Confidential Draft 1/18/12 CS4334/5/8/9 8-Pin, 24-Bit, 96 kHz Stereo D/A Converter Features Description Complete Stereo DAC System: Interpolation, The CS4334 family members are complete, stereo digital-to-analog output systems including interpolation, 1-bit D/A conversion and output analog filtering in an 8-pin package. The CS4334/5/8/9 support all major audio data interface formats, and the individual devices differ only in the supported interface format. D/A, Output Analog Filtering 24-Bit Conversion 96 dB Dynamic Range The CS4334 family is based on Delta-Sigma modulation, where the modulator output controls the reference voltage input to an ultra-linear analog low-pass filter. This architecture allows for infinite adjustment of sample rate between 2 kHz and 100 kHz simply by changing the master clock frequency. -88 dB THD+N Low Clock-Jitter Sensitivity Single +5 V Power Supply Filtered Line-Level Outputs The CS4334 family contains on-chip digital de-emphasis, operates from a single +5V power supply, and requires minimal support circuitry. These features are ideal for set-top boxes, DVD players, SVCD players, and A/V receivers. On-Chip Digital De-emphasis Popguard® Technology Functionally Compatible with CS4330/31/33 LRCK SDATA ORDERING INFORMATION See “Ordering Information” on page 24 DEM/SCLK 2 AGND 6 VA 7 Serial Input Interface De-emphasis Voltage Reference Interpolator Modulator DAC Analog Low-Pass Filter 8 Interpolator Modulator DAC Analog Low-Pass Filter 5 3 1 AOUTL AOUTR 4 MCLK http://www.cirrus.com Copyright Cirrus Logic, Inc. 2012 (All Rights Reserved) JANUARY '12 DS248F6 CS4334/5/8/9 TABLE OF CONTENTS 1. TYPICAL CONNECTION DIAGRAM .................................................................................................... 4 2. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 5 SPECIFIED OPERATING CONDITIONS .............................................................................................. 5 ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 5 ANALOG CHARACTERISTICS............................................................................................................. 6 POWER AND THERMAL CHARACTERISTICS ................................................................................... 8 DIGITAL INPUT CHARACTERISTICS .................................................................................................. 9 SWITCHING CHARACTERISTICS ..................................................................................................... 10 3. GENERAL DESCRIPTION ................................................................................................................. 12 3.1 Digital Interpolation Filter .............................................................................................................. 12 3.2 Delta-Sigma Modulator ................................................................................................................. 12 3.3 Switched-Capacitor DAC .............................................................................................................. 12 3.4 Analog Low-Pass Filter ................................................................................................................. 12 4. SYSTEM DESIGN ............................................................................................................................... 13 4.1 Master Clock ................................................................................................................................. 13 4.2 Serial Clock .................................................................................................................................. 13 4.2.1 External Serial Clock Mode ................................................................................................. 13 4.2.2 Internal Serial Clock Mode .................................................................................................. 13 4.3 De-Emphasis ................................................................................................................................ 14 4.4 Initialization and Power-Down ...................................................................................................... 14 4.5 Output Transient Control .............................................................................................................. 14 4.6 Grounding and Power Supply Decoupling .................................................................................... 15 4.7 Analog Output and Filtering .......................................................................................................... 15 4.8 Overall Base-Rate Frequency Response ..................................................................................... 