_LV_COR VDD_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 12 18 VSS 1V2 VSS_LV_PLL0_PLL1 / 1.2 V Decoupling pins for on-chip FMPLL modules. Decoupling capacitor must be connected between this pin and VDD_LV_PLL. 24 35 VDD 1V2 VDD_LV_PLL0_PLL1 Decoupling pins for on-chip FMPLL modules. Decoupling capacitor must be connected between this pin and VSS_LV_PLL. 25 36 VDD_LV_COR VDD_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 28 39 VSS_LV_COR VSS_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 29 40 VDD_LV_COR VDD_LV_COR Decoupling pins for core logic and Regulator feedback. Decoupling capacitor must be connected between this pins and VSS_LV_REGCOR. — 70 VSS_LV_COR VSS_LV_REGCOR0 Decoupling pins for core logic and Regulator feedback. Decoupling capacitor must be connected between this pins and VDD_LV_REGCOR. — 71 VDD_LV_COR VDD_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR pin. 65 93 VSS_LV_COR VSS_LV_COR / 1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 66 94 VDD_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 92 131 VDD 1V2 DocID023953 Rev 5 55/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 5. Supply pins (continued) Supply Symbol Pin # Description 100 Pkg 144 Pkg VSS 1V2 VSS_LV_COR Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. 93 132 VDD 1V2 VDD_LV_COR / Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. — 135 VSS 1V2 VSS_LV_COR / Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR pin. — 137 2.3 System pins Table 6. System pins Pin # Symbol Description Direction 100 pkg 144 pkg Output only — 9 Non Maskable Interrupt Input only 1 1 Input for oscillator amplifier circuit and internal clock generator Input only 18 29 Input/Output(4) 19 30 Dedicated pins MDO0(1) NMI (2) XTAL EXTAL(3) Nexus Message Data Output — line Oscillator amplifier output (2) JTAG state machine control Input only 59 87 (2) JTAG clock Input only 60 88 JTAG compliance select Input only 84 123 Bidirectional 20 31 74 107 TMS TCK JCOMP(5) Reset pin RESET Bidirectional reset with Schmitt-Trigger characteristics and noise filter. This pin has medium drive strength. Output drive is open drain and must be terminated by an external resistor of value 1KOhm.(6) Test pin VPP TEST Pin for testing purpose only. To be tied to ground in normal operating mode. 1. This pad is configured for Fast (F) pad speed. 2. This pad contains a weak pull-up. 3. EXTAL is an "Output" in "crystal" mode, and is an "Input" in "ext clock" mode. 4. In XOSC Bypass Mode, the analog portion of crystal oscillator (amplifier) is disabled. An external clock can be applied at EXTAL as an input. In XOSC Normal Mode, EXTAL is an output 5. This pad contains a weak pull-down. 56/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- 6. RESET output shall be considered valid only after the 3.3V supply reaches its stable value. None of system pins (except RESET) provides an open drain output. 2.4 Pin muxing Table 7 defines the pin list and muxing for this device. Each entry of Table 7 shows all the possible configurations for each pin, via the alternate functions. The default function assigned to each pin after reset is indicated by ALT0. Note: Pins labeled “NC” are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable device behavior or damage. Pins labeled “Reserved” are to be tied to ground. Not doing so may cause unpredictable device behavior. Table 7. Pin muxing Port name PCR Peripheral Alternate output function Input Output mux sel functions Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Port A A[0] A[1] A[2] SIUL GPIO[0] ALT0 GPIO[0] — eTimer_0 ETC[0] ALT1 ETC[0] PSMI[35]; PADSEL=0 PCR[0] PCR[1] PCR[2] DSPI_2 SCK ALT2 SCK PSMI[1]; PADSEL=0 SIUL — — EIRQ[0] — SIUL GPIO[1] ALT0 GPIO[1] — eTimer_0 ETC[1] ALT1 ETC[1] PSMI[36]; PADSEL=0 DSPI_2 SOUT ALT2 — — SIUL — — EIRQ[1] — SIUL GPIO[2] ALT0 GPIO[2] — eTimer_0 ETC[2] ALT1 ETC[2] PSMI[37]; PADSEL=0 FlexPWM_0 A[3] ALT3 A[3] PSMI[23]; PADSEL=0 DSPI_2 — — SIN PSMI[2]; PADSEL=0 MC_RGM — — ABS[0] — SIUL — — EIRQ[2] — DocID023953 Rev 5 Pull down M S 51 73 Pull down M S 52 74 Pull down M S 57 84 57/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 7. Pin muxing (continued) Port name A[3] A[4] A[5] A[6] A[7] A[8] 58/128 PCR PCR[3] PCR[4] PCR[5] PCR[6] PCR[7] PCR[8] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[3] ALT0 GPIO[3] — eTimer_0 ETC[3] ALT1 ETC[3] PSMI[38]; PADSEL=0 DSPI_2 CS0 ALT2 CS0 PSMI[3]; PADSEL=0 FlexPWM_0 B[3] ALT3 B[3] PSMI[27]; PADSEL=0 MC_RGM — — ABS[2] — SIUL — — EIRQ[3] — SIUL GPIO[4] ALT0 GPIO[4] — eTimer_1 ETC[0] ALT1 ETC[0] PSMI[9]; PADSEL=0 DSPI_2 CS1 ALT2 — — eTimer_0 ETC[4] ALT3 ETC[4] PSMI[7]; PADSEL=0 MC_RGM — — FAB — SIUL — — EIRQ[4] — SIUL GPIO[5] ALT0 GPIO[5] — DSPI_1 CS0 ALT1 CS0 — eTimer_1 ETC[5] ALT2 ETC[5] PSMI[14]; PADSEL=0 DSPI_0 CS7 ALT3 — — SIUL — — EIRQ[5] — SIUL GPIO[6] ALT0 GPIO[6] — DSPI_1 SCK ALT1 SCK — SIUL — — EIRQ[6] — SIUL GPIO[7] ALT0 GPIO[7] — DSPI_1 SOUT ALT1 — — SIUL — — EIRQ[7] — FlexCAN_2 RXD ALT2 — — SIUL GPIO[8] ALT0 GPIO[8] — DSPI_1 — — SIN — SIUL — — EIRQ[8] — FlexCAN_2 TXD ALT2 — — Input Output mux sel functions DocID023953 Rev 5 Pull down M S 64 92 Pull down M S 75 108 Pull down M S 8 14 Pull down M S 2 2 Pull down M S 4 10 Pull down M S 6 12 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 7. Pin muxing (continued) Port name A[9] A[10] A[11] A[12] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[9] ALT0 GPIO[9] — DSPI_2 CS1 ALT1 — — FlexPWM_0 B[3] ALT3 B[3] PSMI[27]; PADSEL=1 FlexPWM_0 — — FAULT[0] PSMI[16]; PADSEL=0 SIUL GPIO[10] ALT0 GPIO[10] — DSPI_2 CS0 ALT1 CS0 PSMI[3]; PADSEL=1 PCR[10] FlexPWM_0 B[0] ALT2 B[0] PSMI[24]; PADSEL=0 FlexPWM_0 X[2] ALT3 X[2] PSMI[29]; PADSEL=0 SIUL — — EIRQ[9] — SIUL GPIO[11] ALT0 GPIO[11] — DSPI_2 SCK ALT1 SCK PSMI[1]; PADSEL=1 FlexPWM_0 A[0] ALT2 A[0] PSMI[20]; PADSEL=0 FlexPWM_0 A[2] ALT3 A[2] PSMI[22]; PADSEL=0 SIUL — — EIRQ[10] — SIUL GPIO[12] ALT0 GPIO[12] — DSPI_2 SOUT ALT1 — — FlexPWM_0 A[2] ALT2 A[2] PSMI[22]; PADSEL=1 FlexPWM_0 B[2] ALT3 B[2] PSMI[26]; PADSEL=0 SIUL — — EIRQ[11] — PCR PCR[9] PCR[11] PCR[12] Input Output mux sel functions DocID023953 Rev 5 Pull down M S 94 134 Pull down M S 81 118 Pull down M S 82 120 Pull down M S 83 122 59/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 7. Pin muxing (continued) Port name A[13] A[14] A[15] PCR PCR[13] PCR[14] PCR[15] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[13] ALT0 GPIO[13] — FlexPWM_0 B[2] ALT2 B[2] PSMI[26]; PADSEL=1 DSPI_2 — — SIN PSMI[2]; PADSEL=1 FlexPWM_0 — — FAULT[0] PSMI[16]; PADSEL=1 SIUL — — EIRQ[12] — SIUL GPIO[14] ALT0 GPIO[14] — FlexCAN_1 TXD ALT1 — — Input Output mux sel functions eTimer_1 ETC[4] ALT2 ETC[4] PSMI[13]; PADSEL=0 SIUL — — EIRQ[13] — SIUL GPIO[15] ALT0 GPIO[15] — eTimer_1 ETC[5] ALT2 ETC[5] PSMI[14]; PADSEL=1 FlexCAN_1 — — RXD PSMI[34]; PADSEL=0 FlexCAN_0 — — RXD PSMI[33]; PADSEL=0 SIUL — — EIRQ[14] — Pull down M S 95 136 Pull down M S 99 143 Pull down M S 100 144 Pull down M S 76 Port B B[0] 60/128 PCR[16] SIUL GPIO[16] ALT0 GPIO[16] — FlexCAN_0 TXD ALT1 — — eTimer_1 ETC[2] ALT2 ETC[2] PSMI[11]; PADSEL=0 SSCM DEBUG[0] ALT3 — — SIUL — — EIRQ[15] — DocID023953 Rev 5 109 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 7. Pin muxing (continued) Port name B[1] B[2] B[3] PCR PCR[17] PCR[18] PCR[19] B[4](2) PCR[20] B[5] PCR[21] B[6] B[7] B[8] PCR[22] PCR[23] PCR[24] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[17] ALT0 GPIO[17] — eTimer_1 ETC[3] ALT2 ETC[3] PSMI[12]; PADSEL=0 SSCM DEBUG[1] ALT3 — — FlexCAN_0 — — RXD PSMI[33]; PADSEL=1 FlexCAN_1 — — RXD PSMI[34]; PADSEL=1 SIUL — — EIRQ[16] — SIUL GPIO[18] ALT0 GPIO[18] — LINFlex_0 TXD ALT1 — — SSCM DEBUG[2] ALT3 — — SIUL — — EIRQ[17] — SIUL GPIO[19] ALT0 GPIO[19] — SSCM DEBUG[3] ALT3 — — Input Output mux sel functions LINFlex_0 — — RXD PSMI[31]; PADSEL=0 SIUL GPIO[20] ALT0 GPIO[20] — JTAGC TDO ALT1 — — SIUL GPIO[21] ALT0 GPIO[21] — JTAGC — — TDI — SIUL GPIO[22] ALT0 GPIO[22] — MC_CGM clk_out ALT1 — — DSPI_2 CS2 ALT2 — — SIUL — EIRQ[18] — SIUL — ALT0 GPI[23] — LINFlex_0 — — RXD PSMI[31]; PADSEL=1 ADC_0 — — AN[0](3) — SIUL — ALT0 GPI[24] — eTimer_0 — — ETC[5] PSMI[8]; PADSEL=2 ADC_0 — — AN[1](3) — DocID023953 Rev 5 Pull down M S 77 110 Pull down M S 79 114 Pull down M S 80 116 Pull down F S 61 89 Pull up M S 58 86 Pull down F S 96 138 — — — 30 43 — — — 31 47 61/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 7. Pin muxing (continued) Port name PCR B[9] PCR[25] B[10] B[11] B[12] B[13] B[14] B[15] PCR[26] PCR[27] PCR[28] PCR[29] PCR[30] PCR[31] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL — ALT0 GPI[25] — ADC_0 ADC_1 — — AN[11](3) — SIUL — ALT0 GPI[26] — ADC_0 ADC_1 — — AN[12](3) — SIUL — ALT0 GPI[27] — ADC_0 ADC_1 — — AN[13](3) — SIUL — ALT0 GPI[28] — ADC_0 ADC_1 — — AN[14](3) — SIUL — ALT0 GPI[29] — LINFlex_1 — — RXD PSMI[32]; PADSEL=0 ADC_1 — — AN[0](3) — SIUL — ALT0 GPI[30] — eTimer_0 — — ETC[4] PSMI[7]; PADSEL=2 SIUL — — EIRQ[19] — ADC_1 — — AN[1](3) — SIUL — ALT0 GPI[31] — SIUL — — EIRQ[20] — ADC_1 — Input Output mux sel functions (3) — ALT0 GPI[32] — — — AN[2] — — — 35 52 — — — 36 53 — — — 37 54 — — — 38 55 — — — 43 60 — — — 44 64 — — — — 62 — — — 45 66 — — — — 41 — — — — 45 Port C C[0] PCR[32] C[1] PCR[33] C[2] PCR[34] 62/128 SIUL — ADC_1 — — AN[3](3) SIUL — ALT0 GPI[33] — ADC_0 — — AN[2](3) — SIUL — ALT0 GPI[34] — — AN[3](3) — ADC_0 — DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 7. Pin muxing (continued) Port name C[4] C[5] C[6] C[7] C[10] C[11] PCR Peripheral SIUL GPIO[36] ALT0 GPIO[36] — DSPI_0 CS0 ALT1 CS0 — X[1] ALT2 X[1] PSMI[28]; PADSEL=0 SSCM DEBUG[4] ALT3 — — SIUL — — EIRQ[22] — SIUL GPIO[37] ALT0 GPIO[37] — DSPI_0 SCK ALT1 SCK — SSCM DEBUG[5] ALT3 — — PCR[36] FlexPWM_0 PCR[37] FlexPWM_0 — — FAULT[3] SIUL — — EIRQ[23] — SIUL GPIO[38] ALT0 GPIO[38] — DSPI_0 SOUT ALT1 — — B[1] ALT2 B[1] PSMI[25]; PADSEL=0 SSCM DEBUG[6] ALT3 — — SIUL — — EIRQ[24] — SIUL GPIO[39] ALT0 GPIO[39] — FlexPWM_0 A[1] ALT2 A[1] PSMI[21]; PADSEL=0 SSCM DEBUG[7] ALT3 — — DSPI_0 — — SIN — SIUL GPIO[42] ALT0 GPIO[42] — DSPI_2 CS2 ALT1 — — A[3] ALT3 A[3] PSMI[23]; PADSEL=1 FlexPWM_0 — — FAULT[1] PSMI[17]; PADSEL=0 SIUL GPIO[43] ALT0 GPIO[43] — eTimer_0 ETC[4] ALT1 ETC[4] PSMI[7]; PADSEL=1 DSPI_2 CS2 ALT2 — — PCR[42] FlexPWM_0 PCR[43] Input Output mux sel functions PSMI[19]; PADSEL=0 PCR[38] FlexPWM_0 PCR[39] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Alternate output function DocID023953 Rev 5 Pull down M S 5 11 Pull down M S 7 13 Pull down M S 98 142 Pull down M S 9 15 Pull down M S 78 111 Pull down M S 55 80 63/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 7. Pin muxing (continued) Port name C[12] C[13] C[14] C[15] PCR PCR[44] PCR[45] PCR[46] PCR[47] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[44] ALT0 GPIO[44] — eTimer_0 ETC[5] ALT1 ETC[5] PSMI[8]; PADSEL=0 DSPI_2 CS3 ALT2 — — SIUL GPIO[45] ALT0 GPIO[45] — eTimer_1 