Title Reference Design Report for a High Performance

Title
Reference Design Report for a High
Performance 347 W PFC Stage Using
HiperPFS™ PFS714EG
Specification
90 VAC – 264 VAC Input; 380 VDC Output
Application
PFC Front End Stage
Author
Applications Engineering Department
Document
Number
RDR-236
Date
November 18, 2010
Revision
1.1
Summary and Features
 Low component count, high performance PFC
 EN61000–3–2 Class–D compliance
 High PFC efficiency enables 80+ PC Main design
 Frequency sliding maintains high efficiency across load range
 Feed forward line sense gain - maintains relatively constant loop gain over entire
operating voltage range
 Excellent transient load response
 Power Integration eSIP low-profile, thermal resistance package
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
Table of Contents
1
2
3
4
Introduction.................................................................................................................4
Power Supply Specification ........................................................................................5
Schematic...................................................................................................................6
Circuit Description ......................................................................................................7
4.1
Input EMI Filter and Rectifier ...............................................................................7
4.2
PFS714EG Boost Converter ...............................................................................7
4.3
Bias Supply Regulator .........................................................................................7
4.4
Input Feed Forward Sense Circuit.......................................................................7
4.5
Output Feedback.................................................................................................8
5 PCB Layout ................................................................................................................9
6 Bill of Materials .........................................................................................................10
7 Inductor Specification ...............................................................................................12
7.1
Electrical Diagram .............................................................................................12
7.2
Electrical Specifications.....................................................................................12
7.3
Materials............................................................................................................12
7.4
Inductor Winding Instruction ..............................................................................13
8 Performance Data ....................................................................................................16
8.1
Efficiency (RT1 and RT2 Shorted).....................................................................16
8.2
Input Power Factor ............................................................................................17
8.3
Regulation .........................................................................................................18
8.3.1
Load ...........................................................................................................18
8.3.2
Line ............................................................................................................19
8.4
Input Current Harmonic Distortion (IEC 61000–3–2 Class–D) ..........................20
8.4.1
50% Load at Output ...................................................................................20
8.4.2
100% Load at Output .................................................................................21
9 Thermal Performance...............................................................................................22
10
Waveforms............................................................................................................24
10.1 Input Current at 115 VAC and 60 Hz .................................................................24
10.2 Input Current at 230 VAC and 50 Hz .................................................................24
10.3 Start-up at 90 VAC and 60 Hz ...........................................................................25
10.4 Start-up at 115 VAC and 60 Hz .........................................................................25
10.5 Start-up at 230 VAC and 50 Hz .........................................................................26
10.6 Start-up at 264 VAC and 50 Hz .........................................................................26
10.7 Load Transient Response (90 VAC, 60 Hz) ......................................................27
10.8 Load Transient Response (115 VAC, 60 Hz) ....................................................28
10.9 Load Transient Response (230 VAC, 50 Hz) ....................................................28
10.10
Load Transient Response (264 VAC, 50 Hz).................................................29
10.11
1000 ms Line Dropout (115 VAC / 60 Hz and 230 VAC / 50 Hz) ...................29
10.11.1
50% Load at Output................................................................................29
10.11.2
Full Load at Output .................................................................................30
10.12
One Cycle Line Dropout (115 VAC / 60 Hz and 230 VAC / 50 Hz) ................30
10.12.1
Full Load at Output .................................................................................30
10.13
Line Sag (115 VAC – 85 VAC – 115 VAC, 60 Hz) .........................................31
10.14
Line Surge (132 VAC – 147 VAC – 132 VAC, 60 Hz)....................................31
10.15
Line Sag (230 VAC – 170 VAC – 230 VAC, 50 Hz) .......................................32
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
10.16
Line Surge (264 VAC – 293 VAC – 264 VAC, 50 Hz) ....................................32
10.17
Brown–In and Brown–Out at 6 V / Minute Rate .............................................33
10.18
Drain Voltage and Current .............................................................................34
10.18.1
Dain Voltage and Current at 115 VAC Input and Full Load.....................34
10.18.2
Drain Voltage and Current at 230 VAC Input and Full Load....................35
10.19
Output Ripple Measurements ........................................................................36
10.19.1
Ripple Measurement Technique .............................................................36
10.19.2
Measurement Results .............................................................................37
11
Gain–Phase Measurement Procedure and Results ..............................................39
12
Line Surge Test .....................................................................................................41
13
EMI Scans.............................................................................................................42
13.1 EMI Test Set-up.................................................................................................42
13.2 EMI Scans .........................................................................................................43
14
Appendix A – Efficiency with Other Diode and Core Materials..............................45
15
Appendix B – Test Set-up for Efficiency Measurement .........................................50
16
Appendix C – Inductor Current Measurement Set-up............................................52
17 Revision History ..........................................................................................................55
Important Note:
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Page 3 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
1 Introduction
This document is an engineering report describing a PFC power supply utilizing a
HiperPFS PFS714EG integrated PFC controller. This power supply is intended as a
general purpose evaluation platform that operates from universal input and provides a
regulated 380 V DC output voltage and a continuous output power of 347 W.
This power supply can deliver the rated power at 110 VAC or higher at a room
temperature of 25 ºC. For operation at higher temperatures or lower input voltages, use
of forced air cooling is recommended.
The document contains the power supply specification, schematic, bill of materials,
inductor documentation, printed circuit layout, and performance data.
Figure 1 – Populated Circuit Board Photograph.
.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
2 Power Supply Specification
The table below represents the minimum acceptable performance of the design. Actual
performance is listed in the results section.