18 4.9 Overall High-Rate Frequency Response ...................................................................................... 19 4.10 Base Rate Mode Performance Plots .......................................................................................... 20 4.11 High Rate Mode Performance Plots ........................................................................................... 21 5. PARAMETER DEFINITIONS ............................................................................................................... 22 6. REFERENCES ..................................................................................................................................... 22 7. PACKAGE DIMENSIONS ................................................................................................................... 23 8. ORDERING INFORMATION ............................................................................................................... 24 9. FUNCTIONAL COMPATIBILITY ......................................................................................................... 24 10. REVISION HISTORY ......................................................................................................................... 25 LIST OF FIGURES Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. 2 Recommended Connection Diagram ......................................................................................... 4 Output Test Load ....................................................................................................................... 8 Maximum Loading...................................................................................................................... 9 Power vs. Sample Rate ............................................................................................................. 9 External Serial Mode Input Timing........................................................................................... 11 Internal Serial Mode Input Timing ............................................................................................ 11 Internal Serial Clock Generation ............................................................................................. 11 System Block Diagram............................................................................................................. 12 De-Emphasis Curve (Fs = 44.1kHz) ........................................................................................ 14 CS4334 Data Format (I²S) ....................................................................................................... 15 CS4335 Data Format ............................................................................................................... 15 CS4338 Data Format ............................................................................................................... 16 CS4339 Data Format ............................................................................................................... 16 CS4334/5/8/9 Initialization and Power-Down Sequence ......................................................... 17 Stopband Rejection.................................................................................................................. 18 Transition Band........................................................................................................................ 18 Transition Band........................................................................................................................ 18 CS4334/5/8/9 Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Passband Ripple...................................................................................................................... 18 Stopband Rejection.................................................................................................................. 19 Transition Band........................................................................................................................ 19 Transition Band........................................................................................................................ 19 Passband Ripple...................................................................................................................... 19 0 dBFS FFT (BRM) .................................................................................................................. 20 -60 dBFS FFT (BRM).............................................................................................................. 20 Idle Channel Noise FFT (BRM)................................................................................................ 20 Twin Tone IMD FFT (BRM)...................................................................................................... 