ETC[1] ALT1 ETC[1] PSMI[10]; PADSEL=0 EXT_IN PSMI[0]; PADSEL=0 Input Output mux sel functions CTU_0 — — FlexPWM_0 — — SIUL GPIO[46] ALT0 GPIO[46] — eTimer_1 ETC[2] ALT1 ETC[2] PSMI[11]; PADSEL=1 CTU_0 EXT_TGR ALT2 — — SIUL GPIO[47] ALT0 GPIO[47] — FlexRay CA_TR_E N ALT1 — — eTimer_1 ETC[0] ALT2 ETC[0] PSMI[9]; PADSEL=1 FlexPWM_0 A[1] ALT3 A[1] PSMI[21]; PADSEL=1 CTU_0 — — EXT_IN PSMI[0]; PADSEL=1 FlexPWM_0 — — Pull down M S 56 82 Pull down M S 71 101 Pull down M S 72 103 Pull down SYM S 85 124 Pull down SYM S 86 125 EXT_SYN PSMI[15]; C PADSEL=0 EXT_SYN PSMI[15]; C PADSEL=1 Port D D[0] 64/128 PCR[48] SIUL GPIO[48] ALT0 GPIO[48] — FlexRay CA_TX ALT1 — — eTimer_1 ETC[1] ALT2 ETC[1] PSMI[10]; PADSEL=1 FlexPWM_0 B[1] ALT3 B[1] PSMI[25]; PADSEL=1 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 7. Pin muxing (continued) Port name D[1] D[2] D[3] D[4] D[5] D[6] PCR PCR[49] Peripheral SIUL GPIO[49] ALT0 GPIO[49] — eTimer_1 ETC[2] ALT2 ETC[2] PSMI[11]; PADSEL=2 CTU_0 EXT_TGR ALT3 — — FlexRay — — CA_RX — SIUL GPIO[50] ALT0 GPIO[50] — eTimer_1 ETC[3] ALT2 ETC[3] PSMI[12]; PADSEL=1 Input Output mux sel functions PCR[50] PCR[51] PCR[52] PCR[53] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Alternate output function FlexPWM_0 X[3] ALT3 X[3] PSMI[30]; PADSEL=0 FlexRay — — CB_RX — SIUL GPIO[51] ALT0 GPIO[51] — FlexRay CB_TX ALT1 — — eTimer_1 ETC[4] ALT2 ETC[4] PSMI[13]; PADSEL=1 FlexPWM_0 A[3] ALT3 A[3] PSMI[23]; PADSEL=2 SIUL GPIO[52] ALT0 GPIO[52] — FlexRay CB_TR_E N ALT1 — — eTimer_1 ETC[5] ALT2 ETC[5] PSMI[14]; PADSEL=2 FlexPWM_0 B[3] ALT3 B[3] PSMI[27]; PADSEL=2 SIUL GPIO[53] ALT0 GPIO[53] — DSPI_0 CS3 ALT1 — — FlexPWM_0 — — FAULT[2] PSMI[18]; PADSEL=0 SIUL GPIO[54] ALT0 GPIO[54] — DSPI_0 CS2 ALT1 — — X[3] ALT3 X[3] PSMI[30]; PADSEL=1 — — FAULT[1] PSMI[17]; PADSEL=1 PCR[54] FlexPWM_0 FlexPWM_0 DocID023953 Rev 5 Pull down M S 3 3 Pull down M S — 140 Pull down SYM S 89 128 Pull down SYM S 90 129 Pull down M S 22 33 Pull down M S 23 34 65/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 7. Pin muxing (continued) Port name D[7] D[8] D[9] D[10] D[11] D[12] D[14] 66/128 Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[55] ALT0 GPIO[55] — DSPI_1 CS3 ALT1 — — DSPI_0 CS4 ALT3 — — SWG analog output — — — SIUL GPIO[56] ALT0 GPIO[56] — DSPI_1 CS2 ALT1 — — eTimer_1 ETC[4] ALT2 ETC[4] PSMI[13]; PADSEL=2 DSPI_0 CS5 ALT3 — — FlexPWM_0 — — FAULT[3] PSMI[19]; PADSEL=1 SIUL GPIO[57] ALT0 GPIO[57] — PCR[57] FlexPWM_0 X[0] ALT1 X[0] — LINFlexD_1 TXD ALT2 — — SIUL GPIO[58] ALT0 GPIO[58] — FlexPWM_0 A[0] ALT1 A[0] PSMI[20]; PADSEL=1 eTimer_0 — — ETC[0] PSMI[35]; PADSEL=1 SIUL GPIO[59] ALT0 GPIO[59] — FlexPWM_0 B[0] ALT1 B[0] PSMI[24]; PADSEL=1 eTimer_0 — — ETC[1] PSMI[36]; PADSEL=1 SIUL GPIO[60] ALT0 GPIO[60] FlexPWM_0 X[1] ALT1 X[1] PSMI[28]; PADSEL=1 LINFlexD_1 — — RXD PSMI[32]; PADSEL=1 SIUL GPIO[62] ALT0 GPIO[62] — FlexPWM_0 B[1] ALT1 B[1] PSMI[25]; PADSEL=2 eTimer_0 — — ETC[3] PSMI[38]; PADSEL=1 PCR PCR[55] PCR[56] PCR[58] PCR[59] PCR[60] PCR[62] Input Output mux sel functions DocID023953 Rev 5 Pull down M S 26 37 Pull down M S 21 32 Pull down M S 15 26 Pull down M S 53 76 Pull down M S 54 78 Pull down M S 70 99 Pull down M S 73 105 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function Input Output mux sel functions Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Port E E[0] PCR[64] E[2] PCR[66] E[4] PCR[68] E[5] PCR[69] E[6] PCR[70] E[7] PCR[71] E[9] PCR[73] E[10] PCR[74] E[11] PCR[75] E[12] PCR[76] E[13] E[14] E[15] PCR[77] PCR[78] PCR[79] SIUL — ALT0 GPI[64] — (3) AN[5] — ADC_1 — — SIUL — ALT0 GPI[66] — ADC_0 — — AN[5](3) — SIUL — ALT0 GPI[68] — — ADC_0 — — AN[7](3) SIUL — ALT0 GPI[69] — ADC_0 — — AN[8](3) — SIUL — ALT0 GPI[70] — — ADC_0 — — AN[4](3) SIUL — ALT0 GPI[71] — ADC_0 — — AN[6](3) — SIUL — ALT0 GPI[73] — — ADC_1 — — AN[7](3) SIUL — ALT0 GPI[74] — ADC_1 — — AN[8](3) — SIUL — ALT0 GPI[75] — — ADC_1 — — AN[4](3) SIUL — ALT0 GPI[76] — ADC_1 — — AN[6](3) — SIUL GPIO[77] ALT0 GPIO[77] — eTimer_0 ETC[5] ALT1 ETC[5] PSMI[8]; PADSEL=1 DSPI_2 CS3 ALT2 — — SIUL — — EIRQ[25] — SIUL GPIO[78] ALT0 GPIO[78] — eTimer_1 ETC[5] ALT1 ETC[5] PSMI[14]; PADSEL=3 SIUL — — EIRQ[26] — SIUL GPIO[79] ALT0 GPIO[79] — DSPI_0 CS1 ALT1 — — SIUL — — EIRQ[27] — DocID023953 Rev 5 — — — 46 68 — — — 32 49 — — — — 42 — — — — 44 — — — — 46 — — — — 48 — — — — 61 — — — — 63 — — — — 65 — — — — 67 Pull down M S — 117 Pull down M S — 119 Pull down M S — 121 67/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function Input Output mux sel functions Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Port F F[0] PCR[83] F[4] PCR[84] F[5] PCR[85] F[6] PCR[86] F[7] PCR[87] F[8] PCR[88] F[9] PCR[89] F[10] PCR[90] F[11] PCR[91] F[13] 68/128 GPIO[80] ALT0 GPIO[80] — FlexPWM_0 A[1] ALT1 A[1] PSMI[21]; PADSEL=2 PCR[80] F[3] F[12] SIUL PCR[92] PCR[93] eTimer_0 — — ETC[2] PSMI[37]; PADSEL=1 SIUL — — EIRQ[28] — SIUL GPIO[83] ALT0 GPIO[83] — DSPI_0 CS6 ALT1 — — SIUL GPIO[84] ALT0 GPIO[84] — NPC MDO[3] ALT2 — — SIUL GPIO[85] ALT0 GPIO[85] — NPC MDO[2] ALT2 — — SIUL GPIO[86] ALT0 GPIO[86] — NPC MDO[1] ALT2 — — SIUL GPIO[87] ALT0 GPIO[87] — NPC MCKO ALT2 — — SIUL GPIO[88] ALT0 GPIO[88] — NPC MSEO[1] ALT2 — — SIUL GPIO[89] ALT0 GPIO[89] — NPC MSEO[0] ALT2 — — SIUL GPIO[90] ALT0 GPIO[90] — NPC EVTO ALT2 — — SIUL GPIO[91] ALT0 GPIO[91] — NPC EVTI ALT2 — — SIUL GPIO[92] ALT0 GPIO[92] — eTimer_1 ETC[3] ALT1 ETC[3] PSMI[12]; PADSEL=2 SIUL — — EIRQ[30] — SIUL GPIO[93] ALT0 GPIO[93] — eTimer_1 ETC[4] ALT1 ETC[4] PSMI[13]; PADSEL=3 SIUL — — EIRQ[31] — DocID023953 Rev 5 Pull down M S — 133 Pull down M S — 139 Pull down F S — 4 Pull down F S — 5 Pull down F S — 8 Pull down F S — 19 Pull down F S — 20 Pull down F S — 23 Pull down F S — 24 Pull down M S — 25 Pull down M S — 106 Pull down M S — 112 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 7. Pin muxing (continued) Port name F[14] F[15] PCR PCR[94] PCR[95] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[94] ALT0 GPIO[94] — LINFlexD_1 TXD ALT1 — — FlexCAN_2 RXD ALT2 — — SIUL GPIO[95] ALT0 GPIO[95] — LINFlexD_1 — — RXD PSMI[32]; PADSEL=2 FlexCAN_2 TXD ALT2 — — Input Output mux sel functions Pull down M S — 115 Pull down M S — 113 FCCU FCCU _ F[0] — FCCU F[0] ALT0 F[0] — — S S 27 38 FCCU _ F[1] — FCCU F[1] ALT0 F[1] — — S S 97 141 Pull down M S — 102 Pull down M S — 104 Pull down M S — 100 Pull down M S — 85 Pull down M S — 98 Port G SIUL G[2] G[3] G[4] G[5] G[6] GPIO[98] ALT0 GPIO[98] — X[2] ALT1 X[2] PSMI[29]; PADSEL=1 DSPI_1 CS1 ALT2 — — SIUL GPIO[99] ALT0 GPIO[99] — FlexPWM_0 A[2] ALT1 A[2] PSMI[22]; PADSEL=2 eTimer_0 — — ETC[4] PSMI[7]; PADSEL=3 SIUL GPIO[100] ALT0 GPIO[100] — FlexPWM_0 B[2] ALT1 B[2] PSMI[26]; PADSEL=2 eTimer_0 — — ETC[5] PSMI[8]; PADSEL=3 SIUL GPIO[101] ALT0 GPIO[101] — X[3] ALT1 X[3] PSMI[30]; PADSEL=2 DSPI_2 CS3 ALT2 — — SIUL GPIO[102] ALT0 GPIO[102] — A[3] PSMI[23]; PADSEL=3 PCR[98] FlexPWM_0 PCR[99] PCR[100] PCR[101] FlexPWM_0 PCR[102] FlexPWM_0 A[3] ALT1 DocID023953 Rev 5 69/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 7. Pin muxing (continued) Port name PCR G[7] PCR[103] G[8] G[9] PCR[104] PCR[105] G[10] PCR[106] G[11] PCR[107] G[12] PCR[108] G[13] PCR[109] G[14] PCR[110] G[15] PCR[111] 70/128 Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[103] ALT0 GPIO[103] FlexPWM_0 B[3] ALT1 B[3] PSMI[27]; PADSEL=3 SIUL GPIO[104] ALT0 GPIO[104] — FlexRay DBG0 ALT1 — — DSPI_0 CS1 ALT2 — — Input Output mux sel functions FlexPWM_0 — — FAULT[0] PSMI[16]; PADSEL=2 SIUL — — EIRQ[21] — SIUL GPIO[105] ALT0 GPIO[105] — FlexRay DBG1 ALT1 — — DSPI_1 CS1 ALT2 — — FlexPWM_0 — — FAULT[1] PSMI[17]; PADSEL=2 SIUL — — EIRQ[29] — SIUL GPIO[106] ALT0 GPIO[106] — FlexRay DBG2 ALT1 — — DSPI_2 CS3 ALT2 — — FlexPWM_0 — — FAULT[2] PSMI[18]; PADSEL=1 SIUL GPIO[107] ALT0 GPIO[107] — FlexRay DBG3 ALT1 — — FlexPWM_0 — — FAULT[3] PSMI[19]; PADSEL=2 SIUL GPIO[108] ALT0 GPIO[108] — NPC MDO[11] ALT2 — — SIUL GPIO[109] ALT0 GPIO[109] — NPC MDO[10] ALT2 — — SIUL GPIO[110] ALT0 GPIO[110] — NPC MDO[9] ALT2 — — SIUL GPIO[111] ALT0 GPIO[111] — NPC MDO[8] ALT2 — — DocID023953 Rev 5 Pull down M S — 83 Pull down M S — 81 Pull down M S — 79 Pull down M S — 77 Pull down M S — 75 Pull down F S — — Pull down F S — — Pull down F S — — Pull down F S — — SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 7. Pin muxing (continued) Port name PCR Peripheral Alternate output function Input Output mux sel functions Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Port H H[0] PCR[112] H[1] PCR[113] H[2] PCR[114] H[3] PCR[115] H[4] H[5] H[6] H[7] H[8] H[9] PCR[116] SIUL GPIO[112] ALT0 GPIO[112] — NPC MDO[7] ALT2 — — SIUL GPIO[113] ALT0 GPIO[113] — NPC MDO[6] ALT2 — — SIUL GPIO[114] ALT0 GPIO[114] — NPC MDO[5] ALT2 — — SIUL GPIO[115] ALT0 GPIO[115] — NPC MDO[4] ALT2 — — SIUL GPIO[116] ALT0 GPIO[116] — FlexPWM_1 X[0] ALT1 X[0] — eTimer_2 ETC[0] ALT2 ETC[0] PSMI[39]; PADSEL=0 SIUL GPIO[117] ALT0 GPIO[117] — A[0] ALT1 A[0] — DSPI_0 CS4 ALT3 — — SIUL GPIO[118] ALT0 GPIO[118] — B[0] ALT1 B[0] — DSPI_0 CS5 ALT3 — — SIUL GPIO[119] ALT0 GPIO[119] — FlexPWM_1 X[1] ALT1 X[1] — PCR[117] FlexPWM_1 PCR[118] FlexPWM_1 PCR[119] eTimer_2 ETC[1] ALT2 ETC[1] PSMI[40]; PADSEL=0 SIUL GPIO[120] ALT0 GPIO[120] — A[1] ALT1 A[1] — DSPI_0 CS6 ALT3 — — SIUL GPIO[121] ALT0 GPIO[121] — B[1] ALT1 B[1] — DSPI_0 CS7 ALT3 — — SIUL GPIO[122] ALT0 GPIO[122] — X[2] ALT1 X[2] — ETC[2] ALT2 ETC[2] — PCR[120] FlexPWM_1 PCR[121] FlexPWM_1 H[10] PCR[122] FlexPWM_1 eTimer_2 DocID023953 Rev 5 Pull down F S — — Pull down F S — — Pull down F S — — Pull down F S — — Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — 71/128 127 Package pinouts and signal descriptions SPC56EL70L3, SPC56EL70L5,PC564L70L3, Table 7. Pin muxing (continued) Port name PCR H[11] PCR[123] H[12] PCR[124] H[13] PCR[125] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[123] ALT0 GPIO[123] — FlexPWM_1 A[2] ALT1 A[2] — SIUL GPIO[124] ALT0 GPIO[124] — FlexPWM_1 B[2] ALT1 B[2] — SIUL GPIO[125] ALT0 GPIO[125] — FlexPWM_1 X[3] ALT1 X[3] — Input Output mux sel functions eTimer_2 ETC[3] ALT2 ETC[3] PSMI[42]; PADSEL=0 SIUL GPIO[126] ALT0 GPIO[126] — A[3] ALT1 A[3] — eTimer_2 ETC[4] ALT2 ETC[4] — SIUL GPIO[127] ALT0 GPIO[127] — B[3] ALT1 B[3] — ETC[5] ALT2 ETC[5] — H[14] PCR[126] FlexPWM_1 H[15] PCR[127] FlexPWM_1 eTimer_2 Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — Pull down M S — — Port I I[0] I[1] I[2] 72/128 PCR[128] PCR[129] PCR[130] SIUL GPIO[128] ALT0 GPIO[128] — eTimer_2 ETC[0] ALT1 ETC[0] PSMI[39]; PADSEL=1 DSPI_0 CS4 ALT2 — — FlexPWM_1 — — FAULT[0] — SIUL GPIO[129] ALT0 GPIO[129] — eTimer_2 ETC[1] ALT1 ETC[1] PSMI[40]; PADSEL=1 DSPI_0 CS5 ALT2 — — FlexPWM_1 — — FAULT[1] — SIUL GPIO[130] ALT0 GPIO[130] — eTimer_2 ETC[2] ALT1 ETC[2] PSMI[41]; PADSEL=1 DSPI_0 CS6 ALT2 — — FlexPWM_1 — — FAULT[2] — DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package pinouts and signal descrip- Table 7. Pin muxing (continued) Port name I[3] RDY PCR PCR[131] PCR[132] Pad Weak Pin # pull speed(1) Input mux config select during SRC SRC 100 144 reset =1 = 0 pkg pkg Peripheral Alternate output function SIUL GPIO[131] ALT0 GPIO[131] — eTimer_2 ETC[3] ALT1 ETC[3] PSMI[42]; PADSEL=1 DSPI_0 CS7 ALT2 — — CTU_0 EXT_TGR ALT3 — — FlexPWM_1 — — FAULT[3] — SIUL GPIO[132] ALT0 GPIO[132] — NPC RDY ALT2 — — Input Output mux sel functions Pull down M S — — Pull down F S — — 1. Programmable via the SRC (Slew Rate Control) bit in the respective Pad Configuration Register; S = Slow, M = Medium, F = Fast, SYM = Symmetric (for FlexRay). 