Description
Input
Voltage
Frequency
Output
Output Voltage
Output Ripple Voltage p-p
Output Current
Total Output Power
Continuous Output Power
Efficiency
Full Load
Minimum efficiency at 20, 50
and 100 % of POUT
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
90
47
264
64
VAC
Hz
3 Wire
50/60
VOUT
VRIPPLE
IOUT
370
380
390
30
0.913
V
V
A
347
W
POUT
20 MHz bandwidth

94
%
Measured at POUT 25 C
80+
94
%
Measured at 115 VAC Input
kV
kV
1.2/50 s surge, IEC 1000-4-5,
Series Impedance:
Differential Mode: 2 
Common Mode: 12 
o
Environmental
Line Surge
Differential Mode (L1-L2)
Common mode (L1/L2-PE)
1
2
Ambient Temperature
TAMB
0
50
Auxiliary Supply Input
Auxiliary Supply
VAUX
15
24
Page 5 of 56
C
Forced convection required at TAMB
>25 ºC and/or VIN <115 V, sea
level
V
DC Supply
o
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
3 Schematic
Figure 2 – Schematic.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
4 Circuit Description
This PFC is designed using PFS714EG Power Integrations Integrated PFC controller.
This design is rated for a continuous output power of 347 W and provides a regulated
output voltage of 380 VDC nominal maintaining a high input power factor and overall
efficiency from light load to full load.
4.1 Input EMI Filter and Rectifier
Fuse F1 provides protection to the circuit and isolates it from the AC supply in case of a
fault. Diode Bridge BR1 rectifies the AC input. Capacitors C3, C4, C5, C6 and C19
together with inductors L1, L2 and L3 form the EMI filter reducing the common mode and
differential mode noise. Resistors R1, R3 and CAPZero, IC U2 are required to discharge
the EMI filter capacitors once the AC is disconnected. The use of CAPZero eliminates the
static loss of R1 and R3, reducing standby and no-load input.
4.2 PFS714EG Boost Converter
The boost converter stage consists of inductor L5, diode rectifier D2, C15 and the
PFS714EG IC U1. This converter stage controls the input current of the power supply
while simultaneously regulating the output DC voltage. Diode D1 prevents a resonant
build up of output voltage at start–up by bypassing inductor L5 while simultaneously
charging output capacitor C15. Thermistors RT1 and RT2 limit the inrush current of the
circuit at start–up, but they are not required simultaneously. In most high–performance
designs, thermistor RT2 will often be used, in which case typically a relay will be used to
bypass the thermistor after start–up to improve power supply efficiency. When thermistor
RT2 is used, thermistor RT1 is replaced with a short. When thermistor RT1 is used,
thermistor RT2 will be replaced with a short. When used, RT1 is in circuit at all times and
results in slightly lower efficiency however saves the cost of the relay. Both locations of
the thermistors are provided in the design to enable circuit configuration to suit the
application. For efficiency measurement that represents the high performance
configuration, both thermistors should be shorted. Capacitors C14 and C21 are used for
reducing the loop length and area of the output circuit to reduce EMI and overshoot of
voltage across the drain and source of the MOSFET inside U1 at each switching instant.
4.3 Bias Supply Regulator
The PFS714EG IC requires a regulated supply of 12 V for operation and must remain
<13.4 V to avoid IC damage. Resistors R6, R16, R17, Zener diode VR1, and transistor
Q3 form a shunt regulator that prevents the supply voltage to IC U1 from exceeding 12 V.
Capacitors C8, C18 and C20 filter the supply voltage to ensure reliable operation of IC
U1.
4.4 Input Feed Forward Sense Circuit
The input voltage of the power supply is sensed by the IC U1 using resistors R4, R5 and
R19. The capacitor C12 filters any noise on this signal.
Page 7 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
4.5 Output Feedback
Divider network comprising of resistors R9, R10, R11, R12, R13 and R14 are used to
scale the output voltage and provide feedback to the IC U1. The circuit comprising of
diode D4, transistor Q1, Q2 and the resistors R12 and R13 form a non–linear feedback
circuit which help in improving the transient response by increasing the response time of
the PFC circuit to large output voltage changes..
Resistors R7, R8, R15 and capacitors C13 and C17 are required for shaping the loop
response of the feedback circuit. The combination of resistor R8 and capacitor C13
provide a low frequency zero.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
5 PCB Layout
Figure 3 – Printed Circuit Layout.
Page 9 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
6 Bill of Materials
Item
1
Qty
1
Ref Des
BR1
2
1
C3
3
4
2
1
C4 C5
C6
5
1
C7
Description
600 V, 8 A, Bridge Rectifier
Mfg Part Number
GBU806
Mfg
Vishay
PX684K3ID6
Carli
440LT68–R
PHE840MB6100KB05R17
Vishay
Kemet
ECW–F4105JL
Panasonic–ECG
EKMG500ELL470MF11D
Nippon Chemi–Con
ECJ–2VB1H103K
C2012X7R1H104K
ECJ–3YB1E475M
SV01AC103KAR
EET–ED2W271EA
18122C104KAT2A
ECJ–2VB2A471K
C3216X7R1E105K
Panasonic
TDK
Panasonic
AVX
Panasonic
AVX
Panasonic
TDK
1 F, 310 VAC, Polyester Film, X2
BFC233820105
BC components
1N5408–T
Diodes Inc.
