ROHM MP6Z2

MP6Z2
Transistors
Medium Power Transistor (32V, 2A)
MP6Z2
zApplications
Low frequency amplifier
zDimensions (Unit : mm)
MPT6
zFeatures
1) Low VCE(sat)
VCE(sat) = 0.5V(Typ.)
(IC /IB = 2A / 0.2A)
2) Contains 2SD1766-die and 2SB1188-die in a
package.
(6)
(5)
(4)
(1)
(2)
(3)
zStructure
Silicon epitaxial planar transistor
zPackaging specifications
Package
zInner circuit
Taping
(6)
Type
Code
(5)
(4)
TR
Basic ordering unit(pieces)
1000
MP6Z2
<Tr2>
<Tr1>
(1)
(2)
(1) Emitter <Tr1>
(2) Base <Tr1>
(3) Collector <Tr2>
(4) Emitter <Tr2>
(5) Base <Tr2>
(6) Collector <Tr1>
(3)
zAbsolute maximum ratings (Ta=25qC)
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Continuous
Pulsed
Power dissipation
Junction temperature
Range of storage temperature
Symbol
VCBO
VCEO
VEBO
IC
ICP
∗1
PD
∗2
Tj
Tstg
Limits
Tr1
40
32
5
Tr2
−40
−32
−5
2.0
2.5
−2.0
−2.5
2.0
1.4
150
−55 to 150
Unit
V
V
V
A
A
W / TOTAL
W / ELEMENT
°C
°C
∗1 Pw=10ms 1Pulse
∗2 Mounted on a ceramic board
Rev.A
1/5
MP6Z2
Transistors
zElectrical characteristics (Ta=25qC)
<Tr1>
Symbol
Min.
Typ.
Max.
Unit
Collector-emitter breakdown voltage
Parameter
BVCEO
32
−
−
V
IC=1mA
Collector-base breakdown voltage
BVCBO
40
−
−
V
IC=50μA
Emitter-base breakdown voltage
BVEBO
5
−
−
V
IE=50μA
Collector cut-off current
ICBO
−
−
1.0
μA
VCB=20V
Emitter cut-off current
IEBO
−
−
1.0
μA
VEB=4V
VCE(sat)∗
−
500
800
mV
IC=2A, IB=200mA
hFE
120
−
390
−
−
100
−
MHz
Cob
−
30
−
pF
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
fT
∗
Conditions
VCE=3V, IC=500mA
VCE=5V, IE=−50mA, f=100MHz
VCB=10V, IE=0A, f=1MHz
∗ Pulsed
<Tr2>
Symbol
Min.
Typ.
Max.
Unit
Collector-emitter breakdown voltage
Parameter
BVCEO
−32
−
−
V
IC= −1mA
Collector-base breakdown voltage
BVCBO
−40
−
−
V
IC= −50μA
Emitter-base breakdown voltage
BVEBO
−5
−
−
V
IE= −50μA
Collector cut-off current
ICBO
−
−
−1.0
μA
VCB= −20V
Emitter cut-off current
IEBO
−
−
−1.0
μA
VEB= −4V
VCE(sat)
−
−500
−800
mV
IC= −2A, IB= −200mA
hFE
120
−
390
−
−
100
−
MHz
−
50
−
pF
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
∗
fT
Cob
∗
Conditions
VCE= −3V, IC= −500mA
VCE= −5V, IE=50mA, f=100MHz
VCB= −10V, IE=0A, f=1MHz
∗ Pulsed
Rev.A
2/5
MP6Z2
Transistors
zElectrical characteristics curves
<Tr1>
0.01
1.6mA
1.4mA
1.2mA
0.2
1.0mA
0.15
0.8mA
0.6mA
0.1
0.4mA
0.05
0.5
1
1.5
IB=0mA
0
BASE TO EMITTER VOLTAGE䋺VBE(V)
100
Ta=100㷄
䇭䇭䇭 25㷄
䇭䇭䇭-40㷄
10
0.001
0.01
0.1
1
10
COLLECTOR CURRENT䋺Ic(A)
COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV)
㪭㪚㪜㪔㪊V
50
0.5
1
1.5
20
2
Ta=25°C
500
200
100
IC/IB=50
50
20
20
5
10
10 20
50 100 200 500 1A 2A
COLLECTOR CURRENT : IC (mA)
0.2
0.1
5
10 20
50 100 200
500 1A 2A
COLLECTOR CURRENT : IC (mA)
Fig.7 Collector-Emitter Saturation
Voltage vs. Collector Current
500 1A 2A
IC/IB=10
Ta=100㷄
䇭䇭䇭 25㷄
䇭䇭䇭-40㷄
0.1
0.01
0.001
0.01
0.1
1
10
COLLECTOR CURRENT䋺Ic(A)
Fig.6 Collector-Enitter Saturation
Voltage vs. Collector Current (㸈)
Ta=25°C
VCE=5V
500
200
100
50
20
−1
-2
−5 −10 −20
−50 −100−200 −500 −1A