2. The default function of this pin out of reset is ALT1 (TDO). 3. Analog. DocID023953 Rev 5 73/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 3 Electrical characteristics 3.1 Introduction This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for this device. This device is designed to operate at 120 MHz. The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after complete characterization and device qualifications have been completed. The “Symbol” column of the electrical parameter and timings tables contains an additional column containing “SR”, “CC”, “P”, “C”, “T”, or “D”. 3.2 “SR” identifies system requirements—conditions that must be provided to ensure normal device operation. An example is the input voltage of a voltage regulator. “CC” identifies controller characteristics—indicating the characteristics and timing of the signals that the chip provides. “P”, “C”, “T”, or “D” apply only to controller characteristics—specifications that define normal device operation. They specify how each characteristic is guaranteed. – P: parameter is guaranteed by production testing of each individual device. – C: parameter is guaranteed by design characterization. Measurements are taken from a statistically relevant sample size across process variations. – T: parameter is guaranteed by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values are shown in the typical (“typ”) column are within this category. – D: parameters are derived mainly from simulations. Absolute maximum ratings Table 8. Absolute maximum ratings(1) Symbol Parameter Conditions Min Max Unit V VDD_HV_REG SR 3.3 V voltage regulator supply voltage — –0.3 4.5(2), (3) VDD_HV_IOx SR 3.3 V input/output supply voltage — –0.3 4.5(2), (3) V VSS_HV_IOx SR Input/output ground voltage — –0.1 0.1 V V VDD_HV_FLA SR 3.3 V flash supply voltage — –0.3 4.5(2), (3) VSS_HV_FLA SR Flash memory ground — –0.1 0.1 V VDD_HV_OSC SR 3.3 V crystal oscillator amplifier supply voltage — –0.3 4.5(2), (3) V VSS_HV_OSC SR 3.3 V crystal oscillator amplifier reference voltage — –0.1 0.1 V — –0.3 6.4(2) V VDD_HV_ADR0(2), (3) SR 3.3 V / 5.0 V ADC_0 high reference voltage 3.3 V / 5.0 V ADC_1 high reference voltage VDD_HV_ADR1 74/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Table 8. Absolute maximum ratings(1) (continued) Symbol Parameter Conditions Min Max Unit VSS_HV_ADR0 VSS_HV_ADR1 SR ADC_0 ground and low reference voltage ADC_1 ground and low reference voltage — –0.1 0.1 V VDD_HV_ADV SR 3.3 V ADC supply voltage — –0.3 4.5(3), (4) V VSS_HV_ADV SR 3.3 V ADC supply ground — –0.1 0.1 V TVDD SR Supply ramp rate SR Voltage on any pin with respect to ground (VSS_HV_IOx)or Vss_HV_ADRx VIN -6 — 3.0 × 10 (3.0 V/sec) 0.5 V/µs V/µs Valid only for ADC pins –0.3 6.0(4) V Relative to VDD –0.3 VDD + 0.3(4), (5) IINJPAD SR Injected input current on any pin during overload condition — –10 10 mA IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 mA SR Storage temperature — –55 150 °C TSTG 1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect device reliability or cause permanent damage to the device. 2. Any voltage between operating condition and absolute max rating can be sustained for maximum cumulative time of 10 hours. 3. Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance. 4. Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage specifications. 5. VDD has to be considered equal to VDD_HV_ADRx in case of ADC pins, whilst it is VDD_HV_IOx for any other pin. 3.3 Recommended operating conditions Table 9. Recommended operating conditions (3.3 V) Symbol Parameter Conditions Min(1) Max Unit VDD_HV_REG SR 3.3 V voltage regulator supply voltage — 3.0 3.63 V VSS_HV_REG SR 3.3 V voltage regulator reference voltage — 0 0 V VDD_HV_IOx SR 3.3 V input/output supply voltage — 3.0 3.63 V VSS_HV_IOx SR Input/output ground voltage — 0 0 V VDD_HV_FLA SR 3.3 V flash supply voltage — 3.0 3.63 V VSS_HV_FLA SR Flash memory ground — 0 0 V VDD_HV_OSC SR 3.3 V crystal oscillator amplifier supply voltage — 3.0 3.63 V VSS_HV_OSC SR 3.3 V crystal oscillator amplifier reference voltage — 0 0 V VDD_HV_ADR0(2),(3) VDD_HV_ADR1 SR 3.3 V / 5.0 V ADC_0 high reference voltage 3.3 V / 5.0 V ADC_1 high reference voltage — 4.5 to 5.5 or 3.0 to 3.63 DocID023953 Rev 5 V 75/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 9. Recommended operating conditions (3.3 V) (continued) Symbol Parameter Conditions Min(1) Max Unit VDD_HV_ADV SR 3.3 V ADC supply voltage — 3.0 3.63 V VSS_HV_AD0 VSS_HV_AD1 SR ADC_0 ground and low reference voltage ADC_1 ground and low reference voltage — 0 0 V VSS_HV_ADV SR 3.3 V ADC supply ground — 0 0 V (4) SR Internal supply voltage — — — V VSS_LV_REGCOR(5) VDD_LV_REGCOR SR Internal reference voltage — 0 0 V (2) SR Internal supply voltage — — — V (3) VDD_LV_CORx SR Internal reference voltage — 0 0 V VDD_LV_PLL(2) SR Internal supply voltage — — — V VSS_LV_PLL(3) SR Internal reference voltage — 0 0 V TA SR Ambient temperature under bias –40 125 °C TJ SR Junction temperature under bias –40 150 °C VSS_LV_CORx fCPU 120 MHz — 1. Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. VDD_HV_ADR0 and VDD_HV_ADR1 cannot be operated at different voltages, and need to be supplied by the same voltage source. 3. VDD_HV_ADRx must always be applied and should be stable before LBIST starts. If this supply is not above its absolute minimum level, LBIST operations can fail. 4. Can be connected to emitter of external NPN. Low voltage supplies are not under user control. They are produced by an on-chip voltage regulator. 5. For the device to function properly, the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter, if one is used. 3.4 Decoupling capacitors The internal voltage regulator requires an external NPN ballast and some additional decoupling capacitors. These capacitors shall be placed on the board as close as possible to the associated pin. Table 10. Decoupling capacitors Symbol Parameter Value Conditions(1) Unit Min CCOL SR External decoupling / stability capacitor Accuracy -50%/+35%. Max ESR = 100 mΩ. CLV1 SR External decoupling / stability capacitor Sum of CLV1 placed close to VDD/VSS_LV_CORy pairs(2). CLV2 SR External decoupling / stability capacitor Sum of CLV2 placed close to VDD/VSS_LV_CORy pairs shall be between 300 nF and 900 nF. CPMU1 SR External decoupling / stability capacitor Accuracy -50%/+35%. 76/128 DocID023953 Rev 5 Typ Max 20 12µF µF 40µF µF 100(2) nF 10 µF SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Table 10. Decoupling capacitors (continued) Symbol Parameter Value Conditions(1) Unit Min Typ Max CPMU2 SR External decoupling / stability capacitor Accuracy -50%/+35%. 100 nF CREG SR External decoupling / stability capacitor Accuracy -50%/+35%. 20 µF CIO1 SR External decoupling / stability capacitor Accuracy -50%/+35%. 100 nF CIO2 SR External decoupling / stability capacitor Accuracy -50%/+35%. 470 pF CFLA1 SR External decoupling / stability capacitor Accuracy -50%/+35%. 100 nF CFLA2 SR External decoupling / stability capacitor Accuracy -50%/+35%. 10 nF COSC1 SR External decoupling / stability capacitor Accuracy -50%/+35%. 100 nF COSC2 SR External decoupling / stability capacitor Accuracy -50%/+35%. 10 nF CPLL1 SR External decoupling / stability capacitor CADR1 SR External decoupling / stability capacitor Accuracy -50%/+35%. Ceramic capacitor. 10 nF CADR2 SR External decoupling / stability capacitor Accuracy -50%/+35%. Ceramic capacitor. 47 nF CADR3 SR External decoupling / stability capacitor Accuracy -50%/+35%. Electrolytic or tantalum capacitor. 1 µF CADV1 SR External decoupling / stability capacitor Accuracy -50%/+35%. Ceramic capacitor. 10 nF CADV2 SR External decoupling / stability capacitor Accuracy -50%/+35%. Ceramic capacitor. 47 nF CADV3 SR External decoupling / stability capacitor Accuracy -50%/+35%. Electrolytic or tantalum capacitor. 1 µF 22 100 nF 1. Capacitors shall be placed as close as possible to the respective pads. 2. Total ESR considering all decoupling capacitor close to the VDD/VSS_LV_CORy pairs shall be between 1 mΩ and 100 mΩ. DocID023953 Rev 5 77/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Figure 4. Decoupling capacitors 9 9 9''B+9B,2\ &,2 &&2/ %&75/ &,2 966B+9B,2\ 9 9''B+9B,2[ &,2 &,2 9 9''B/9B&25\ 966B+9B,2[ &/9 &/9 966B/9B&25\ 9 RQO\LILQWHUQDO EDOODVWLVXVHG 9''B+9B)/$ &)/$ &)/$ 9''B/9B&25[ 966B+9B)/$ &/9 &9/ 966B/9B&25[ 9''B+9B26& &26& &26& 966B+9B26& 9 9''B+9B308 &308 &308 63&(/[ 9 9''B/9B3// 9''B+9B5(*[ &3// 966B/9B3// $'&[UHIHUHQFH &$'5 &5(* 9''B+9B$'5[ &$'5 &$'5 966B+9B$'5[ $'&VXSSO\ 9''B+9B$'9 &$'9 &$'9 &$'9 966B+9B$'9 (;7$/ &&26& 966B+9B26& 78/128 DocID023953 Rev 5 ;7$/ &&26& SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 3.5 Electrical characteristics Thermal characteristics Table 11. Thermal characteristics for LQFP100 package(1) Symbol RJA RJMA RJB RJC JT Parameter Conditions D Thermal resistance, junction-to-ambient natural Single layer board – 1s convection(2) Four layer board – 2s2p Value Unit 46 °C/W 34 D Thermal resistance, junction-to-ambient forced Single layer board – 1s convection at 200 ft/min Four layer board – 2s2p 28 D Thermal resistance junction-to-board(3) — 19 °C/W — 8 °C/W — 2 °C/W D Thermal resistance junction-to-case (4) D Junction-to-package-top natural convection (5) 36 °C/W 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Table 12. Thermal characteristics for LQFP144 package(1) Symbol Parameter Conditions Value RJA D Thermal resistance, junction-to-ambient natural Single layer board – 1s convection(2) Four layer board – 2s2p RJMA D Thermal resistance, junction-to-ambient forced Single layer board – 1s convection at 200 ft/min Four layer board – 2s2p 30 RJB D Thermal resistance junction-to-board(3) — 24 °C/W — 8 °C/W — 2 °C/W RJC JT D D Thermal resistance junction-to-case Junction-to-package-top natural (4) convection(5) 42 Unit 34 35 °C/W °C/W 1. Thermal characteristics are targets based on simulation that are subject to change per device characterization. 2. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. 