20 THD+N vs. Amplitude (BRM) ................................................................................................... 20 THD+N vs. Frequency (BRM) .................................................................................................. 20 0 dBFS FFT (HRM).................................................................................................................. 21 -60 dBFS FFT (HRM).............................................................................................................. 21 Idle Channel Noise FFT (HRM) ............................................................................................... 21 Twin Tone IMD FFT (HRM) ..................................................................................................... 21 THD+N vs. Amplitude (HRM)................................................................................................... 21 THD+N vs. Frequency (HRM).................................................................................................. 21 LIST OF TABLES Table 1. Common Clock Frequencies ...................................................................................................... 13 PIN DESCRIPTIONS SERIAL DATA INPUT DE-EMPHASIS / SCLK LEFT / RIGHT CLOCK MASTER CLOCK No. Pin Name I/O 1 SDATA I 2 DEM/SCLK I 3 LRCK I 4 MCLK I 5 6 7 8 AOUTR AGND VA AOUTL O I I O SDATA 1 8 AOUTL ANALOG LEFT CHANNEL OUTPUT DEM/SCLK 2 7 VA ANALOG POWER LRCK 3 6 AGND ANALOG GROUND MCLK 4 5 AOUTR ANALOG RIGHT CHANNEL OUTPUT Pin Function and Description Serial Audio Data Input - Two’s complement MSB-first serial data is input on this pin. The data is clocked into the CS4334/5/8/9 via internal or external SCLK, and the channel is determined by LRCK. De-Emphasis/External Serial Clock Input - Used for de-emphasis filter control or external serial clock input. Left/Right Clock - Determines which channel is currently being input on the Audio Serial Data Input pin, SDATA. Master Clock - Frequency must be 256x, 384x, or 512x the input sample rate in BRM and either 128x or 192x the input sample rate in HRM. Analog Right Channel Output - Typically 3.5 Vp-p for a full-scale input signal. Analog Ground - Analog ground reference is 0V. Analog Power - Analog power supply is nominally +5 V. Analog Left Channel Output - Typically 3.5 Vp-p for a full-scale input signal. 3 CS4334/5/8/9 1. TYPICAL CONNECTION DIAGRAM +5V + 7 0.1 µF 1 µF VA 1 Audio Data Processor 2 3 SDATA 3.3 µF 8 DEM /SCLK AOUTL LRCK 560 Left Audio Output + 267 k C 10 k RL CS4334 CS4335 CS4338 CS4339 3.3 µF 560 5 AOUTR External Clock 4 MCLK 267 k C 10 k AG ND 6 Figure 1. Recommended Connection Diagram 4 Right Audio Output + C= RL R L + 560 4 Fs(R L560) CS4334/5/8/9 2. CHARACTERISTICS AND SPECIFICATIONS (All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at nominal supply voltages and TA = 25C.) SPECIFIED OPERATING CONDITIONS (AGND = 0V; all voltages with respect to ground.) Parameters DC Power Supply Ambient Operating Temperature (Power Applied) -KSZ, -KSZR -DSZ, -DSZR Symbol Min Nom Max Units VA TA 4.75 -10 -40 5.0 - 5.5 +70 +85 V C C ABSOLUTE MAXIMUM RATINGS (AGND = 0V; all voltages with respect to ground.) Parameters DC Power Supply Input Current, Any Pin Except Supplies Digital Input Voltage Ambient Operating Temperature (power applied) Storage Temperature Symbol Min Max Units VA Iin VIND TA Tstg -0.3 -0.3 -55 -65 6.0 ±10 VA+0.4 125 150 V mA V °C °C WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 5 CS4334/5/8/9 ANALOG CHARACTERISTICS (Full-Scale Output Sine Wave, 997 Hz; Test load RL = 10 k, CL = 10 pF (see Figure 2). Fs for Base-Rate Mode = 48 kHz, Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified; Fs for High-Rate Mode = 96 kHz, Measurement Bandwidth 10 Hz to 40 kHz, unless otherwise specified.) Base-Rate Mode Parameter Symbol High-Rate Mode Min Typ Max Min Typ Max Unit 88 91 86 89 93 96 91 94 - 91 89 90 96 88 94 - dB dB dB dB Total Harmonic Distortion + Noise (Note 1) THD+N 18 to 24-Bit 0 dB -20 dB -60 dB 16-Bit 0 dB -20 dB -60 dB - -88 -73 -33 -86 -71 -31 -83 -68 -28 -81 -66 -26 - -88 -70 -30 -86 -68 -28 -83 -65 -25 -81 -63 -23 dB dB dB dB dB dB Interchannel Isolation - 94 - - 95 - dB 85 88 83 86 93 96 91 94 - 88 86 90 96 88 94 - dB dB dB dB Total Harmonic Distortion + Noise (Note 1) THD+N 18 to 24-Bit 0 dB -20 dB -60 dB 16-Bit 0 dB -20 dB -60 dB - -88 -73 -33 -86 -71 -31 -82 -65 -25 -70 -63 -23 - -88 -70 -30 -86 -68 -28 -82 -62 -22 -80 -60 -20 dB dB dB dB dB dB Interchannel Isolation - 94 - - 95 - dB Dynamic Performance for CS4334/5/8/9-KSZ, -KZSR Dynamic Range (Note 1) 18 to 24-Bit unweighted A-Weighted 16-Bit unweighted A-Weighted (1 kHz) Dynamic Performance for CS4334/5/8/9-DSZ, -DSZR Dynamic Range (Note 1) 18 to 24-Bit unweighted A-Weighted 16-Bit unweighted A-Weighted (1 