STTH8S06D
ST Semiconductor
BAV116W–7–F
1N4148TR
Diodes Inc
Vishay
DL4001–13–F
Diodes Inc
NP975864
Aavid Thermalloy
6.3 A, 250 V, Fast, 5 mm x 20 mm, Cartridge
021706.3HXP
Littelfuse
680 nF, 275 VAC, Film,MPX Series, X2
680 pF, Ceramic, Y1
100 nF, 275 VAC, Film, X2
1 F, 400 V, Polypropylene Film
47 F, 50 V, Electrolytic, Gen. Purpose,
(6.3 x 11)
10 nF, 50 V, Ceramic, X7R, 0805
100 nF, 50 V, Ceramic, X7R, 0805
4.7 F, 25 V, Ceramic, X7R, 1206
10 nF, 1 kV, Disc Ceramic, X7R
270 F, 450 V, Electrolytic (35 x 35)
100 nF, 200 V, Ceramic, X7R, 1812
470 pF, 100 V, Ceramic, X7R, 0805
1 F, 25 V, Ceramic, X7R, 1206
6
1
C8
7
8
9
10
11
12
13
14
1
2
1
2
1
1
1
1
C11
C12 C20
C13
C14 C21
C15
C16
C17
C18
15
1
C19
16
1
D1
1000 V, 3 A, Rectifier, DO–201AD
600 V, 8 A, Ultrafast Recovery, 12 ns, TO220AC
17
1
D2
18
19
1
1
D3
D4
20
1
D5
21
1
ESIPCLIP
M4
METAL1
22
1
F1
23
1
FH1
FUSEHOLDER OPEN 5 MM X 20 MM PC MNT
64900001039
Wickmann USA
6398BG
Aavid Thermaloy
513102B02500G
Aavid Thermaloy
130 V, 5%, 250 mW, SOD–123
75 V, 300 mA, Fast Switching, DO–35
50 V, 1 A, Rectifier, Glass Passivated, DO–
213AA (MELF)
Heatsink Hardware, Edge Clip, 20.76 mm L x 8
mm W x 0.015 mm Thk
24
2
HS1 HS3
HEATSINK, Alum, TO–220, TO218, 4.4 Deg C
per Watt, Screw Type mounting with pins, L
1.00" (25.4mm), W 1.65" (41.91 mm) H 1.500"
(38.1 mm)
25
1
HS2
HEATSINK, Alum, TO–220, 11 Deg C per Watt,
Screw Type mounting with pins, L 1.375" (34.92
mm), W 0.5" (12.7 mm) H 1.5" (38.1 mm)
26
1
HSPREAD
ER_ESIPP
FISW1
HEATSPREADER, Custom, Al, 3003, 0.030"
Thk
61–00040–00
Custom
27
1
J1
5 Position (1 x 5) header, 0.156 pitch, Vertical
26–64–4050
Molex
28
1
J2
CONN HEADER 3POS (1x3).156 VERT TIN
26–64–4030
Molex
29
1
J3
30
31
32
2
2
1
JP3 JP6
JP4 JP5
L1
33
2
L2 L3
34
1
L4
2 Position (1 x 2) header, 0.1 pitch, Vertical
Wire Jumper, Insulated, 22 AWG, 0.3 in
Wire Jumper, Insulated, 18 AWG, 0.4 in
14 mH, 5 A, Common Mode Choke
100 H, 5A, INDUCTOR TORD HI AMP 100UH
VERT
43 Shield Bead, 0.375 (9.5 mm) Dia x 0.410
(10.40 mm) L x 0.193 (4.75 mm) I.D. with
PCBFP 22 AWG
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
22–23–2021
Molex
C2004–12–02
C2052A–12–02
DV550140S
Gen Cable
Gen Cable
TNC
7447070
Wurth Elect
2643006302
Fair–Rite Products
Page 10 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
Custom, 350 W PFC Inductor, 1.38 mH,
constructed on Lodestone Pacific base PN
VTM160–4
High Voltage (small)
High Voltage (large)
Nut, Hex 4–40, SS
35
1
L5
SNX–R1540
Santronics
36
37
38
1
1
1
39
2
LABEL1
LABEL2
NUT1
NUT2
NUT3
Nut, Hex, Kep 4–40, S ZN Cr3 plating RoHS
4CKNTZR
Any RoHS
Compliant Mfg.
40
4
POST
PCB 6–32
HEX1-4
Post, Circuit Board, Female, Hex, 6–32, snap,
0.375L, Nylon
561–0375A
Eagle Hardware
41
2
Q1 Q3
NPN, Small Signal BJT, GP SS, 40 V, 0.6 A,
SOT–23
MMBT4401LT1G
OnSemi
42
1
Q2
PNP, Small Signal BJT, 40 V, 0.6 A, SOT–23
MMBT4403–7–F
Diodes, Inc.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
1
1
3
1
2
1
2
1
1
2
1
1
1
1
1
1
1
60
3
R1
R3
R4 R9 R19
R5
R6 R16
R7
R8 R17
R10
R11
R12 R13
R14
R15
R18
RT1
RT2
RTV1
RV1
SCREW1
SCREW2
SCREW3
ERJ–8GEYJ224V
CFR–25JB–220K
ERJ–8ENF1504V
MFR–25FBF–1M00
ERJ–8ENF1000V
ERJ–6GEYJ202V
ERJ–8ENF3011V
ERJ–8ENF1604V
ERJ–8ENF7323V
ERJ–8ENF2211V
ERJ–8ENF5762V
ERJ–6GEYJ164V
WHC10RFET
CL–110
CL–60
120–SA
V320LA10P
Panasonic
Yageo
Panasonic
Yageo
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Ohmite
GE Sensing
GE Sensing
Wakefield
Littlefuse
PMSSS 440 0038 PH
Building Fasteners
61
1
62
3
63
64
65
66
1
2
1
1
TO-220
PAD1
TP1 TP5
TP7
TP2
TP3 TP4
TP6
TP8
K10–104
Bergquist
Test Point, BLK,THRU–HOLE MOUNT
5011
Keystone
Test Point, RED,THRU–HOLE MOUNT
Test Point, WHT,THRU–HOLE MOUNT
Test Point, YEL,THRU–HOLE MOUNT
Test Point, ORG,THRU–HOLE MOUNT
5010
5012
5014
5013
Keystone
Keystone
Keystone
Keystone
67
1
U1
HiperPFS, PFS714EG, eSIP7/6–TH
PFS714EG
Power Integrations
68
1
U2
CAPZero, CAP006DG,SO–8C
CAP006DG
Power Integrations
69
1
VR1
70
4
WASHER1
WASHER2
WASHER3
WASHER4
BZX84C12LT1G
OnSemi
WASHER FLAT #4 SS
FWSS 004
Building Fasteners
71
1
WASHER5
Washer, Lk, #4 SS
4NSLWS
Olander
7721–10PPSG
Aavid Thermalloy
220 k, 5%, 1/4 W, Thick Film, 1206
220 k, 5%, 1/4 W, Carbon Film
1.50 M, 1%, 1/4 W, Thick Film, 1206
1 M, 1%, 1/4 W, Metal Film
100 , 1%, 1/4 W, Thick Film, 1206
2 k, 5%, 1/8 W, Thick Film, 0805
3.01 k, 1%, 1/4 W, Thick Film, 1206
1.60 M, 1%, 1/4 W, Thick Film, 1206
732 k, 1%, 1/4 W, Thick Film, 1206
2.21 k, 1%, 1/4 W, Thick Film, 1206
57.6 k, 1%, 1/4 W, Thick Film, 1206
160 k, 5%, 1/8 W, Thick Film, 0805
10 , 1%, 2 W, Wire Wound
NTC Thermistor, 10 , 3.2 A
NTC Thermistor, 10 , 5 A
Thermally conductive Silicone Grease
320 V, 23 J, 10 mm, RADIAL
SCREW MACHINE PHIL 4–40 X 3/8 SS
HEATPAD TO–247 .006" K10
12 V, 5%, 225 mW, SOT23
72
1
WASHER6
Washer,Shoulder, #4, 0.095 Shoulder x 0.117
Dia , Polyphenylene Sulfide PPS
73
1
WASHER7
Washer Teflon #6, ID 0.156, OD 0.312, Thk
0.031
Page 11 of 56
FWF–6
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
7 Inductor Specification
7.1
Electrical Diagram
Figure 4 – Inductor Electrical Diagram.