3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 3.5.1 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: DocID023953 Rev 5 79/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Equation 1 TJ = TA + (RJA × PD) where: TA= ambient temperature for the package (oC) RJA= junction to ambient thermal resistance (oC/W) PD= power dissipation in the package (W) The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: Equation 2 RJA = RJC + RCA where: RJA = junction to ambient thermal resistance (°C/W) RJC= junction to case thermal resistance (°C/W) RCA= case to ambient thermal resistance (°C/W) RJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3: Equation 3 TJ = TT + (JT × PD) where: TT= thermocouple temperature on top of the package (°C) JT= thermal characterization parameter (°C/W) PD= power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. 80/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 3.5.1.1 Electrical characteristics References Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 USA (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB in JEDEC site. 3.6 1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54. 2. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic Packaging and Production, pp. 53–58, March 1998. 3. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212–220. Electromagnetic Interference (EMI) characteristics The characteristics in Table 14 were measured using: Device configuration, test conditions, and EM testing per standard IEC61967-2 Supply voltage of 3.3 V DC Ambient temperature of 25 C The configuration information referenced in Table 14 is explained in Table 13. Table 13. EMI configuration summary Configuration name Description Configuration A – – – – – High emission = all pads have max slew rate, LVDS pads running at 40 MHz Oscillator frequency = 40 MHz System bus frequency = 120 MHz No PLL frequency modulation IEC level K ( 30 dBV) Configuration B – – – – – Reference emission = pads use min, mid and max slew rates, LVDS pads disabled Oscillator frequency = 40 MHz System bus frequency = 120 MHz 2% PLL frequency modulation IEC level K( 30 dBV) DocID023953 Rev 5 81/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 14. EMI emission testing specifications Symbol VEME Parameter CC Radiated emissions Conditions Min Typ Max Unit Configuration A; frequency range 150 kHz–50 MHz — 10 — dBV Configuration A; frequency range 50– 150 MHz — 18 — Configuration A; frequency range 150– 500 MHz — 30 — Configuration A; frequency range 500– 1000 MHz — 18 — Configuration B; frequency range 50– 150 MHz — 10 — Configuration B; frequency range 50– 150 MHz — 18 — Configuration B; frequency range 150– 500 MHz — 30 — Configuration B; frequency range 500– 1000 MHz — 18 — EME testing was performed and documented according to these standards: [IEC 61967-2 & -4] EMS testing was performed and documented according to these standards: [IEC 62132-2 & -4] 3.7 Electrostatic discharge (ESD) characteristics Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the application note Electrostatic Discharge Sensitivity Measurement (AN1181). Table 15. ESD ratings(1)(2) No. Symbol Parameter Conditions Class Max value(3) Unit 1 VESD(HBM) SR Electrostatic discharge (Human Body Model) TA = 25 °C conforming to AEC-Q100002 H1C 2000 V 2 VESD(MM) SR Electrostatic discharge (Machine Model) TA = 25 °C conforming to AEC-Q100003 M2 200 V 3 VESD(CDM) SR Electrostatic discharge (Charged Device Model) TA = 25 °C conforming to AEC-Q100011 C3A 500 750 (corners) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 82/128 DocID023953 Rev 5 V SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics 2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3. Data based on characterization results, not tested in production. 3.8 Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance: A supply overvoltage is applied to each power supply pin. A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 16. Latch-up results No. 1 Symbol LU 3.9 SR Parameter Static latch-up class Conditions Class TA = 125 °C conforming to JESD 78 II level A Voltage regulator electrical characteristics The voltage regulator is composed of the following blocks: High power regulator HPREG1 (internal ballast to support core current) High power regulator HPREG2 (external NPN to support core current) Low voltage detector (LVD_MAIN_1) for 3.3 V supply to IO (VDDIO) Low voltage detector (LVD_MAIN_2) for 3.3 V supply (VDDREG) Low voltage detector (LVD_MAIN_3) for 3.3 V flash supply (VDDFLASH) Low voltage detector (LVD_DIG_MAIN) for 1.2 V digital core supply (HPVDD) Low voltage detector (LVD_DIG_BKUP) for the self-test of LVD_DIG_MAIN High voltage detector (HVD_DIG_MAIN) for 1.2 V digital CORE supply (HPVDD) High voltage detector (HVD_DIG_BKUP) for the self-test of HVD_DIG_MAIN. Power on Reset (POR) HPREG1 uses an internal ballast to support the core current. HPREG2 is used only when external NPN transistor is present on board to supply core current. The SPC56XL70 always powers up using HPREG1 if an external NPN transistor is present. Then the SPC56XL70 makes a transition from HPREG1 to HPREG2. This transition is dynamic. Once HPREG2 is fully operational, the controller part of HPREG1 is switched off. The following bipolar transistors are supported: BCP68 from ON Semiconductor BCX68 from Infineon Table 17. Recommended operating characteristics Symbol hFE( ) PD Parameter DC current gain (Beta) Maximum power dissipation @ TA=25°C(1) DocID023953 Rev 5 Value Unit 85 - 375 — 1.5 W 83/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 17. Recommended operating characteristics (continued) Symbol Parameter Value Unit 1.0 A ICMaxDC Maximum peak collector current VCESAT Collector-to-emitter saturation voltage(Max) 600(2) mV VBE Base-to-emitter voltage (Max) 1.0 V 1. Derating factor 12mW/degC. 2. Adjust resistor at bipolar transistor collector for 3.3V to avoid VCE<VCESAT. The recommended external ballast transistor is the bipolar transistor BCP68 with the gain range of 85 up to 375 (for IC=500mA, VCE=1V) provided by several suppliers. This includes the gain variations BCP6810, BCP68-16 and BCP68-25.The most important parameters for the interoperability with the integrated voltage regulator are the DC current gain (hFE) and the temperature coefficient of the gain (XTB). While the specified gain range of most BCP68 vendors is the same, there are slight variations in the temperature coefficient parameter. Voltage regulator operation was simulated against the typical variation on temperature coefficient and against the specified gain range to have a robust design. Table 18. Voltage regulator electrical specifications Symbol Conditions Min Typ Max Unit Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations. 12 — 40 µF SR Combined ESR of external capacitor — 1 — 100 m SR Number of pins for external decoupling/ stability capacitor — 5 — — — SR Total capacitance on 1.2 V pins Ceramic capacitors, taking into account tolerance, aging, voltage and temperature variation 300 — 900 nF Cload = 10 µF × 4 — — 2.5 ms Cext CV1V2 Parameter External decoupling/ stability capacitor tSU Start-up time after main supply stabilization — Main High Voltage Power - Low Voltage Detection, upper threshold — — — 2.93 V Main supply low voltage detector, lower threshold — 2.6 — — V — 84/128 D DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Table 18. Voltage regulator electrical specifications (continued) Symbol — — D D Parameter Digital supply high voltage detector upper threshold Digital supply high voltage detector lower threshold Conditions Min Typ Max Unit Before a destructive reset initialization phase completion 1.355 — 1.495 V After a destructive reset initialization phase completion 1.39 — 1.47 Before a destructive reset initialization phase completion 1.315 — 1.455 After a destructive reset initialization phase completion 1.35 — 1.38 V — D Digital supply low voltage detector lower threshold Before a destructive reset initialization phase completion 1.080 — 1.226 V — D Digital supply low voltage detector lower threshold After a destructive reset initialization phase completion 1.080 — 1.140 V — D Digital supply low voltage detector upper threshold After a destructive reset initialization phase completion 1.16 — 1.22 V — D Digital supply low voltage detector upper threshold Before a destructive reset initialization phase completion 1.16 — 1.306 V — D POR rising/ falling supply threshold voltage — 1.6 — 2.6 V — 3 — 0.5 ×106 V/s — SR Supply ramp rate — D LVD_MAIN: Time constant of RC filter at LVD input 3.3V noise rejection at the input of LVD comparator 1.1 — — µs — D HVD_DIG: Time constant of RC filter at LVD input 1.2V noise rejection at the input of LVD comparator 0.1 — — µs — D LVD_DIG: Time constant of RC filter at LVD input 1.2V noise rejection at the input of LVD comparator 0.1 — — µs DocID023953 Rev 5 85/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Figure 5. BCP68 board schematic example VDD BCP68 BCRTL V1V2 ring on board Rb Lb ESR Rs Cv1v2 Cext Cint V1V2 pin SPC56XL70 Note: The combined ESR of the capacitors used on 1.2 V pins (V1V2 in the picture) shall be in the range of 1 m to 100 m. The minimum value of the ESR is constrained by the resonance caused by the external components, bonding inductance, and internal decoupling. The minimum ESR is required to avoid the resonance and make the regulator stable. DC electrical characteristics Table 19 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IOx < 3.6 V). Table 19. DC electrical characteristics(1) Symbol Parameter Conditions Min Typ Max Unit VIL D Minimum low level input voltage — –0.1(2) — — V VIL P Maximum low level input voltage — — — 0.35 VDD_HV_IOx V VIH P Minimum high level input voltage — 0.65 VDD_HV_IOx — — V D Maximum high level input voltage — — — VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — — V VOL_S P Slow, low level output voltage IOL = 1.5 mA — — 0.5 V VOH_S P Slow, high level output voltage IOH = – 1.5 mA VDD_HV_IOx – 0.8 — — V VOL_M P Medium, low level output voltage IOL = 2 mA — — 0.5 V VIH 86/128 DocID023953 Rev 5 VDD_HV_IOx + 0.1(2),(3) V SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Table 19. DC electrical characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit VDD_HV_IOx – 0.8 — — V VOH_M P Medium, high level output voltage IOH = –2 mA VOL_F P Fast, high level output voltage IOL = 11 mA — — 0.5 V VOH_F P Fast, high level output voltage IOH = –11 mA VDD_HV_IOx – 0.8 — — V VOL_SYM P Symmetric, high level output voltage IOL = 1.5 mA — — 0.5 V VOH_SYM P Symmetric, high level output voltage IOH = – 1.5 mA VDD_HV_IOx – 0.8 — — V — –1 — 1 mA VIN = VIL –130 — — µA VIN = VIH — — –10 VIN = VIL 10 — — VIN = VIH — — 130 TJ = –40 to +150 °C –1 — 1 Input leakage current (all ADC input-only ports) –0.25 — 0.25 Input leakage current (shared ADC input-only ports) –0.3 — 0.3 –0.1(2) — 0.35 VDD_HV_IOx IINJ T DC injection current per pin (all bidirectional ports) IPU P Equivalent pull-up current IPD IIL VILR P Equivalent pull-down current P Input leakage current (all bidirectional ports) P RESET, low level input voltage — µA +0.1(2) V P RESET, high level input voltage — 0.65 VDD_HV_IOx — VHYSR D RESET, Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — — V VOLR D RESET, low level output voltage IOL = 2 mA — — 0.5 V VIN = VIL 10 — — µA VIN = VIH — — 130 VIHR IPD D RESET, equivalent pull-down current VDD_HV_IOx µA V 1. These specifications are design targets and subject to change per device characterization. 2. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 8. 3. The max input voltage on the ADC pins is the ADC reference voltage VDD_HV_ADRx. 3.10 Supply current characteristics Current consumption data is given in Table 20. These specifications are design targets and are subject to change per device characterization. DocID023953 Rev 5 87/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 20. Current consumption characteristics Symbol IDD_LV_FULL + IDD_LV_PLL IDD_LV_TYP + IDD_LV_PLL(2) IDD_LV_TYP + IDD_LV_PLL(2) IDD_LV_BIST + IDD_LV_PLL Parameter T T Operating current Operating current P Operating current T Operating current Conditions(1) Min Typ Max Unit 1.2 V supplies TJ = ambient VDD_LV_COR = 1.32 V — — 25 [mA]+2.7 [mA/MHz]* mA fCPU[MHz] 1.2 V supplies TJ = 150 C VDD_LV_COR = 1.32 V — — 115 [mA]+2.28 [mA/MH z]*fCPU[MHz] 1.2 V supplies TJ = ambient VDD_LV_COR = 1.32 V — — 25 [mA]+2.45 [mA/MHz mA ]*fCPU[MHz] 1.2 V supplies TJ = 150 C VDD_LV_COR = 1.32 V — — 115 [mA]+2.02 [mA/MH z]*fCPU[MHz] 1.2 V supplies TJ = ambient VDD_LV_COR = 1.32 V — — 319 1.2 V supplies TJ = 150 C VDD_LV_COR = 1.32 V — — 358 1.2 V supplies during LBIST (full LBIST configuration) TJ = ambient VDD_LV_COR = 1.32 V — — 286 1.2 V supplies during LBIST (full LBIST configuration) TJ = 150 C VDD_LV_COR = 1.32 V — — 326 mA mA IDD_LV_TYP + IDD_LV_PLL T Operating current 1.2 V supplies Tj = 105 C VDD_LV_COR = 1.2 V — — 315 mA IDD_LV_TYP + IDD_LV_PLL T Operating current 1.2 V supplies Tj = 125 C VDD_LV_COR = 1.2 V — — 339 mA IDD_LV_TYP + IDD_LV_PLL T Operating current 1.2 V supplies Tj = 105 C VDD_LV_COR = 1.2 V DPM Mode — — 193 mA IDD_LV_TYP + IDD_LV_PLL T Operating current 1.2 V supplies Tj = 125 C VDD_LV_COR = 1.2 V DPM Mode — — 231 mA IDD_LV_TYP + IDD_LV_PLL T Operating current 1.2 V supplies Tj = 150 C VDD_LV_COR = 1.2 V DPM Mode — — 277 mA 88/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Table 20. Current consumption characteristics (continued) Symbol IDD_LV_STOP IDD_LV_HALT Conditions(1) Parameter Min Typ Max Unit mA T Operating current in TJ = 25 C VDD STOP mode VDD_LV_COR = 1.32 V — — 25 T TJ = 55 C VDD_LV_COR = 1.32 V — — 53 P TJ = 150 C VDD_LV_COR = 1.32 V — — 115 T Operating current in TJ = 25 C VDD HALT mode VDD_LV_COR = 1.32 V — — 30 T TJ = 55 C VDD_LV_COR = 1.32 V — — 71 P TJ = 150 C VDD_LV_COR = 1.32 V — — 125 mA IDD_HV_ADC(3),(4) T Operating current TJ = 150 C 120 MHz ADC operating at 60 MHz VDD_HV_ADC = 3.6 V — — 11 mA IDD_HV_AREF(4) T Operating current TJ = 150 C 120 MHz ADC operating at 60 MHz VDD_HV_REF = 3.6 V — — 4 mA TJ = 150 C 120 MHz ADC operating at 60 MHz VDD_HV_REF = 5.5 V — — 6 Operating current TJ = 150 C 3.3 V supplies 120 MHz — — 900 µA IDD_HV_OSC (crystal oscillator mode) D Operating current TJ = 150 C 3.3 V supplies 120 MHz — — 3.5 mA IDD_HV_FLASH(5) T Operating current TJ = 150 C 3.3 V supplies 120 MHz — — 4 mA IDD_HV_PMU T Operating current TJ = 150 C 3.3 V supplies 120 MHz — — 10 mA IDD_HV_OSC (oscillator bypass mode) T 1. Devices configured for DPM mode, single core only with Core 0 executing typical code at 120 MHz from SRAM and Core 1 in reset. If core execution mode not specified, the device is configured for LSM mode with both cores executing typical code at 120 MHz from SRAM. 2. Enabled Modules in 'Typical mode': FlexPWM0, ETimer0/1/2, CTU, SWG, DMA, FlexCAN0/1, LINFlex, ADC1, DSPI0/1, PIT, CRC, PLL0/1, I/O supply current excluded 3. Internal structures hold the input voltage less than VDDA + 1.0 V on all pads powered by VDDA supplies, if the maximum injection current specification is met and VDDA is within the operating voltage specifications. 4. This value is the total current for both ADCs. 5. VFLASH is only available in the calibration package. DocID023953 Rev 5 89/128 127 Electrical characteristics 3.11 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Temperature sensor electrical characteristics Table 21. Temperature sensor electrical characteristics Symbol Parameter — P Accuracy TS D Minimum sampling period 3.12 Conditions TJ = –40 °C to 150 °C — Min Max Unit –10 10 °C 4 — µs Main oscillator electrical characteristics The device provides an oscillator/resonator driver. Figure 6 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. Figure 6. Crystal oscillator and resonator connection scheme EXTAL Crystal CL EXTAL RP XTAL CL DEVICE VDD I EXTAL Resonator R XTAL DEVICE XTAL DEVICE Note: 90/128 XTAL/EXTAL must not be directly used to drive external circuits. DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Figure 7. Main oscillator electrical characteristics MTRANS 1 0 VXTAL 1/fXOSCHS VXOSCHS 90% VXOSCHSOP 10% TXOSCHSSU × Table 22. Main oscillator electrical characteristics Symbol fXOSCHS valid internal clock Parameter SR Oscillator frequency Value Conditions(1) — Unit Min Typ Max 4.0 — 40.0 MHz mA/V gmXOSCHS P Oscillator transconductance VDD = 3.3 V ±10% 4.5 — 13.25 VXOSCHS D Oscillation amplitude fOSC = 4, 8, 10, 12, 16 MHz 1.3 — — fOSC = 40 MHz 1.1 — — V VXOSCHSOP D Oscillation operating point — — 0.82 — V IXOSCHS D Oscillator consumption — — — 3.5 mA fOSC = 4, 8, 10, 12 MHz(2) — — 6 fOSC = 16, 40 MHz(2) — — 2 0.65 × VDD — VDD + 0.4 V –0.4 — 0.35 × VDD V TXOSCHSSU T Oscillator start-up time VIH SR Input high level CMOS Oscillator bypass Schmitt Trigger mode VIL SR Input low level CMOS Schmitt Trigger Oscillator bypass mode ms 1. VDD = 3.3 V ±10%, TJ = –40 to +150 °C, unless otherwise specified. 2. The recommended configuration for maximizing the oscillator margin are: XOSC_MARGIN = 0 for 4 MHz quartz XOSC_MARGIN = 1 for 8/16/40 MHz quartz DocID023953 Rev 5 91/128 127 Electrical characteristics 3.13 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 FMPLL electrical characteristics Table 23. FMPLL electrical characteristics Symbol Parameter Conditions Min Typ Max Unit 4 — 40 MHz — 4 — 16 MHz — 4 — 120(2) MHz 20 — 150 MHz fREF_CRYSTAL D FMPLL reference frequency Crystal reference fREF_EXT range(1) fPLL_IN D Phase detector input frequency range (after predivider) fFMPLLOUT D Clock frequency range in normal mode fFREE P Free running frequency Measured using clock division (typically 16) fsys D On-chip FMPLL frequency(2) — 16 — 120 MHz tCYC D System clock period — — — 1 / fsys ns fLORL fLORH D Loss of reference frequency Lower limit window(3) Upper limit 1.6 — 3.7 MHz 24 — 56 fSCM D Self-clocked mode frequency(4),(5) — 20 — 150 MHz tLOCK P Stable oscillator (fPLLIN = 4 MHz), stable VDD — — 200 µs Lock time tlpll D FMPLL lock time (6), (7) — — — 200 s tdc D Duty cycle of reference — 40 — 60 % –6 — 6 ns CJITTER T CLKOUT period jitter(8),(9),(10),(11) tPKJIT T Single period jitter (peak to PHI @ 120 MHz, peak) Input clock @ 4 MHz — — 175 ps PHI @ 100 MHz, Input clock @ 4 MHz — — 185 ps PHI @ 80 MHz, Input clock @ 4 MHz — — 200 ps PHI @ 16 MHz, Input clock @ 4 MHz — — ±6 ns tLTJIT T Long term jitter Long-term jitter (avg. over 2 ms interval), fFMPLLOUT maximum fLCK D Frequency LOCK range — –6 — 6 % fFMPLLOUT fUL D Frequency un-LOCK range — –18 — 18 % fFMPLLOUT fCS fDS D Modulation depth Center spread ±0.25 — ±2.0 Down spread –0.5 — -8.0 % fFMPLLOUT — — 100 KHz fMOD D Modulation frequency(12) — 1. Considering operation with FMPLL not bypassed. 2. With FM; the value does not include a possible +2% modulation 3. “Loss of Reference Frequency” window is the reference frequency range outside of which the FMPLL is in self clocked mode. 92/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics 4. Self clocked mode frequency is the frequency that the FMPLL operates at when the reference frequency falls outside the fLOR window. 5. fVCO is the frequency at the output of the VCO; its range is 256–512 MHz. fSCM is the self-clocked mode frequency (free running frequency); its range is 20–150 MHz. fSYS = fVCOODF 6. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this FMPLL, load capacitors should not exceed these limits. 7. This specification applies to the period required for the FMPLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 8. This value is determined by the crystal manufacturer and board design. 9. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FMPLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 10. Proper PC board layout procedures must be followed to achieve specifications. 11. Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 12. Modulation depth is attenuated from depth setting when operating at modulation frequencies above 50 kHz. 3.14 16 MHz RC oscillator electrical characteristics Table 24. RC oscillator electrical characteristics Symbol fRC RCMVAR 3.15 Parameter Conditions Min Typical Max Unit P RC oscillator frequency TA = 25 °C — 16 — MHz — –6 — 6 % Fast internal RC oscillator variation over temperature and supply with P respect to fRC at TA = 25 °C in highfrequency configuration ADC electrical characteristics The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter. DocID023953 Rev 5 93/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Figure 8. ADC characteristics and error definitions Offset Error OSE Gain Error GE 4095 4094 4093 4092 4091 4090 ( 2) code out 1 LSB ideal =(VrefH-VrefL)/ 4096 = 3.3V/ 4096 = 0.806 mV Total Unadjusted Error TUE = +/- 6 LSB = +/- 4.84mV 7 ( 1) 6 5 (5) 4 (4) 3 (3) 2 1 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) Differential non-linearity error (DNL) (4) Integral non-linearity error (INL) (5) Center of a step of the actual transfer curve 1 LSB (ideal) 0 1 2 3 4 5 6 7 4089 4090 4091 4092 4093 4094 4095 Vin(A) (LSBideal) Offset Error OSE 3.15.1 Input Impedance and ADC Accuracy To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 k is obtained (REQ = 1 / (fS CP2 + CS), where fs represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 4: 94/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Equation 4 RS + RF 1 V A --------------------- --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. Figure 9. Input Equivalent Circuit EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VREF Source Filter RS RF RL Sampling RSW1 CF VA Channel Selection Current Limiter CP1 RAD CP2 RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW1 Channel Selection Switch Impedance RADSampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 9): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Figure 10. Transient Behavior during Sampling Phase Voltage Transient on CS VCS VA VA2 V <0.5 LSB 1 2 1 < (RSW + RAD) CS << TS 2 = RL (CS + CP1 + CP2) VA1 TS t In particular two different transient periods can be distinguished: A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): DocID023953 Rev 5 95/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is Equation 5 CP CS 1 = R SW + R AD --------------------CP + CS Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Equation 6 1 R SW + R AD C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Equation 7 V A1 C S + C P1 + C P2 = V A C P1 + C P2 A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Equation 8 2 R L C S + C P1 + C P2 In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: Equation 9 10 2 = 10 R L C S + C P1 + C P2 TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): 96/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Equation 10 VA2 C S + C P1 + C P2 + C F = V A C F + V A1 C P1 + C P2 + C S The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. Figure 11. Spectral representation of input signal Analog Source Bandwidth (VA) TC 2 RFCF (Conversion Rate vs. Filter Pole) fF f0 (Anti-aliasing Filtering Condition) Noise 2 f0 fC (Nyquist) f0 f Anti-Aliasing Filter (fF = RC Filter pole) fF f Sampled Signal Spectrum (fC = conversion Rate) f0 fC f Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: Equation 11 V A2 C P1 + C P2 + C F ------------ = -------------------------------------------------------VA C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Equation 12 C F 8192 C S DocID023953 Rev 5 97/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 25. ADC conversion characteristics Conditions(1) Min Typ Max Unit ADC Clock frequency (depends on ADC S configuration) R (The duty cycle depends on AD_CK(2) frequency) — 3 — 60 MHz S Sampling frequency R — — — 983.6(3) 60 MHz 383 — — ns 60 MHz 625 — — ns Symbol fCK fs tsample Parameter D Sample time(4) (5) KHz teval D Evaluation time CS(6) D ADC input sampling capacitance — — — 7.32 pF CP1(6) D ADC input pin capacitance 1 — — — 5(7) pF CP2(6) D ADC input pin capacitance 2 — — — 0.8 pF VREF range = 4.5 to 5.5 V — — 0.3 k VREF range = 3.0 to 3.6 V — — 875 RSW1(6) D Internal resistance of analog source RAD(6) D Internal resistance of analog source — — — 825 P Integral non linearity — –3 — 3 LSB — –1 — 2 LSB INL (8) DNL P Differential non linearity OFS T Offset error — –6 — 6 LSB GNE T Gain error — –6 — 6 LSB –3 — 3 mA |Vref_ad0 - Vref_ad1| < 150mV –3.6 — 3.6 mA IS1WINJ — (single ADC channel) C Max positive/negative injection (double ADC channel) IS1WWINJ C Max positive/negative injection SNR T Signal-to-noise ratio Vref = 3.3V 67 — — dB SNR T Signal-to-noise ratio Vref = 5.0V 69 — — dB THD T Total harmonic distortion — -65 — — dB SINAD T Signal-to-noise and distortion — 65 — — dB ENOB T Effective number of bits — 10.5 — — bits Total unadjusted error for IS1WINJ (single ADC channels) Without current injection –6 — 6 LSB With current injection –8 — 8 LSB P Total unadjusted error for IS1WWINJ T (double ADC channels) Without current injection –8 — 8 LSB With current injection –10 — 10 LSB TUEIS1WINJ T TUEIS1WWINJ 1. TJ = –40 to +150 °C, unless otherwise specified and analog input voltage from VAGND to VAREF. 2. AD_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC. 3. This is the maximum frequency that the analog portion of the ADC can attain. A sustained conversion at this frequency is not possible. 98/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics 4. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tsample depend on programming. 5. This parameter does not include the sample time tsample, but only the time for determining the digital result. 6. See Figure 9. 7. For the 144-pin package. 8. No missing codes. 3.16 Flash memory electrical characteristics Table 26. Flash memory program and erase electrical specifications No. Symbol Typ Parameter (1) Initial Lifetime Max(2) Max(3) Unit 1 tDWPROGRAM *(4) Double word (64 bits) program time(4) 38 — 500 µs 2 tPPROGRAM *(4) Page(128 bits) program time(4) 45 160 500 µs 3 t16KPPERASE *(4) 16 KB block pre-program and erase time 270 1000 5000 ms t48KPPERASE *(4) 48 KB block pre-program and erase time 625 1500 5000 ms 5 t64KPPERASE *(4) 64 KB block pre-program and erase time 800 1800 5000 ms 6 t128KPPERASE *(4) 128 KB block pre-program and erase time 1500 2600 7500 ms 7 t256KPPERASE *(4) 256 KB block pre-program and erase time 3000 5200 15000 ms 4 1. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. These values are characterized, but not tested.I 2. Initial Max program and erase times provide guidance for time-out limits used in the factory and apply for < 100 program/erase cycles, nominal supply values and operation at 25°C. These values are verified at production test. 3. Lifetime Max program and erase times apply across the voltage, temperature, and cycling range of product life. These values are characterized, but not tested. 4. Program times are actual hardware programming times and do not include software overhead. Table 27. Flash memory timing Value Symbol Parameter Unit Min Typ Max tRES D Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low — — 100 ns tDONE D Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared — — 5 ns tPSRT D Time between program suspend resume and the next program suspend request(1) 100 — — µs tESRT D Time between erase suspend resume and the next erase suspend request(2) 10 — — ms 1. Repeated suspends at a high frequency may result in the operation timing out, and the flash module will respond by completing the operation with a fail code (MCR[PEG] = 0), or the operation not able to finish (MCR[DONE] = 1 during Program operation). The minimum time between suspends to ensure this does not occur is TPSRT. 2. If Erase suspend rate is less than TESRT, an increase of slope voltage ramp occurs during erase pulse. This improves erase time but reduces cycling figure due to overstress. DocID023953 Rev 5 99/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 28. Flash memory module life Value No. Symbol Parameter Unit Min Typ Max 1 P/E Number of program/erase cycles per block for C 16 KB, 48 KB, and 64 KB blocks over the operating temperature range(1) 100000 — — cycles 2 P/E Number of program/erase cycles per block for C 128 KB and 256 KB blocks over the operating temperature range(1) 1000 100000(2) — cycles 20 10 5 — — — — — — 3 Retention Minimum data retention at 85 °C average ambient temperature(3) C Blocks with 0–1,000 P/E cycles Blocks with 1,001–10,000 P/E cycles Blocks with 10,001–100,000 P/E cycles 1. Operating temperature range is TJ from –40 °C to 150 °C. Typical endurance is evaluated at 25 C. 2. Typical P/E cycles is 100,000 cycles for 128 KB and 256 KB blocks. 3. Ambient temperature averaged over duration of application, not to exceed product operating temperature range. 100/128 DocID023953 Rev 5 years SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 3.17 Electrical characteristics SWG electrical characteristics Table 29. SPC56XL70 SWG Specifications Value Symbol Parameter T Input clock T Frequency Range Minimum Typical Maximum 12 MHz 16 MHz 20 MHz 1KHz — 50 KHz T Peak to Peak(1) 0.4 V — 2.0V T Peak to Peak variation(2) -6% — 6% — 1.3 V — -6% — 6% 45 dB — — 25 pF — 100 pF 0 µA — 100 µA 230 — 360 Mode(3) T Common T Common Mode variation (4) T SiNAD T Load C T Load I T ESD Pad Resistance(5) 1. Peak to Peak value is measured with no R or I load. 2. Peak to Peak excludes noise, SiNAD must be considered. 3. Common mode value is measured with no R or I load. 4. SiNAD is measured at Max Peak to Peak voltage. 5. Internal device routing resistance. ESD pad resistance is in series and must be considered for max Peak to Peak voltages, depending on application I load and/or R load. 3.18 AC specifications 3.18.1 Pad AC specifications Table 30. Pad AC specifications (3.3 V, IPP_HVE = 0)(1) No 1 2 Tswitchon1 (ns) Pad Slow Medium T T Rise/Fall(2) (ns) Current slew(3) (mA/ns) Frequency (MHz) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 3 — 40 — — 40 — — 4 0.01 — 2 25 3 — 40 — — 50 — — 2 0.01 — 2 50 3 — 40 — — 75 — — 2 0.01 — 2 100 3 — 40 — — 100 — — 2 0.01 — 2 200 1 — 15 — — 12 — — 40 2.5 — 7 25 1 — 15 — — 25 — — 20 2.5 — 7 50 1 — 15 — — 40 — — 13 2.5 — 7 100 1 — 15 — — 70 — — 7 2.5 — 7 200 DocID023953 Rev 5 101/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 30. Pad AC specifications (3.3 V, IPP_HVE = 0)(1) (continued) No Pad 3 4 Tswitchon1 (ns) Fast T Symmetric T Rise/Fall(2) (ns) Frequency (MHz) Current slew(3) (mA/ns) Load drive (pF) Min Typ Max Min Typ Max Min Typ Max Min Typ Max 1 — 6 — — 4 — — 72 3 — 40 25 1 — 6 — — 7 — — 55 7 — 40 50 1 — 6 — — 12 — — 40 7 — 40 100 1 — 6 — — 18 — — 25 7 — 40 200 1 — 8 — — 5 — — 50 3 — 25 25 1. Propagation delay from VDD_HV_IOx/2 of internal signal to Pchannel/Nchannel switch-on condition (i.e. t_PHL and t_PLH in Figure 12: Pad output delay). 2. Slope at rising/falling edge(i.e. t_F and t_R in Figure 12: Pad output delay). 3. Data based on characterization results, not tested in production. Figure 12. Pad output delay &RUHLQSXWVLJQDO YGG YVV W3/+ W3+/ 2XWSXWVLJQDO YGGH YRK YRK YRO YRO W) YVVH W5 >@W)DQGW5DUHWUDQVLHQWWLPHVDWWKH)$5(1' >@ W3+/ DQG W3/+ DUH PHDVXUHG DW WKH SDG >@&RUHLQSXWVOHZ QVWRYGG 3.19 Reset sequence This section shows the duration for different reset sequences. It describes the different reset sequences and it specifies the start conditions and the end indication for the reset sequences. 3.19.1 Reset sequence duration Table 31 specifies the minimum and the maximum reset sequence duration for the five different reset sequences described in Section 3.19.2: Reset sequence description. 102/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Table 31. RESET sequences TReset No. Symbol Parameter Conditions Unit Min Typ Max(1) 40 47 51 ms 500 4200 5000 µs 41 45 49 ms 1 TDRB CC Destructive Reset Sequence, BIST enabled 2 TDR CC Destructive Reset Sequence, BIST disabled 3 TERLB CC External Reset Sequence Long, BIST enabled 4 TFRL CC Functional Reset Sequence Long — 35 150 400 µs 5 TFRS CC Functional Reset Sequence Short — 1 4 10 µs — 1. The maximum value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET by an external reset generator. 