kHz) Notes: 1. One LSB of triangular PDF dither added to data. 6 CS4334/5/8/9 ANALOG CHARACTERISTICS (Continued) Base-Rate Mode Parameter Symbol Min High-Rate Mode Typ Max Min Typ Max Unit 0 0 - .4780 .4996 0 0 - .4650 .4982 Fs Fs Fs -.01 - +.08 -.05 - +.2 dB - - ±.08 - - ±.2 dB .5465 - - .5770 - - Fs Combined Digital and On-chip Analog Filter Response (Note 2) Passband (Note 3) to -0.05 dB corner to -0.1 dB corner to -3 dB corner Frequency Response 10 Hz to 20 kHz Passband Ripple StopBand StopBand Attenuation (Note 4) 50 - - 55 - - dB - 9/Fs - - 4/Fs - s 0 - 40 kHz 0 - 20 kHz - ±0.36/Fs - - ±1.39/Fs ±0.23/Fs - s s Fs = 32 kHz Fs = 44.1 kHz Fs = 48 kHz - - +1.5/+0 +.05/-.25 -.2/-.4 Group Delay tgd Passband Group Delay Deviation De-emphasis Error Parameters Symbol (Note 5) dB dB dB Min Typ Max Units - 0.1 ±5 100 0.4 - dB % ppm/°C 3.25 - 3.5 2.2 3 100 3.75 - Vpp VDC k pF DC Accuracy Interchannel Gain Mismatch Gain Error Gain Drift Analog Output Full Scale Output Voltage Quiescent Voltage Max AC-Load Resistance Max Load Capacitance (Note 6) (Note 6) VQ RL CL Notes: 2. Filter response is not tested but is guaranteed by design. 3. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 15-22) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs. 4. For Base-Rate Mode, the Measurement Bandwidth is 0.5465 Fs to 3 Fs. For High-Rate Mode, the Measurement Bandwidth is 0.577 Fs to 1.4 Fs. 5. De-emphasis is not available in High-Rate Mode. 6. Refer to Figure 3. 7 CS4334/5/8/9 POWER AND THERMAL CHARACTERISTICS Parameters Symbol Min Typ Max Units IA IA - 15 40 19 - mA A JA PSRR - 75 0.2 110 79 104 - mW mW °C/Watt dB Power Supplies Power Supply Current normal operation power-down state (Note 7) normal operation power-down Power Dissipation Package Thermal Resistance Power Supply Rejection Ratio (1 kHz) Notes: 7. Refer to Figure 4. Max Power Dissipation is measured at VA=5.5V. 10 µF V out AOUTx R L AGND Figure 2. Output Test Load 8 C L 100 70 75 Safe Operating Region 50 25 M 75 BR 125 Power (mW) Capacitive Load -- C L (pF) CS4334/5/8/9 65 HR M 60 55 2.5 3 5 10 15 50 20 30 Resistive Load -- RL (k ) Figure 3. Maximum Loading 40 50 60 70 80 Sample Rate (kHz) 90 100 Figure 4. Power vs. Sample Rate DIGITAL INPUT CHARACTERISTICS Parameters High-Level Input Voltage Low-Level Input Voltage Input Leakage Current Input Capacitance (Note 8) Symbol Min Typ Max Units VIH VIL Iin 2.0 - 8 0.8 ±10 - V V A pF Notes: 8. Iin for CS433X LRCK is ±20A max. 9 CS4334/5/8/9 SWITCHING CHARACTERISTICS Parameters Symbol Input Sample Rate Fs Min Typ Max Units 2 - 100 kHz MCLK Pulse Width High MCLK/LRCK = 512 10 - 1000 ns MCLK Pulse Width Low MCLK/LRCK = 512 10 - 1000 ns MCLK Pulse Width High MCLK / LRCK = 384 or 192 21 - 1000 ns MCLK Pulse Width Low MCLK / LRCK = 384 or 192 21 - 1000 ns MCLK Pulse Width High MCLK / LRCK = 256 or 128 31 - 1000 ns MCLK Pulse Width Low MCLK / LRCK = 256 or 128 31 - 1000 ns 40 50 60 % 20 - - ns 20 External SCLK Mode LRCK Duty Cycle (External SCLK only) SCLK Pulse Width Low tsclkl SCLK Pulse Width High tsclkh - - ns SCLK Period MCLK / LRCK = 512, 256 or 384 Base-Rate Mode tsclkw 1 --------------------- 128 Fs - - ns SCLK Period MCLK / LRCK = 128 or 192 High-Rate Mode tsclkw 1 ------------------ 64 Fs - - ns SCLK rising to LRCK edge delay tslrd 20 - - ns SCLK rising to LRCK edge setup time tslrs 20 - - ns SDATA valid to SCLK rising setup time tsdlrs 20 - - ns SCLK rising to SDATA hold time tsdh 20 - - ns - 50 - % - - ns - s - - ns - - ns - - ns Internal SCLK Mode LRCK Duty Cycle (Internal SCLK only) SCLK Period (Note 9) (Note 10) tsclkw tsclkr 1 ----------------SCLK - SCLK rising to LRCK edge tsclkw -----------------2 SDATA valid to SCLK rising setup time SCLK rising to SDATA hold time MCLK / LRCK = 512, 256 or 128 tsdlrs tsdh 1 ---------------------- + 10 512 Fs 1 ---------------------- + 15 512 Fs tsdh SCLK rising to SDATA hold time MCLK / LRCK = 384 or 192 1 ---------------------- + 15 384 Fs Notes: 9. In Internal SCLK Mode, the Duty Cycle must be 50% 1/2 MCLK Period. 10. The SCLK / LRCK ratio may be either 32, 48, or 64. This ratio depends on part type and MCLK/LRCK ratio. (See figures Figures 10-13) 10 CS4334/5/8/9 LRCK t sclkh t slrs t slrd t sclkl SCLK t sdh t sdlrs SDATA Figure 5. External Serial Mode Input Timing LRCK t sclkr SDATA t sclkw t sdlrs t sdh *INTERNAL SCLK Figure 6. Internal Serial Mode Input Timing The SCLK pulses shown are internal to the CS4334/5/8/9. LRCK MCLK 1 N 2 N *INTERNAL SCLK SDATA Figure 7. Internal Serial Clock Generation * The SCLK pulses shown are internal to the CS4334/5/8/9. N equals MCLK divided by SCLK 11 CS4334/5/8/9 3. GENERAL DESCRIPTION The CS4334 family of devices offers a complete stereo digital-to-analog system including digital interpolation, fourth-order delta-sigma digital-to-analog conversion, digital