7.2
Electrical Specifications
Primary Inductance
7.3
Pins 1–4 measured at kHz, 0.4 V RMS
1.38 mH, 8%
Materials
Item
[1]
[2]
[3]
[4]
[5]
Description
Core: Magnetics Inc, Mfg: 77324A7.
Magnet wire: 125/40 Served – Litz wire.
Base: Toroid mounting base, Lodestone Pacific, P/N VTM160–4, or similar. See below.
PI P/N: 76–00004–00.
High Temperature Epoxy, Mfg: MG Chemicals, P/N: 832HT–375ML, Digikey: 473–1085–ND,
or similar, PI P/N: 66–00087–00.
Divider: Tie–wrap, Panduit, P/N: PLT.7M–M or similar.
Figure 5 – Top View of Toroid Mounting Base Item [3]
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 56
18-Nov-10
7.4
RDR-236 347 W PFC Using PFS714EG
Inductor Winding Instruction

Insert 2 dividers item [5] in the core item [1] to divide into 2 sections equally. See picture beside.
Take about 15ft of wire item [2],]. Align center of wire with 1 divider.
Center of wire

Start winding on the left section with 23 turns of wire item [2], for the 1st layer, spread wire evenly
and ensure that turns do not overlap.

Also wind another 23 turns on the right section.

Continue winding on the right section for the 2nd layer 18 turns, spread wire evenly and ensure that
turns do not overlap.
Page 13 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10

Continue winding on the right section on the 3rd layer 13turns, scatter wire evenly and ensure that
turns do not overlap.

Wind the same as above for the 2nd and 3rd layer on the left section.

Secure the inductor with the base by using High Temperature Epoxy item [4].
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
Front view

Back view
Solder the leads to the pin 1 and 4 of mounting base item [3].
Figure 6 – Finished Inductor
Page 15 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
8 Performance Data
All measurements performed at room temperature, 60 Hz input frequency for voltages
below 150 VAC and input frequency of 50 Hz for 150 VAC and higher.
All performance data except for data presented in the appendix is with Thermistors RT1 and RT2
shorted to represent the high performance configuration which uses RT2 to limit inrush current and
shorts thermistor RT2 using a relay after start-up to improve operating efficiency.
8.1
Efficiency (RT1 and RT2 Shorted)
99
98
Efficiency (%)
97
96
95
90 VAC
100 VAC
115 VAC
230 VAC
264 VAC
94
93
92
0
50
100
150
200
250
300
350
400
Output Power (W)
Figure 7 – Efficiency vs. Output Power.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 56
18-Nov-10
8.2
RDR-236 347 W PFC Using PFS714EG
Input Power Factor
1.10
Input Power Factor (PF)
1.00
0.90
0.80
0.70
90 VAC
100 VAC
115 VAC
230 VAC
264 VAC
0.60
0.50
0
50
100
150
200
250
300
350
Output Power (W)
Figure 8 – Input Power Factor vs. Output Power.
Page 17 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
400
RDR-236 347 W PFC Using PFS714EG
8.3
18-Nov-10
Regulation
8.3.1 Load
390
90 VAC
100 VAC
115 VAC
230 VAC
264 VAC
Output Voltage (V)
388
385
383
380
378
375
373
370
0
50
100
150
200
250
300
350
400
Output Power (W)
Figure 9 – Load Regulation.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
8.3.2 Line
390
100% Load
50% Load
20% Load
Output Voltage (VDC)
388
385
383
380
378
375
373
370
80
100
120
140
160
180
200
220
240
260
Input Voltage (VAC)
Figure 10 – Line Regulation.
Page 19 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
280
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
8.4 Input Current Harmonic Distortion (IEC 61000–3–2 Class–D)
Measured at 230 VAC Input 50Hz
8.4.1 50% Load at Output
1.40
Input Current
Harmonic Limit
1.20
Amplitude
1.00
0.80
0.60
0.40
0.20
0.00
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic #
Figure 11 – Amplitude of Input Current Harmonics for 50% Load at 230 VAC Input.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
8.4.2 100% Load at Output
1.40
Input Current
Harmonic Limit
1.20
Amplitude
1.00
0.80
0.60
0.40
0.20
0.00
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic #
Figure 12 – Amplitude of Input Current Harmonics for 100% Load at 230 VAC Input.
Page 21 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
9 Thermal Performance
The unit was allowed to reach thermal equilibrium prior to the measurement. Table 1
shows full load temperature of key components at equilibrium, room temperature and
without any forced air cooling.
Component
C3
C6
C7
C15
C19
D2
L1
L2
L3
L5
BR1
Heatsink – BR1
Heatsink – D2
Heatsink – U1
U1
Ambient Temperature:
Temperature (º C)
240 VAC 115 VAC
28.1
36.0
41.1
35.6
36.2
53.4
33.0
31.8
36.8
57.6
59.5
51.8
51.6
50.8
59.5
25.0
29.9
47.2
53.2
42.8
40.3
68.4
47.5
41.9
54.9
78.9
95.0
76.3
62.8
78.1
98.2
25.0
Table 1 – Thermal Performance of Key Components at Full Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
Figure 13 – Infrared Image of the Top and Bottom Side of the Board at Thermal Equilibrium. 115 VAC, Full
Load, No Forced–Air Flow, 25ºC Ambient.