3.19.2 Reset sequence description The figures in this section show the internal states of the chip during the five different reset sequences. The doted lines in the figures indicate the starting point and the end point for which the duration is specified in Table 31. The start point and end point conditions as well as the reset trigger mapping to the different reset sequences is specified in Section 3.19.3: Reset sequence trigger mapping. With the beginning of DRUN mode the first instruction is fetched and executed. At this point application execution starts and the internal reset sequence is finished. The figures below show the internal states of the chip during the execution of the reset sequence and the possible states of the signal pin RESET. Note: RESET is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the chip internal reset circuitry. A high level on this pin can only be generated by an external pull up resistor which is strong enough to overdrive the weak internal pull down resistor. The rising edge on RESET in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in table Table 31 are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET asserted low beyond the last PHASE3. Figure 13. Destructive Reset Sequence, BIST enabled Reset Sequence Trigger Reset Sequence Start Condition RESET RESET_B PHASE0 PHASE1,2 Establish IRC and PWR Flash init PHASE3 BIST Device Self Test Config Setup MBIST PHASE1,2 LBIST Flash init PHASE3 DRUN Device Application Config Execution TDRB, min < TReset < TDRB, max DocID023953 Rev 5 103/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Figure 14. Destructive Reset Sequence, BIST disabled Reset Sequence Trigger Reset Sequence Start Condition RESET_B RESET PHASE0 PHASE1,2 PHASE3 Establish IRC Flash init and PWR DRUN Device Application Config Execution TDR, min < TReset < TDR, max Figure 15. External Reset Sequence Long, BIST enabled Reset Sequence Trigger Reset Sequence Start Condition RESET RESET_B PHASE1,2 Flash init PHASE3 BIST Device Self Test Config Setup MBIST PHASE1,2 LBIST Flash init PHASE3 Device Application Config Execution TERLB, min < TReset < TERLB, max Figure 16. Functional Reset Sequence Long Reset Sequence Trigger Reset Sequence Start Condition RESET_B RESET PHASE1,2 Flash init PHASE3 Device Application Config Execution TFRL, min < TReset < TFRL, max 104/128 DRUN DocID023953 Rev 5 DRUN SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Figure 17. Functional Reset Sequence Short Reset Sequence Trigger Reset Sequence Start Condition RESET_B RESET PHASE3 DRUN Application Execution TFRS, min < TReset < TFRS, max The reset sequences shown in Figure 16 and Figure 17 are triggered by functional reset events. RESET is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET low for the duration of the internal reset sequence(c). 3.19.3 Reset sequence trigger mapping The following table shows the possible trigger events for the different reset sequences. It specifies the reset sequence start conditions as well as the reset sequence end indications that are the basis for the timing data provided in Table 31. Table 32. Reset sequence trigger — Reset sequence Reset Sequence Reset Sequence Trigger Reset Sequence Start Condition All internal destructive reset sources (LVDs or internal HVD during power-up and during operation) Section 3.19. 4.1: Destructive reset Assertion of RESET(3) Section 3.19. 4.2: External reset via RESET c. Reset Sequence End Indication Destructive Destructive External Functional Functional reset reset reset reset reset sequence, sequence, sequence sequence sequence bist bisT long, bIST long short enabled(1) disabled(1) enabled triggers cannot trigger cannot trigger cannot trigger cannot trigger triggers(4) triggers(5) triggers(6) Release of RESET(2) See RGM_FBRE register for more details. DocID023953 Rev 5 105/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 32. Reset sequence trigger — Reset sequence (continued) Reset Sequence Reset Sequence Trigger All internal functional reset sources configured for long reset All internal functional reset sources configured for short reset Reset Sequence Start Condition Sequence starts with internal reset trigger Reset Sequence End Indication Destructive Destructive External Functional Functional reset reset reset reset reset sequence, sequence, sequence sequence sequence bist bisT long, bIST long short enabled(1) disabled(1) enabled cannot trigger cannot trigger triggers cannot trigger cannot trigger cannot trigger cannot trigger triggers Release of RESET(7) 1. Whether BIST is executed or not depends on the chip configuration data stored in the shadow sector of the NVM. 2. End of the internal reset sequence (as specified in Table 31) can only be observed by release of RESET if it is not held low externally beyond the end of the internal sequence which would prolong the internal reset PHASE3 till RESET is released externally. 3. The assertion of RESET can only trigger a reset sequence if the device was running (RESET released) before. RESET does not gate a Destructive Reset Sequence, BIST enabled or a Destructive Reset Sequence, BIST disabled. However, it can prolong these sequences if RESET is held low externally beyond the end of the internal sequence (beyond PHASE3). 4. If RESET is configured for long reset (default) and if BIST is enabled via chip configuration data stored in the shadow sector of the NVM. 5. If RESET is configured for long reset (default) and if BIST is disabled via chip configuration data stored in the shadow sector of the NVM. 6. If RESET is configured for short reset. 7. Internal reset sequence can only be observed by state of RESET if bidirectional RESET functionality is enabled for the functional reset source which triggered the reset sequence. 3.19.4 Reset sequence — start condition The impact of the voltage thresholds on the starting point of the internal reset sequence are becoming important if the voltage rails / signals ramp up with a very slow slew rate compared to the overall reset sequence duration. 3.19.4.1 Destructive reset Figure 18 shows the voltage threshold that determines the start of the Destructive Reset Sequence, BIST enabled and the start for the Destructive Reset Sequence, BIST disabled. 106/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Figure 18. Reset sequence start for destructive resets V Supply Rail Vmax Vmin t TReset, max starts here TReset, min starts here Table 33. Voltage thresholds 3.19.4.2 Variable name Value Vmin Refer to Table 18 Vmax Refer to Table 18 Supply Rail VDD_HV_PMU External reset via RESET Figure 19 shows the voltage thresholds that determine the start of the reset sequences initiated by the assertion of RESET as specified in Table 32. Figure 19. Reset sequence start via RESET assertion V RESET_B RESET 0.65 * VDD_HV_IO 0.35 * VDD_HV_IO TReset, max starts here t TReset, min starts here DocID023953 Rev 5 107/128 127 Electrical characteristics 3.19.5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 External watchdog window If the application design requires the use of an external watchdog the data provided in Section 3.19: Reset sequence can be used to determine the correct positioning of the trigger window for the external watchdog. Figure 20 shows the relationships between the minimum and the maximum duration of a given reset sequence and the position of an external watchdog trigger window. Figure 20. Reset sequence - External watchdog trigger window position Watchdog needs to be triggered within this window TWDStart, min External Watchdog Window Closed External Watchdog Window Open TWDStart, max External Watchdog Window Closed External Watchdog Window Open Watchdog trigger TReset, min Basic Application Init Application Running TReset, max Earliest Application Start Basic Application Init Application Running Latest Application Start Application time required to prepare watchdog trigger Internal Reset Sequence Start condition (signal or voltage rail) 3.20 AC timing characteristics AC Test Timing Conditions: Unless otherwise noted, all test conditions are as follows: • TJ = –40oC to 150oC • Supply voltages as specified in Table 9 • Input conditions: All Inputs: tr, tf = 1 ns • Output Loading: All Outputs: 50 pF 3.20.1 RESET pin characteristics The SPC56XL70 implements a dedicated bidirectional RESET pin. 108/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Figure 21. Start-up reset requirements VDD VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase Figure 22. Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Table 34. RESET electrical characteristics No. 1 Symbol Ttr Parameter D Output transition time output pin(2) Conditions(1) Min Typ Max CL = 25pF — — 12 CL = 50pF — — 25 CL = 100pF — — 40 Unit ns 2 WFRST P nRESET input filtered pulse — — — 40 ns 3 WNFRST P nRESET input not filtered pulse — 500 — — ns 1. VDD = 3.3 V ± 10%, TJ = –40C to +150 °C, unless otherwise specified. 2. CL includes device and package capacitance (CPKG < 5 pF). DocID023953 Rev 5 109/128 127 Electrical characteristics 3.20.2 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 WKUP/NMI timing Table 35. WKUP/NMI glitch filter No. Symbol Parameter Min Typ Max Unit 1 WFNMI D NMI pulse width that is rejected — — 45 ns 2 WNFNMI D NMI pulse width that is passed 205 — — ns 3.20.3 IEEE 1149.1 JTAG interface timing Table 36. JTAG pin AC electrical characteristics No. Symbol Parameter Conditions Min Max Unit 1 tJCYC D TCK cycle time — 62.5 — ns 2 tJDC D TCK clock pulse width (measured at VDDE/2) — 40 60 % 3 tTCKRISE D TCK rise and fall times (40%–70%) — — 3 ns 4 tTMSS, tTDIS D TMS, TDI data setup time — 5 — ns 5 tTMSH, tTDIH D TMS, TDI data hold time — 25 — ns 6 tTDOV D TCK low to TDO data valid — — 20 ns 7 tTDOI D TCK low to TDO data invalid — 0 — ns 8 tTDOHZ D TCK low to TDO high impedance — — 20 ns 11 tBSDV D TCK falling edge to output valid — — 50 ns 12 tBSDVZ D TCK falling edge to output valid out of high impedance — — 50 ns 13 tBSDHZ D TCK falling edge to output high impedance — — 50 ns 14 tBSDST D Boundary scan input valid to TCK rising edge — 50 — ns 15 tBSDHT D TCK rising edge to boundary scan input invalid — 50 — ns Figure 23. JTAG test clock input timing TCK 2 3 2 1 110/128 3 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Figure 24. JTAG test access port timing TCK 4 5 TMS, TDI 6 8 7 TDO DocID023953 Rev 5 111/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Figure 25. JTAG boundary scan timing TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals 3.20.4 Nexus timing Table 37. Nexus debug port timing(1) No. Symbol Parameter 1 tMCYC D MCKO Cycle Time 2 tMDC D MCKO Duty Cycle D MCKO Low to MDO, MSEO, EVTO Data Valid(2) Conditions Min Max Unit — 15.6 — ns — 40 60 % — –0.1 0.25 tMCYC — tTCYC 3 tMDOV 4 tEVTIPW D EVTI Pulse Width — 4.0 5 tEVTOPW D EVTO Pulse Width — 1 6 tTCYC D TCK Cycle Time(3) — 62.5 — ns 7 tTDC D TCK Duty Cycle — 40 60 % 8 tNTDIS, tNTMSS D TDI, TMS Data Setup Time — 8 — ns 9 tNTDIH, tNTMSH D TDI, TMS Data Hold Time — 5 — ns 10 tJOV D TCK Low to TDO Data Valid — 0 25 ns tMCYC 1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 112/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics 3. The system clock frequency needs to be four times faster than the TCK frequency. Figure 26. Nexus output timing 1 2 MCKO 3 MDO MSEO EVTO Output Data Valid 5 EVTI 4 Figure 27. Nexus DDR Mode output timing MCKO MDO, MSEO MDO/MSEO data are valid during MCKO rising and falling edge DocID023953 Rev 5 113/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Figure 28. Nexus