de-emphasis and analog filtering, as shown in Figure 8. This architecture provides a high tolerance to clock jitter. The primary purpose of using delta-sigma modulation techniques is to avoid the limitations of resistive laser trimmed digital-to-analog converter architectures by using an inherently linear 1-bit digital-to-analog converter. The advantages of a 1-bit digital-to-analog converter include: ideal differential linearity, no distortion mechanisms due to resistor matching errors and no linearity drift over time and temperature due to variations in resistor values. The CS4334 family of devices supports two modes of operation. The devices operate in Base Rate Mode (BRM) when MCLK/LRCK is 256, 384 or 512 and in High Rate Mode (HRM) when MCLK/LRCK is 128 or 192. High Rate Mode allows input sample rates up to 100 kHz. 3.1 Digital Interpolation Filter The digital interpolation filter increases the sample rate, Fs, by a factor of 4 and is followed by a 32× digital sample-and-hold (16× in HRM). This filter eliminates images of the baseband audio signal which exist at multiples of the input sample rate. The resulting frequency spectrum has images of the input signal at multiples of 4 Fs. These images are easily removed by the on-chip analog low-pass filter and a simple external analog filter (see Figure 1). 3.2 Delta-Sigma Modulator The interpolation filter is followed by a fourth order delta-sigma modulator which converts the interpolation filter output into 1-bit data at a rate of 128 Fs in BRM (or 64 Fs in HRM). 3.3 Switched-Capacitor DAC The delta-sigma modulator is followed by a digital-to-analog converter which translates the 1-bit data into a series of charge packets. The magnitude of the charge in each packet is determined by sampling of a voltage reference onto a switched capacitor, where the polarity of each packet is controlled by the 1-bit data. This technique greatly reduces the sensitivity to clock jitter and provides low-pass filtering of the output. 3.4 Analog Low-Pass Filter The final signal stage consists of a continuous-time low-pass filter which serves to smooth the output and attenuate out-of-band noise. Digital Input Interpolator Delta-Sigma Modulator DAC Figure 8. System Block Diagram 12 Analog Low-Pass Filter Analog Output CS4334/5/8/9 4. SYSTEM DESIGN The CS4334 family accepts data at standard audio sample rates including 48, 44.1 and 32 kHz in BRM and 96, 88.2 and 64 kHz in HRM. Audio data is input via the serial data input pin (SDATA). The Left/Right Clock (LRCK) defines the channel and delineation of data, and the Serial Clock (SCLK) clocks audio data into the input data buffer. The CS4334/5/8/9 differ in serial data formats as shown in Figures 10-13. 4.1 Master Clock MCLK must be either 256x, 384x or 512x the desired input sample rate in BRM and either 128x or 192x the desired input sample rate in HRM. The LRCK frequency is equal to Fs, the frequency at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio is detected automatically during the initialization sequence by counting the number of MCLK transitions during a single LRCK period. Internal dividers are set to generate the proper clocks. Table 1 illustrates several standard audio sample rates and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but MCLK, LRCK and SCLK must be synchronous. MCLK (MHz) LRCK (kHz) 32 44.1 48 64 88.2 96 HRM BRM 128x 192x 256x 384x 512x 4.0960 6.1440 8.1920 12.2880 16.3840 5.6448 8.4672 11.2896 16.9344 22.5792 6.1440 9.2160 12.2880 18.4320 24.5760 8.1920 12.2880 11.2896 16.9344 12.2880 18.4320 Table 1. Common Clock Frequencies 4.2 Serial Clock The serial clock controls the shifting of data into the input data buffers. The CS4334 family supports both external and internal serial clock generation modes. Refer to Figures 10-13 for data formats. 4.2.1 External Serial Clock Mode The CS4334 family will enter the External Serial Clock Mode when 16 low to high transitions are detected on the DEM/SCLK pin during any phase of the LRCK period. When this mode is enabled, the Internal Serial Clock Mode and de-emphasis filter cannot be accessed. The CS4334 family will switch to Internal Serial Clock Mode if no low to high transitions are detected on the DEM/SCLK pin for 2 consecutive frames of LRCK. Refer to Figure 14. 4.2.2 Internal Serial Clock Mode In the Internal Serial Clock Mode, the serial clock is internally derived and synchronous with MCLK and LRCK. The SCLK/LRCK frequency ratio is either 32, 48, or 64 depending upon data format. Operation in this mode is identical to operation with an external serial clock synchronized with LRCK. This mode allows access to the digital de-emphasis function. Refer to Figures 10 - 14 for details. 