Figure 14 – Infrared Image of the Top and Bottom Sides of the Board at Thermal Equilibrium. 230 VAC,
Full Load, No Forced–Air Flow, 25ºC Ambient.
Page 23 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
10 Waveforms
10.1 Input Current at 115 VAC and 60 Hz
Figure 15– 115 VAC, 50% Load.
Top: VIN, 200 V / div.
Bottom: IIN, 2 A, 10 ms / div.
Figure 16 – 115 VAC, 100% Load.
Top: VIN, 200 V / div.
Bottom: IIN, 5 A, 10 ms / div.
10.2 Input Current at 230 VAC and 50 Hz
Figure 17 – 230 VAC, 50% Load.
Top: VIN, 500 V / div.
Bottom: IIN, 2 A, 10 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 18 – 230 VAC, 100% Load.
Top: VIN, 500 V / div.
Bottom: IIN, 5 A, 10 ms / div.
Page 24 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
10.3 Start-up at 90 VAC and 60 Hz
Load in CC mode during turn–on of PFC
Figure 19 – 90 VAC, No Load.
Top: VIN, 500 V / div.
Second: Output Voltage, 200 V / div.
Third: IIN, 10 A / div.
Bottom: VCC, 10 V / div., 50 ms / div.
Figure 20 – 90 VAC, Full Load.
Top: VIN, 500 V / div.
Second: Output Voltage, 200 V / div.
Third: IIN, 10 A / div.
Bottom: VCC, 10 V / div., 50 ms / div.
10.4 Start-up at 115 VAC and 60 Hz
Load in CC mode during turn–on of PFC
Figure 21 – 115 VAC, No Load.
Top: VIN, 500 V / div.
Second: Output Voltage, 200 V / div.
Third: IIN, 10 A / div.
Bottom: VCC, 10 V / div., 50 ms / div.
Page 25 of 56
Figure 22 – 115 VAC, Full Load.
Top: VIN, 500 V / div.
Second: Output Voltage, 200 V / div.
Third: IIN, 10 A / div.
Bottom: VCC, 10 V / div., 50 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
10.5 Start-up at 230 VAC and 50 Hz
Load in CC mode during turn–on of PFC
Figure 23 – 230 VAC, No-load.
Top: VIN, 1 kV / div.
Second: Output Voltage, 200 V / div.
Third: IIN, 10 A / div.
Bottom: VCC, 10 V, 50 ms / div.
Figure 24 – 230 VAC, Full Load.
Top: VIN, 1 kV / div.
Second: Output Voltage, 200 V / div.
Third: IIN, 10 A / div.
Bottom: VCC, 10 V, 50 ms / div.
10.6 Start-up at 264 VAC and 50 Hz
Load in CC mode during turn–on of PFC
Figure 25 – 264 VAC, No-load.
Top: VIN, 1 kV / div.
Second: Output Voltage, 200 V / div.
Third: IIN, 10 A / div.
Bottom: VCC, 10 V, 50 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 26 – 264 VAC, Full Load.
Top: VIN, 1 kV / div.
Second: Output Voltage, 200 V / div.
Third: IIN, 10 A / div
Bottom: VCC, 10 V, 50 ms / div.
Page 26 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
10.7 Load Transient Response (90 VAC, 60 Hz)
In the figures shown below, signal averaging was used to better enable viewing the load
transient response. The oscilloscope was triggered using the load current step as a
trigger source. Since the output switching and line frequency occur essentially at random
with respect to the load transient, contributions to the output ripple from these sources
will average out, leaving the contribution only from the load step response.
Figure 27 – Transient Response, 90 VAC,
10–100–10% Load Step.
Top: Input Voltage, 500 V / div.
Second: Input Current, 10 A /div.
Third: Output Voltage (AC Coupled),
50 V / div.
Bottom: Load Current 1 A, 100 ms / div.
Page 27 of 56
Figure 28 – Transient Response, 90VAC,
50–100–50% Load Step
Top: Input Voltage, 500 V / div.
Second: Input Current, 10 A / div.
Third: Output Voltage (AC Coupled),
50 V / div.
Bottom: Load Current 1 A, 100 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
10.8 Load Transient Response (115 VAC, 60 Hz)
Figure 29 – Transient Response, 115 VAC,
10–100–10% Load Step.
Top: Input Voltage, 500 V / div.
Second: Input Current, 10 A /div.
Third: Output Voltage (AC Coupled),
50 V / div.
Bottom: Load Current 1 A, 100 ms / div.
Figure 30 – Transient Response, 115VAC,
50–100–50% Load Step
Top: Input Voltage, 500 V / div.
Second: Input Current, 10 A /div.
Third: Output Voltage (AC Coupled),
50 V / div.
Bottom: Load Current 1 A, 100 ms / div.
10.9 Load Transient Response (230 VAC, 50 Hz)
Figure 31 – Transient Response, 230 VAC,
10–100–10% Load Step.
Top: Input Voltage, 1 KV / div.
Second: Input Current, 5 A / div.
Third: Output Voltage (AC Coupled),
50 V / div.
Bottom: Load Current 1 A, 100 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 32 – Transient Response, 230VAC,
50–100–50% Load Step
Top: Input Voltage, 1 KV / div.
Second: Input Current, 5 A / div.
Third: Output Voltage (AC Coupled),
50 V / div.
Bottom: Load Current 1 A, 100 ms / div
Page 28 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
10.10 Load Transient Response (264 VAC, 50 Hz)
Figure 33 – Transient Response, 264 VAC,
10–100–10% Load Step.
Top: Input Voltage, 1 KV / div.
Second: Input Current, 5 A / div.
Third: Output Voltage (AC Coupled),
50 V / div.
Bottom: Load Current 1 A, 100 ms / div.
Figure 34 – Transient Response, 264 VAC,
50–100–50% Load Step.
Top: Input Voltage, 1 KV / div.