TDI, TMS, TDO timing 6 7 TCK 8 9 TMS, TDI 10 TDO 3.20.5 External interrupt timing (IRQ pin) Table 38. External interrupt timing No. Symbol Parameter Conditions Min Max Unit 1 tIPWL D IRQ pulse width low — 3 — tCYC 2 tIPWH D IRQ pulse width high — 3 — tCYC — 6 — tCYC 3 tICYC D IRQ edge to edge time(1) 1. Applies when IRQ pins are configured for rising edge or falling edge events, but not both. 114/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Figure 29. External interrupt timing IRQ 1 2 3 3.20.6 DSPI timing Table 39. DSPI timing No. 1 Symbol tSCK D Parameter DSPI cycle time D Conditions Master (MTFE = 0) Slave (MTFE = 0) (1) D Slave Receive Only Mode Min Max Unit 62 — ns 62 — 16 — 2 tCSC D PCS to SCK delay — 16 — ns 3 tASC D After SCK delay — 16 — ns 4 tSDC D SCK duty cycle — 5 tA D Slave access time SS active to SOUT valid — 40 ns 6 tDIS D Slave SOUT disable time SS inactive to SOUT High-Z or invalid — 10 ns 7 tPCSC D PCSx to PCSS time — 13 — ns 8 tPASC D PCSS to PCSx time — 13 — ns 9 tSUI D Data setup time for inputs Master (MTFE = 0) 20 — ns Slave 2 — Master (MTFE = 1, CPHA = 0) 5 — Master (MTFE = 1, CPHA = 1) 20 — Master (MTFE = 0) –5 — Slave 4 — Master (MTFE = 1, CPHA = 0) 11 — Master (MTFE = 1, CPHA = 1) –5 — Master (MTFE = 0) — 4 Slave — 23 Master (MTFE = 1, CPHA = 0) — 12 Master (MTFE = 1, CPHA = 1) — 4 10 11 tHI tSUO D D Data hold time for inputs Data valid (after SCK edge) DocID023953 Rev 5 tSCK/2 - 10 tSCK/2 + 10 ns ns ns 115/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 39. DSPI timing (continued) No. Symbol 12 tHO D Parameter Conditions Data hold time for outputs Min Max Unit Master (MTFE = 0) –2 — ns Slave 6 — Master (MTFE = 1, CPHA = 0) 6 — Master (MTFE = 1, CPHA = 1) –2 — 1. Slave Receive Only Mode can operate at a maximum frequency of 60 MHz. In this mode, the DSPI can receive data on SIN, but no valid data is transmitted on SOUT. Figure 30. DSPI classic SPI timing — master, CPHA = 0 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 10 9 SIN First Data Data 12 SOUT First Data 11 Data Note: The numbers shown are referenced in Table 39. 116/128 Last Data DocID023953 Rev 5 Last Data SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Figure 31. DSPI classic SPI timing — master, CPHA = 1 PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 Data First Data SIN Last Data 12 SOUT 11 Data First Data Last Data Note: The numbers shown are referenced in Table 39. Figure 32. DSPI classic SPI timing — slave, CPHA = 0 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Note: The numbers shown are referenced in Table 39. DocID023953 Rev 5 117/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Figure 33. DSPI classic SPI timing — slave, CPHA = 1 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 SOUT First Data 9 SIN Data Last Data Data Last Data 10 First Data Note: The numbers shown are referenced in Table 39. Figure 34. DSPI modified transfer format timing — master, CPHA = 0 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN 10 First Data 12 SOUT Last Data Data 11 First Data Data Note: The numbers shown are referenced in Table 39. 118/128 DocID023953 Rev 5 Last Data SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Electrical characteristics Figure 35. DSPI modified transfer format timing — master, CPHA = 1 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Note: The numbers shown are referenced in Table 39. Figure 36. DSPI modified transfer format timing – slave, CPHA = 0 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) SOUT First Data Data 6 Last Data 10 9 SIN 12 11 5 First Data Data Last Data Note: The numbers shown are referenced in Table 39. DocID023953 Rev 5 119/128 127 Electrical characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Figure 37. DSPI modified transfer format timing — slave, CPHA = 1 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Note: The numbers shown are referenced in Table 39. Figure 38. DSPI PCS strobe (PCSS) timing 8 7 PCSS PCSx Note: The numbers shown are referenced in Table 39. 120/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 4 Package characteristics 4.1 ECOPACK® Package characteristics In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 4.2 Package mechanical data Figure 39. LQFP100 package mechanical drawing DocID023953 Rev 5 121/128 127 Package characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 40. LQFP100 mechanical data inches(1) mm Symbol Min Typ Max Min Typ Max A — — 1.600 — — 0.0630 A1 0.050 — 0.150 0.0020 — 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 — 0.200 0.0035 — 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 — 12.000 — — 0.4724 — E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 — 12.000 — — 0.4724 — e — 0.500 — — 0.0197 — L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 — 1.000 — — 0.0394 — k 0.0 ° 3.5 ° 7.0 ° 0.0 ° 3.5 ° 7.0 ° Tolerance mm inches ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 122/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Package characteristics Figure 40. LQFP144 package mechanical drawing Table 41. LQFP144 mechanical data inches(1) mm Symbol Typ Min Max Typ Min Max A — — 1.6 — — 0.0630 A1 — 0.05 0.15 — 0.0020 0.0059 A2 1.4 1.35 1.45 0.0551 0.0531 0.0571 b 0.22 0.17 0.27 0.0087 0.0067 0.0106 c — 0.09 0.2 — 0.0035 0.0079 D 22 21.8 22.2 0.8661 0.8583 0.8740 D1 20 19.8 20.2 0.7874 0.7795 0.7953 D3 17.5 — — 0.6890 — — E 22 21.8 22.2 0.8661 0.8583 0.8740 E1 20 19.8 20.2 0.7874 0.7795 0.7953 DocID023953 Rev 5 123/128 127 Package characteristics SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Table 41. LQFP144 mechanical data (continued) inches(1) mm Symbol Typ Min Max Typ Min Max E3 17.5 — — 0.6890 — — e 0.5 — — 0.0197 — — L 0.6 0.45 0.75 0.0236 0.0177 0.0295 L1 1 — — 0.0394 — — k 3.5° 0.0° 7.0° 3.5° 0.0° 7.0° Tolerance mm inches ccc 0.08 0.0031 1. Values in inches are converted from mm and rounded to four decimal digits. 124/128 DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 5 Ordering information Ordering information Figure 41. Commercial product code structure(d) Example code: Product identifier Core Family Memory Package Temperature Device Options Conditioning SPC56 E L 70 L5 C B F S Y Y = Tray R = Tape and Reel S = ASILD/SIL3 O = No FlexRay F= FlexRay C = 80 MHz B = 120 MHz B = -40 oC to 105 oC C = -40 oC to 125 oC L3 = LQFP100 L5 = LQFP144 70 = 2 MB flash memory 64 = 1.5 MB flash memory L = SPC56XL family E = e200z4d dual core 4 = Single core SPC56 = Power Architecture in 90 nm d. Not all configurations are available in the market. Please contact your ST Sales Representative, to get the list of orderable commercial part number. DocID023953 Rev 5 125/128 127 Revision history 6 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Revision history Table 42. Revision history Date Revision 23-Nov-2012 1 Initial release. 2 Revision 2 changes: – Replaced IEC with ISO26262 in Section 1.1: Document overview – Updated Section 3.15.1: Input Impedance and ADC Accuracy replaced fC by fS – Table 6: System pins - added footnote to RESET pin about weak pull down – Updated Equation 11 – Updated Table 26: Flash memory program and erase electrical specifications - Removed “Factory Average” column and updated the values in “Initial Max” column from rows 3 to 7 – Updated Figure 41: Commercial product code structure and added a note to the figure – Updated the following in Table 8: Absolute maximum ratings: Updated the “Max” column values Updated the table footnotes – Updated the following in Table 9: Recommended operating conditions (3.3 V): Added table footnote “VDD_HV_ADRx must always be applied and should be stable before LBIST starts. If this supply is not above its absolute minimum level, LBIST operations can fail” Maximum values of VDD_HV_REG, VDD_HV_IOx, VDD_HV_FLA, VDD_HV_OSC, VDD_HV_ADV changed from “3.6” to “3.63” Min and max value of VDD_HV_ADR0 and VDD_HV_ADR1 changed from “4.5 to 5.5 or 3.0 to 3.6” to “4.5 to 5.5 or 3.0 to 3.63” – Updated the following values in Table 18: Voltage regulator electrical specifications: For “Combined ESR of external capacitor” min value is updated to “1” and max value is updated to “100” For “Main High Voltage Power - Low Voltage Detection, upper threshold” max value is updated as “2.93” Added row “Digital supply low voltage detector lower threshold” for condition “After a destructive reset initialization phase completion” Added row “Digital supply low voltage detector upper threshold” for condition “Before a destructive reset initialization phase” For row “Digital supply high voltage detector upper threshold”, condition “After a destructive reset initialization phase completion” min value is changed from “1.38” to “1.39” 03-Sep-2013 126/128 Changes DocID023953 Rev 5 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 Revision history Table 42. Revision history (continued) Date Revision Changes 03-Sep-2013 2 (continued) – Updated the following in Table 19: DC electrical characteristics: Added table footnote “The max input voltage on the ADC pins is the ADC reference voltage VDD_HV_ADRx” Updated VOL_F conditions from “IOL = 1.5 mA” to “IOL = 11 mA” Updated VOH_F conditions from “IOH = – 1.5 mA” to “IOH = –11 mA” Updated IINJ parameter from “DC injection current per pin” to “DC injection current per pin (all bi-directional ports)” For IIL row, parameter “Input leakage current (all ADC input-only ports)” updated min value to “–0.25” and max value to “0.25” – For IIL row, parameter “Input leakage current (shared ADC inputonly ports)” updated min value to “–0.3” and max value to “0.3” – Updated the following in Table 20: Current consumption characteristics: Specified oscillator bypass mode and crystal oscillator mode Updated STOP and HALT mode values Added IDD_HV_PMU Updated footnote 3 – Updated Table 24: RC oscillator electrical characteristics – Updated the following in Table 25: ADC conversion characteristics: Changed tconv to teval and minimum value is changed from “625” to “600” Table footnote 5 updated to “This parameter does not include the sample time Tsample, but only the time for determining the digital result” 17-Sep-2013 3 Updated disclaimer. 15-Oct-2013 4 Updated Table 1. Editorial and formatting changes throughout document. 09-Jul-2015 5 Chapter 3: Electrical characteristics: – In Table 9: Recommended operating conditions (3.3 V), changed Max value from “3.6” to “3.63” for VDD_HV_FLA symbol. – Added Section 3.4: Decoupling capacitors. – Figure 9: Input Equivalent Circuit: changed “VDD” to “VREF” in Internal circuit scheme – In Table 30: Pad AC specifications (3.3 V, IPP_HVE = 0) updated footnote 1 and footnote 2. – Updated Figure 12: Pad output delay Updated Disclaimer. DocID023953 Rev 5 127/128 127 SPC56EL70L3, SPC56EL70L5,PC564L70L3, SPC564L70L5 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved 128/128 DocID023953 Rev 5