13 CS4334/5/8/9 4.3 De-Emphasis The CS4334 family includes on-chip digital de-emphasis. Figure 9 shows the de-emphasis curve for Fs equal to 44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in sample rate, Fs. The de-emphasis filter is active (inactive) if the DEM/SCLK pin is low (high) for 5 consecutive falling edges of LRCK. This function is available only in the internal serial clock mode. Gain dB T1=50 µs 0dB T2 = 15 µs -10dB F1 3.183 kHz F2 Frequency 10.61 kHz Figure 9. De-Emphasis Curve (Fs = 44.1kHz) 4.4 Initialization and Power-Down The Initialization and Power-Down sequence flow chart is shown in Figure 14. The CS4334 family enters the Power-Down State upon initial power-up. The interpolation filters and delta-sigma modulators are reset, and the internal voltage reference, one-bit digital-to-analog converters and switched-capacitor low-pass filters are powered down. The device will remain in the Power-Down mode until MCLK and LRCK are present. Once MCLK and LRCK are detected, MCLK occurrences are counted over one LRCK period to determine the MCLK/LRCK frequency ratio. Power is then applied to the internal voltage reference. Finally, power is applied to the D/A converters and switched-capacitor filters, and the analog outputs will ramp to the quiescent voltage, VQ. 4.5 Output Transient Control The CS4334 family uses Popguard® technology to minimize the effects of output transients during powerup and power-down. This technique eliminates the audio transients commonly produced by single-ended single-supply converters when it is implemented with external DC-blocking capacitors connected in series with the audio outputs. To make best use of this feature, it is necessary to understand its operation. When the device is initially powered-up, the audio outputs, AOUTL and AOUTR, are clamped to AGND. After a short delay of approximately 1000 sample periods, each output begins to ramp towards its quiescent voltage, VQ. Approximately 10,000 sample cycles later, the outputs reach VQ and audio output begins. This gradual voltage ramping allows time for the external DC-blocking capacitor to charge to VQ, effectively blocking the quiescent DC voltage. To prevent transients at power-down, the device must first enter its power-down state. This is accomplished by removing MCLK or LRCK. When this occurs, audio output ceases and the internal output buffers are disconnected from AOUTL and AOUTR. A soft-start current sink is substituted in place of AOUTL and AOUTR which allows the DC-blocking capacitors to slowly discharge. Once this charge is dissipated, the power to the device may be turned off, and the system is ready for the next power-on. To prevent an audio transient at the next power-on, the DC-blocking capacitors must fully discharge before turning off the power or exiting the power-down state. If full discharge does not occur, a transient will occur when the audio outputs are initially clamped to AGND. The time that the device must remain in the power- 14 CS4334/5/8/9 down state is related to the value of the DC-blocking capacitance. For example, with a 3.3 F capacitor, the time that the device must remain in the power-down state will be approximately 0.4 seconds. 4.6 Grounding and Power Supply Decoupling As with any high resolution converter, the CS4334 family requires careful attention to power supply and grounding arrangements to optimize performance. Figure 1 shows the recommended power arrangement with VA connected to a clean +5V supply. For best performance, decoupling capacitors should be located as close to the device package as possible with the smallest capacitor closest. 4.7 Analog Output and Filtering The analog filter present in the CS4334 family is a switched-capacitor filter followed by a continuous time low pass filter. Its response, combined with that of the digital interpolator, is given in Figures 15 - 22. Left Channel LRCK Right Channel SCLK SDATA MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB Internal SCLK Mode MSB -1 -2 -3 -4 +5 +4 +3 +2 +1 LSB External SCLK Mode I²S, 16-Bit data and INT SCLK = 32 Fs if MCLK/LRCK = 512, 256 or 128 I²S, Up to 24-Bit data and INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192 I²S, up to 24-Bit Data Data Valid on Rising Edge of SCLK Figure 10. CS4334 Data Format (I²S) Left Channel LRCK Right Channel SCLK SDATA MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB Internal SCLK Mode MSB -1 -2 -3 -4 +5 +4 +3 +2 +1 LSB External SCLK Mode Left Justified, up to 24-Bit Data INT SCLK = 64 Fs if MCLK/LRCK = 512, 256 or 128 INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192 Left Justified, up to 24-Bit Data Data Valid on Rising Edge of SCLK Figure 11. CS4335 Data Format 15 CS4334/5/8/9 LRCK Right Channel Left Channel SCLK SDATA 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 32 clocks Internal SCLK Mode External SCLK Mode Right