Second: Input Current, 5 A / div.
Third: Output Voltage (AC Coupled),
50 V / div.
Bottom: Load Current 1 A, 100 ms / div.
10.11 1000 ms Line Dropout (115 VAC / 60 Hz and 230 VAC / 50 Hz)
10.11.1
50% Load at Output
Figure 35 – Line Dropout 115 VAC, 1000 ms.
Top: Input Voltage, 500 V / div.
Middle: Input Current, 10 A / div.
Bottom: Output Voltage, 200 V,
200 ms / div.
Page 29 of 56
Figure 36 – Line Dropout 230 VAC, 1000 ms.
Top: Input Voltage, 500 V / div.
Middle: Input Current, 10 A / div.
Bottom: Output Voltage, 200 V,
200 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
10.11.2
18-Nov-10
Full Load at Output
Figure 37 – Line Dropout 115 VAC, 1000 ms.
Top: Input Voltage, 500 V / div.
Middle: Input Current, 10 A / div.
Bottom: Output Voltage, 200 V,
200 ms / div.
Figure 38 – Line Dropout 230 VAC, 1000 ms.
Top: Input Voltage, 500 V / div.
Middle: Input Current, 10 A / div.
Bottom: Output Voltage, 200 V,
200 ms / div.
10.12 One Cycle Line Dropout (115 VAC / 60 Hz and 230 VAC / 50 Hz)
10.12.1
Full Load at Output
Figure 39 – Line Dropout 115 VAC, 60 Hz
Top: Input Voltage, 500 V / div.
Middle: Output Voltage, 100 V /div.
Bottom: Input Current, 10 A, 50 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 40 – Line Dropout 230 VAC, 50 Hz
Top: Input Voltage, 500 V / div.
Middle: Output Voltage, 100 V / div.
Bottom: Input Current, 10 A, 50 ms /div.
Page 30 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
10.13 Line Sag (115 VAC – 85 VAC – 115 VAC, 60 Hz)
Figure 41 – Line Sag 115 VAC, 50% Load.
Top: Input Voltage, 200 V / div.
Middle: Input Current, 5 A, 50 ms / div.
Bottom: Output Voltage (AC Coupled),
20 V / div.
Figure 42 – Line Sag 115 VAC, 100% Load.
Top: Input Voltage, 200 V / div.
Middle: Input Current, 10 A, 50 ms / div.
Bottom: Output Voltage (AC Coupled),
20 V / div.
10.14 Line Surge (132 VAC – 147 VAC – 132 VAC, 60 Hz)
Figure 43 – Line Surge 132 VAC, 50% Load.
Top: Input Voltage, 200 V / div.
Middle: Input Current, 5 A, 50 ms / div.
Bottom: Output Voltage (AC Coupled),
20 V / div.
Page 31 of 56
Figure 44 – Line Surge 132 VAC, 100% Load.
Top: Input Voltage, 200 V / div.
Middle: Input Current, 10 A, 50 ms / div.
Bottom: Output Voltage (AC Coupled),
20 V / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
10.15 Line Sag (230 VAC – 170 VAC – 230 VAC, 50 Hz)
Figure 45 – Line Sag 230 VAC, 50% Load.
Top: Input Voltage, 500 V / div.
Middle: Input Current, 2 A, 50 ms / div.
Bottom: Output Voltage (AC Coupled),
20 V / div.
Figure 46 – Line Sag 230 VAC, 100% Load.
Top: Input Voltage, 500 V / div.
Middle: Input Current, 5 A, 50 ms / div.
Bottom: Output Voltage (AC Coupled),
20 V / div
10.16 Line Surge (264 VAC – 293 VAC – 264 VAC, 50 Hz)
Figure 47 – Line Surge 264 VAC, 50% Load.
Top: Input Voltage, 500 V / div.
Middle: Input Current, 10 A, 50 ms / div.
Bottom: Output Voltage (AC Coupled),
50 V / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 48 – Line Surge 264 VAC, 100% Load.
Top: Input Voltage, 500 V / div.
Middle: Input Current, 10 A, 50 ms / div
Bottom: Output Voltage (AC Coupled),
50 V / div.
Page 32 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
10.17 Brown–In and Brown–Out at 6 V / Minute Rate
Test conducted with reduction followed by increase of input voltage at the rate of 6 V/min.
The DC output was connected to full load (electronic load) and it was programmed to
unload at brown–out. A resistor of 17 kΩ was also connected at output to discharge the
output capacitor of the PFC after brown–out. This resistor represents any auxiliary supply
powered from the PFC output.
Measured Brown–Out Threshold
69.9 VAC
Measured Brown–In Threshold
78.1 VAC
Note: Operation at low input voltages results in higher power dissipation in many
components on the board. Forced air cooling is necessary during this test.
Figure 49 – Brown–Out Followed by Brown–In at 100% Load.
Top: Input Voltage, 200 V / div.
Middle: Input Current, 5 A, 200 s / div.
Bottom: Output Voltage, 200 V / div.
Page 33 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
10.18 Drain Voltage and Current
The drain current was measured at Jumper JP4 location by replacing JP4 with a very
short wire loop in order to insert the current probe. The drain voltage was measured at
the Drain and Source pins of IC U1. Do not make the wire loop very large since the
added inductance at the drain node can cause very large inductance spike and lead to
very high Vds voltage that could damage U1, therefore, we do not recommend breaking
JP4 to measure the drain–source current. However, the drain–source current can be
obtained from the inductor L5 current through some calculations. Please see Appendix C
for output inductor current measurement setup and calculations.
10.18.1
Dain Voltage and Current at 115 VAC Input and Full Load
Figure 50 – Input Voltage 115 VAC, 100% Load.
Top: Drain Current, 5 A, 1 ms / div.
Bottom: Drain Voltage, 200 V / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 51 – Input Voltage 115 VAC, 100% Load.
Top: Drain Current, 5 A, 1 ms / div.
Bottom: Drain Voltage, 200 V / div.
Zoom Top: Drain Current, 5 A, 5 s / div.
Zoom Bottom: Drain Voltage, 200 V / div.