Justified, 16-Bit Data INT SCLK = 32 Fs if MCLK/LRCK = 512, 256 or 128 INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192 Right Justified, 16-Bit Data Data Valid on Rising Edge of SCLK SCLK Must Have at Least 32 Cycles per LRCK Period Figure 12. CS4338 Data Format LRCK Right Channel Left Channel SCLK SDATA 1 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 32 clocks Internal SCLK Mode External SCLK Mode Right Justified, 18-Bit Data INT SCLK = 64 Fs if MCLK/LRCK = 512, 256 or 128 INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192 Right Justified, 18-Bit Data Data Valid on Rising Edge of SCLK SCLK Must Have at Least 36 Cycles per LRCK Period Figure 13. CS4339 Data Format 16 CS4334/5/8/9 Figure 14. CS4334/5/8/9 Initialization and Power-Down Sequence 17 CS4334/5/8/9 4.8 18 Overall Base-Rate Frequency Response Figure 15. Stopband Rejection Figure 16. Transition Band Figure 17. Transition Band Figure 18. Passband Ripple CS4334/5/8/9 4.9 Overall High-Rate Frequency Response Figure 19. Stopband Rejection Figure 21. Transition Band Figure 20. Transition Band Figure 22. Passband Ripple 19 CS4334/5/8/9 4.10 Base Rate Mode Performance Plots +0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 +0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 dBr A dBr A d B r A -40 -40 -40 -50 -50 -50 -60 -60 -60 dBr A dBr A -40 -40 -40 -50 -50 -50 -60 -60 -60 d B r -70 -70 -70 -80 -80 -80 -90 -90 -90 -70 -70 -70 -80 -80 -80 -90 -90 -90 A -100 -100 -100 -110 -110 -110 -100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130 -120 -120 -120 -130 -130 -130 -140 -140 -140 2k 2k 2k 4k 4k 4k 6k 6k 6k 8k 8k 8k 10k 10k 10k Hz Hz Hz 12k 12k 12k 14k 14k 14k 16k 16k 16k 18k 18k 18k -140 -140 -140 20k 20k 20k 20k 6k 6k 6k 8k 8k 8k 10k 10k 10k Hz Hz Hz 12k 12k 12k 14k 14k 14k 16k 16k 16k (16k FFT of a 1 kHz input signal) Figure 23. 0 dBFS FFT (BRM) Figure 24. -60 dBFS FFT (BRM) 18k 18k 18k 20k 20k 20k 18k 20k 20k +0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50 -60 -60 -60 -40 -40 -40 A dBr dBr A A dBr A dBr A -50 -50 -50 d B r -70 -70 -70 -80 -80 -80 -90 -90 -90 A 4k 4k 4k (16k FFT of a 1 kHz input signal) +0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 d B r 2k 2k 2k -60 -60 -60 -70 -70 -70 -80 -80 -80 -90 -90 -90 -100 -100 -110 -110 -110 -100 -1 00 -100 -100 -1 10 -110 -110 -120 -120 -120 -130 -130 -130 -140 -140 -140 -1 20 -120 -120 -1 30 -130 -130 2k 2k 2k 4k 4k 4k 6k 6k 6k 8k 8k 8k 10k 10k 10k Hz Hz Hz 12k 12k 12k 14k 14k 14k 16k 16k 16k 18k 18k 18k 20k 20k 20k -1 40 -140 -140 2k 2k 2k 4k 4k 4k 6k 6k 6k 8k 8k 8k 10k 10k 10k Hz Hz Hz 12 k 12k 12k 1 4k 14k 14k 16k 16k 16k 20k 18 k 18k (16k FFT with no input signal) (16k FFT of intermodulation distortion using 13 kHz and 14 kHz input signals) Figure 25. Idle Channel Noise FFT (BRM) Figure 26. Twin Tone IMD FFT (BRM) -60 -60 +0 +0 +0 -10 -10 -10 -20 -20 -20 -70 -70 -30 -30 -30 -40 -40 -40 -80 -80 A dBr dBrAA dBr A d B r d B r A -90 -90 -50 -50 -50 -60 -60 -60 -70 -70 -70 -80 -80 -80 -100 -100 -90 -90 -90 -100 -100 -100 -110 -110 -60 -60 -50 -50 -40 -40 -30 -30 -20 -20 -10 -10 +0 +0 dBFS dBFS -110 -110 -110 20 20 20 50 50 50 100 100 100 200 200 200 500 500 500 Hz Hz Hz 1k 1k 1k 2k 2k 2k 5k 5k 5k 10k 10k 10k 20k 20k 20k (THD+N plots measured using a 1kHz 24-bit dithered input signal) (THD+N plots measured using a 1kHz 24-bit dithered input signal) Figure 27. THD+N vs. Amplitude (BRM) Figure 28. THD+N vs. Frequency (BRM) All measurements were taken from the CDB4334 evaluation board using the Audio Precision Dual Domain System Two Cascade. 20 CS4334/5/8/9 4.11 High Rate Mode Performance Plots +0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 -40 -40 -50 -50 -50 -60 -60 -60 +0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 dBr A dBr A dBr A dBr A d B r d B r -70 -70 -70 -80 -80 -80 -90 -90 -90 A -40 -40 -40 -50 -50 -50 -60 -60 -60 A -70 -70 -70 -80 -80 -80 -90 -90 -90 -100 -100 -100 -110 -110 -110 -100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130 -120 -120 -120 -130 -130 -130 -140 -140 -140 2k 2k 2k 4k 4k 4k 6k 6k 6k 8k 8k 8k 10k 10k 10k Hz Hz Hz 12k 12k 12k 14k 14k 14k 16k 16k 16k 18k 18k 18k -140 -140 -140 20k 20k 20k 2k 2k 2k 4k 4k 4k 6k 6k 6k 14k 14k 14k 16k 16k 16k 18k 18k 18k Figure 29. 0 dBFS FFT (HRM) Figure 30. -60 dBFS FFT (HRM) +0 +0 +0 -10 -10 -10 -20 -20 -20 -30 -30 -30 +0 +0 +0 -10 -10 -10 -40 -40 -40 -50 -50 -50 -60 -60 -60 -40 -40 -40 D -A C C IF IMD vs A MP L ITUD E 20k 20k 20k 0 8 /0 5 /9 9 1 1 :1 1 :3 6 -20 -20 -20 -30 -30 -30 dBr A dBr A -50 -50 -50 d B r -70 -70 -70 -80 -80 -80 -90 -90 -90 -60 -60 -60 -70 -70 -70 -80 -80 -80 A -90 -90 -90 -100 -100 -100 -110 -110 -110 -100 -100 -100 -110 -110 -110 -120 -120 -120 -130 -130 -130 -140 -140 -140 12k 12k 12k (16k FFT of a 1 kHz input signal) dBr A dBr A A 10k 10k 10k Hz Hz Hz (16k FFT of a 1 kHz input signal) A ud io P re c is io n d B r 8k 8k 8k -120 -120 -120 -130 -130 -130 2k 2k 4k 4k 4k 2k 6k 6k 6k 8k 8k 8k 10k 10k 10k Hz Hz Hz 12k 12k 12k 14k 14k 14k 16k 16k 16k 18k 18k 18k -140 -140 -140 20k 20k 20k 2k 2k 2k 4k 4k 4k 6k 6k 6k 8k 8k 8k 10k 10k 10k Hz HzHz 12k 12k 12k 14k 14k 14k 16k 16k 16k 18k 18k 18k 20k 20k 20k (16k FFT with no input signal) (16k FFT of intermodulation distortion using 13 kHz and 14 kHz input signals) Figure 31. Idle Channel Noise FFT (HRM) Figure 32. Twin Tone IMD FFT (HRM) -60 -60 +0 +0 -10 -10 -10 -20 -20 -20 -70 -70 -30 -30 -30 -80 A -90 -90 d B r dBr A d B r -40 -40 -40 dBrdBrAA -80 -50 -50 -50 -60 -60 -60 A -70 -70 -70 -80 -80 -80 -100 -100 -90 -90 -90 -100 -100 -100 -110 -110 -60 -60 -50 -50 -40 -40 -30 -30 -20 -20 -10 -10 +0 +0 dBFS dBFS -110 -110 -110 20 20 20 50 50 100 100 100 200 200 500 500 Hz Hz Hz 1k 1k 2k 2k 5k 5k 10k 10k 20k 20k 20k (THD+N plots measured using a 1kHz 24-bit dithered input signal) (THD+N plots measured using a 1kHz 24-bit dithered input signal) Figure 33. THD+N vs. Amplitude (HRM) Figure 34. THD+N vs. Frequency (HRM) All measurements were taken from the CDB4334 evaluation board using the Audio Precision Dual Domain System Two Cascade. 21 CS4334/5/8/9 5. PARAMETER DEFINITIONS Total Harmonic Distortion + Noise (THD+N) The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10Hz to 20kHz), including distortion components. Expressed in decibels. Dynamic Range The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full scale. This technique ensures that the distortion components are below the noise level and do not effect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES171991, and the Electronic Industries Association of Japan, EIAJ CP-307. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Error The deviation from the nominal full-scale analog output for a full-scale digital input. Gain Drift The change in gain value with temperature. Units in ppm/°C. 6. REFERENCES 1. "How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters" by Steven Harris. Paper presented at the 93rd Convention of the Audio Engineering Society, October 1992. 2. CDB4334/5/8/9 Evaluation Board Datasheet 22 CS4334/5/8/9 7. PACKAGE DIMENSIONS 8L SOIC (150 MIL BODY) PACKAGE DRAWING E H 1 b c D SEATING PLANE A L e A1 INCHES DIM A A1 b c D E e H L MIN 0.053 0.004 0.013 0.007 0.189 0.150 0.040 0.228 0.016 0° MAX 0.069 0.010 0.020 0.010 0.197 0.157 0.060 0.244 0.050 8° MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.33 0.51 0.19 0.25 4.80 5.00 3.80 4.00 1.02 1.52 5.80 6.20 0.40 1.27 0° 8° JEDEC # : MS-012 23 CS4334/5/8/9 8. ORDERING INFORMATION Temperature Package Container CS4334-KSZ CS4335-KSZ CS4338-KSZ CS4339-KSZ Model -10 to +70 °C -10 to +70 °C -10 to +70 °C -10 to +70 °C 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free Rail Rail Rail Rail 16 to 24-bit, I²S 16 to 24-bit, left justified 16-bit, right justified 18-bit, right justified, 32 Fs Internal SCLK mode CS4334-KSZR CS4335-KSZR CS4338-KSZR CS4339-KSZR -10 to +70 °C -10 to +70 °C -10 to +70 °C -10 to +70 °C 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free Tape & reel Tape & reel Tape & reel Tape & reel 16 to 24-bit, I²S 16 to 24-bit, left justified 16-bit, right justified 18-bit, right justified, 32 Fs Internal SCLK mode CS4334-DSZ CS4335-DSZ CS4338-DSZ CS4339-DSZ -40 to +85 °C -40 to +85 °C -40 to +85 °C -40 to +85 °C 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free Rail Rail Rail Rail 16 to 24-bit, I²S 16 to 24-bit, left justified 16-bit, right justified 18-bit, right justified, 32 Fs Internal SCLK mode CS4334-DSZR CS4335-DSZR CS4338-DSZR CS4339-DSZR -40 to +85 °C -40 to +85 °C -40 to +85 °C -40 to +85 °C 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free 8-pin Plastic SOIC, lead free Tape & reel Tape & reel Tape & reel Tape & reel 16 to 24-bit, I²S 16 to 24-bit, left justified 16-bit, right justified 18-bit, right justified, 32 Fs Internal SCLK mode 9. FUNCTIONAL COMPATIBILITY CS4330-KS CS4339-KSZx CS4331-KS CS4334-KSZx CS4333-KS CS4338-KSZx CS4330-BS CS4339-DSZx CS4331-BS CS4334-DSZx CS4333-BS CS4338-DSZx 24 Serial Interface CS4334/5/8/9 10.REVISION HISTORY Revision Changes F5 Corrected “B” to “b” and “C” to “c” to match drawing in “Package Dimensions” on page 23 Updated legal text F6 Changed “One-half LSB...” to “One LSB of triangular PDF dither added to data” in footnote to Analog Characteristics specification table. Added tape and reel options to the Ordering Information section and updated references to -KSZ and -DSZ in specification tables to show -KSZR and -DSZR options. Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com. IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, the Cirrus Logic logo designs and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. 25