Page 34 of 56
18-Nov-10
10.18.2
RDR-236 347 W PFC Using PFS714EG
Drain Voltage and Current at 230 VAC Input and Full Load
Figure 52 – Input Voltage 230 VAC, 100% Load.
Top: Drain Current, 5 A, 1 ms / div.
Bottom: Drain Voltage, 200 V / div.
Page 35 of 56
Figure 53 – Input Voltage 230 VAC, 100% Load.
Top: Drain Current, 5 A, 1 ms / div.
Bottom: Drain Voltage, 200 V / div.
Zoom Top: Drain Current, 5 A, 5 s / div.
Zoom Bottom: Drain Voltage, 200 V / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
10.19 Output Ripple Measurements
10.19.1
Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signals due to pickup. Details of the probe modification are
provided in the figures below.
The 4987BA probe adapter is affixed with one capacitor 0.02 F/1 kV ceramic disc type
tied in parallel across the probe tip.
Probe Ground
Probe Tip
Figure 54 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).
Figure 55 – Oscilloscope Probe with Probe Master (www.probemaster.com) 4987A BNC Adapter.
Modified with wires for ripple measurement, and one parallel decoupling capacitor added.)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 36 of 56
18-Nov-10
10.19.2
RDR-236 347 W PFC Using PFS714EG
Measurement Results
Figure 56 – Ripple, 90 VAC, 50% Load.
5 ms, 5 V / div.
Figure 57 – Ripple, 90 VAC, 100% Load.
5 ms, 5 V / div.
Figure 58 – Ripple, 115 VAC, 50% Load.
5 ms, 5 V / div.
Figure 59 – Ripple, 115 VAC, 100% Load.
5 ms, 5 V / div.
Page 37 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
Figure 60 – Ripple, 230 VAC, 50% Load.
5 ms, 5 V / div.
Figure 61 – Ripple, 230 VAC, 100% Load.
5 ms, 5 V / div.
Figure 62 – Ripple, 264 VAC, 50% Load.
5 ms, 5 V / div.
Figure 63 – Ripple, 264 VAC, 100% Load.
5 ms, 5 V / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 38 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
11 Gain–Phase Measurement Procedure and Results
● The PFC stage is supplied form an adjustable DC source for this test. Connect the
circuit as shown in Figure 64. Open the top end of the feedback divider network
and insert a 100Ω–2W resistor in series as shown. The signal injected in the loop
for gain–phase measurement will be injected across this resistor.
● Nodes A and B (two ends of the injection resistor) are connected to Channel 1 and
Channel 2 of the frequency response analyzer using high voltage x100 attenuator
probes. GND leads of both probes are connected to output return as shown.
● The signal to be injected is isolated using the Bode–Box injection transformer
model – 200–000 from Venable Industries.
Test Procedure:
● Adjust the input voltage to 150 VDC and confirm that the PFC output voltage is
within regulation limits.
● Inject a signal from the frequency response analyzer.
● The injected signal can be seen in the output voltage ripple of the PFC.
● Plot the gain phase pot by sweeping the injected signal frequency from 3 Hz to 90
Hz
Figure 64 – System Test Setup for Loop Gain–Phase Measurement.
Page 39 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
Figure 65 – Bode Plot with 150 VDC, 50% and 100% Load.
Note: phase margin is greater than 45 deg.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 40 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
12 Line Surge Test
Surge Level
(V)
C.M.
+500
–500
+500
–500
+500
–500
D.M.
+500
–500
C.M.
+1000
–1000
+1000
–1000
+1000
–1000
D.M.
+1000
–1000
C.M.
+1500
–1500
+1500
–1500
+1500
–1500
C.M.
+2000
–2000
+2000
–2000
+2000
–2000
Input Voltage
(VAC)
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
Injection Location
90
Test Results
(Pass/Fail
# Strikes)
10 Strikes each Level
Pass
Pass
Pass
Pass
Pass
Pass
902
270
Pass
Pass
90
270
270
90
901
Pass
Pass
Pass
Pass
Pass
Pass
Injection Phase
(°)
(12Ω source)
L1 to PE
L1 to PE
L2 to PE
L2 to PE
L1, L2 to PE
L1, L2 to PE
(2Ω source)
L1 to L2
L1 to L2
(12Ω source)
L1 to PE
L1 to PE
L2 to PE
L2 to PE
L1, L2 to PE
L1, L2 to PE
(2Ω source)
L1 to L2
L1 to L2
(12Ω source)
L1 to PE
L1 to PE
L2 to PE
L2 to PE
L1, L2 to PE
L1, L2 to PE
(12Ω source)
L1 to PE
L1 to PE
L2 to PE
L2 to PE
L1, L2 to PE
L1, L2 to PE
90
270
270
90
901
90
902
270
90
270
270
90
901
90
90
270
270
90
901
90
Pass
Pass
10 Strikes each Level
Pass
Pass
Pass
Pass
Pass
Pass
10 Strikes each Level
Pass
Pass
Pass
Pass
Pass
Pass
1 Note: 0° and 270° phase angle [relative to L1] was not tested; however, negative voltage polarity was performed at 90° phase angle
for worst case total negative pulse on alternate phase [neutral].
2 Note: 0° and 270° phase angle [relative to L1] was not tested on both polarities; however, negative voltage polarity was performed at
270° phase angle for worst case total negative pulse on alternate phase [neutral].
Page 41 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
13 EMI Scans
13.1 EMI Test Set-up
Use a plexi-glass board with complete copper coated on one side, connect the copper
side of the board to test point TP8 with a wire clip. A RD-91 board was used here to
provide VCC input to RD-236 board. Both boards should sit on top of the plexi-glass
board. Connect TP1/TP2 & TP6/TP7 test point pairs from RD-236 board to J1/J2 & J3/J4
test point pairs of the RD-91 board respectively. Connect the load to J2 2-pin header. All
connections should be made as short as possible. See Figure 66 for set-up.
Bottom side Cu coated
plexi-glass board
To RD-91,
J3/J4
To RD-91,
J1/J2
To load
AC source
connector
Figure 66 – EMI Test Set-up.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 42 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
13.2 EMI Scans
Figure 67 – 115 VAC, 100% Load.
Figure 68 – 115 VAC, 100% Load EMI Measurement Results.
Page 43 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
Figure 69 – 230 VAC, 100% Load.
Figure 70– 230 VAC, 100% Load EMI Measurement Results
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 44 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
14 Appendix A – Efficiency with Other Diodes and Core Materials
Use of Silicon Carbide Schottky diodes for PFC output can provide higher efficiency.
Graph below shows efficiency improvement due to use of C3D06060A instead of the
ultrafast STTH8S06D diode.
98
Efficiency (%)
97
96
95
94
100 VAC, STTH8S06D
115 VAC, STTH8S06D
230 VAC, STTH8S06D
93
0
50
100
100 VAC, C3D06060A
115 VAC, C3D06060A
230 VAC, C3D06060A
150
200
250
300
350
400
Output Power (W)
Figure 71 – Efficiency, Silicon Carbide Schottky C3D06060A vs. Ultra Fast STTH8S06D (Reference)
Diode.
Page 45 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
Choice of inductor material and inductor design affects PFC efficiency at light load. At
lighter load levels, the PFC runs in discontinuous mode for significant portion of the input
waveform which increases core losses. The example below shows effect of change of
core material.
77324 is Magnetics Inc. Kool-Mu Material
55324 is Magnetics Inc. MPP Material
58324 is Magnetics Inc. High flux Material
Material choice is often a price / performance tradeoff.
96.0
Efficiency (%)
95.5
95.0
94.5
94.0
Inductor Core #77324A7 (Reference)
Inductor Core #58324
Inductor Core #55324
93.5
93.0
0
50
100
150
200
250
300
350
400
Output Power (W)
Figure 72 – Efficiency with Other Inductor Cores at 100 VAC.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 46 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
96.5
Efficiency (%)
96.0
95.5
95.0
94.5
Inductor Core #77324A7 (Reference)
Inductor Core #58324
94.0
Inductor Core #55324
93.5
0
50
100
150
200
250
300
350
Output Power (W)
Figure 73 – Efficiency with Other Inductor Cores at 115 VAC.
Page 47 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
400
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
97.7
97.6
Efficiency
97.5
97.4
97.3
97.2
97.1
97.0
Inductor Core #77324A7 (Reference)
Inductor Core #58324
Inductor Core #55324
96.9
96.8
0
50
100
150
200
250
300
350
400
Output Power (W)
Figure 74 – Efficiency with Other Inductor Cores at 230 VAC.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 48 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
98
97
Efficiency (%)
96
95
94
93
92
91
90
0
50
100
100 VAC, RT1
100 VAC, RT2
115 VAC, RT1
115 VAC, RT2
230 VAC, RT1
230 VAC, RT2
150
200
250
300
350
400
Output Power (W)
Figure 75 – Efficiency with Thermistor RT1 or RT2 in Circuit vs. Output Power.
Note: this is the PFC efficiency plot with thermistor RT1 in–circuit (RT1 shorting pads
open and RT2 pads shorted), and thermistor RT2 in–circuit (RT2 pads open and RT1
pads shorted). The additional voltage drop in series with diode D2 or input line due to
thermistor RT1 and RT2 degrade efficiency. By default, RT1 is shorted on the RD–236
board when shipped.
Note: In most applications, a relay will be used to bypass the thermistor RT2 after start up
in order to improve system efficiency.
Page 49 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
15 Appendix B – Test Set-up for Efficiency Measurement
RD-236 is designed for continuous operation with full load only for a nominal voltage of
115 VAC. For performance evaluation at input voltage levels below the nominal input
voltage, forced air cooling is necessary.
The following setup is recommended for system efficiency, PF and THD measurements.
A 4.75” diameter AC fan is placed about 3” away from the right-side edge of the RD-236
bard, in high speed position. Use high resolution meters for output current and output
voltage measurements. See figures below for board and fan positions
Figure 76 – Front View of the Test Setup for Efficiency, PF and THD Measurements.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 50 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
Figure 77 – Side View of the Test Setup for Efficiency, PF and THD Measurements.
Page 51 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
16 Appendix C – Inductor Current Measurement Set-up
The output inductor current can be measured at jumper JP5 location. Simply replace JP5
with a very short wire–loop in order to insert the current probe. Attach the oscilloscope
probe directly at the D and S pins of IC U1 at the bottom side of the board, as shown in
Figure 79, to measure drain–source voltage. See figure below for set-up.
Figure 78 – Current Probe and Scope Probe Jack Insertion Locations.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 52 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
Figure 79 – Inductor Current and Drain Source Voltage Measurements Set-up.
MOSFET drain current is same as inductor current when the MOSFET inside HiperPFS
is on. When the MOSFET turns OFF, inductor current is same as diode current. When
the MOSFET is ON, the inductor current has a positive slope. When the MOSFET is
OFF, the inductor current slope is negative. Information about the drain current and
shape of drain current can be obtained from the inductor current waveform. This is a safe
and recommended method to measure drain current of the MOSFET.
Page 53 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
sw on
18-Nov-10
sw off
Figure 80 – 115 VAC, 100% Load.
Top: Inductor Current, 2 A / div.
Bottom: Drain Voltage, 200 V / div.
Zoom Top: Inductor Current, 2 A, 5 s / div.
Zoom Bottom: Drain Voltage, 200 V / div., 5 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 54 of 56
18-Nov-10
RDR-236 347 W PFC Using PFS714EG
17 Revision History
Date
09-Nov-10
18-Nov-10
Page 55 of 56
Author
EJ
KM
Revision
1.0
1.1
Description and changes
Initial Release
Minor corrections
Reviewed
Apps and Mktg
Apps and Mktg
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-236 347 W PFC Using PFS714EG
18-Nov-10
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET,
PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective
companies. ©Copyright 2010 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail:
[email protected]
INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
UNITED KINGDOM
1st Floor, St. James’s House
East Street,
Farnham Surrey, GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Building
2070 Shennan Zhong Road
Shenzhen, Guangdong,
P.R.C. 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
ITALY
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#15-08/10 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 56 of 56