EMITTER CURRENT : IE (mA)
Fig.8 Transition Frequency vs. Emitter
Current
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
IC/IB=10
0.5
50 100 200
1
Fig.5 Collector-Emitter Saturation
Voltage vs. Collector Current ( Ι )
TRANSITION FREQUENCY : fT (MHz)
BASE SATURATION VOLTAGE : VBE(sat) (V)
1
10 20
Fig.3 DC Current Gain vs. Collector
Current ( Ι )
Fig.2 Ground Emitter Output Caracteristics
1000
Ta=25°C
5
COLLECTOR CURRENT : IC (mA)
Fig.4 DC Current Gain vs. Collector Current (㸈)
2
VCE=3V
1V
100
COLLECTOR TO EMITTER VOLTAGE䋺VCE(V䋩
Fig.1 Grounded Emitter Propagation Characteristics
1000
200
0.2mA
0
0
500
DC CURRENT GAIN : hFE
0.1
Ta=25°C
1.8mA
0.25
0.001
DC CURRENT GAIN䋺hFE
2.0mA
Ta=25㷄
0.3
COLLECTOR SATURATION VOLTAGE
䋺VCE(sat)(V)
1
0.35
VCE=3V
Ta=100㷄
䇭䇭䇭 25㷄
䇭䇭䇭-40㷄
COLLECTOR CURRENT䋺Ic(A)
COLLECTOR CURRENT䋺Ic(A)
10
1000
Ta=25°C
f=1MHz
IE=0A
IC=0A
500
Cib
200
100
Cob
50
20
10
0.5
1
2
5
10
20
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.9 Collector Output Capacitance vs.
Collector-Base Voltage
Emitter Input Capacitance vs.
Emitter-Base Voltage
Rev.A
3/5
MP6Z2
Transistors
10
COLLECTOR CURRENT : IC (A)
㪈㪇
Normalized Transient
Thermal Resistance : r(t)
Ta=25
㪈
㪇㪅㪈
㪇㪅㪇㪈
㪇㪅㪇㪇㪈
㪇㪅㪈
㪈㪇
100m
10ms
1ms
1
DC
0.1
Ta=25㷄
Single
Pulse
0.01
㪈㪇㪇㪇
0.1
1
10
100
Pulse width : Pw(s)
COLLECTOR TO EMITTER VOLTAGE
: VCE (V)
Fig.11 Safe Operating Area
Fig.10 Normalized Thermal Resistance
(Element)
!
!
zใࡂศຟౕࣆದ!
<Tr2>
COLLECTOR CURRENT : IC (A)
−100
−50
−20
−10
−5
−2
−1
DC CURRENT GAIN : hFE
200
100
50
20
−5 −10 −20
−50 −100 −200 −500 −1000 −2000
COLLECTOR CURRENT : IC (mA)
Fig.4 DC Current Gain vs.
Collector Current ( )
−1.25mA
−1mA
−0.2
−750μA
−500μA
−0.1
100
50
−250μA
−0.4
−0.8
−1.2
IB=0A
−1.6
−2
−500 Ta=25°C
−200
−100
−50
VCE= −6V
−3V
−1V
200
20
IC/IB=50
20
10
−5 −10 −20
−50 −100 −200 −500 −1000 −2000
COLLECTOR CURRENT : IC (mA)
Fig.5 Collector-Emitter Saturation
Voltage vs. Collector Vurrent ( )
−5 −10 −20
−50 −100 −200 −500 −1000 −2000
COLLECTOR CURRENT : IC (mA)
Fig.3 DC Current Gain vs.
Collector Curren ( )
Fig.2 Grounded Emitter Output
Characteristics
COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV)
VCE= −3V
Ta=100°C
25°C
−25°C
−1.5mA
−0.3
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.1 Grounded Emitter Propagation
Characteristics
500
−2mA
−1.75mA
0
BASE TO EMITTER VOLTAGE : VBE (V)
−2.25mA
−0.4
0
0 −0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6 −1.8 −2.0 −2.2
Ta=25°C
500
−2.5mA
COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV)
COLLECTOR CURRENT : IC (mA)
−200
Ta=25°C
DC CURRENT GAIN : hFE
−0.5
VCE= −3V
−1000 Ta=100°C
25°C
−500
−40°C
−500 lC/lB=10
−200
−100
−50
Ta=100°C
25°C
−40°C
−20
−5 −10 −20
−50 −100 −200 −500 −1000 −2000
COLLECTOR CURRENT : IC (mA)
Fig.6 Collector-Emitter Saturation
Voltage vs. Collector Current ( )
Rev.A
4/5
MP6Z2
−1
IC /IB=10
−0.5
−0.2
−0.1
−0.05
Ta=25°C
VCE= −5V
500
200
100
−5 −10 −20 −50 −100 −200 −500 −1000 −2000
50
5
50
100 200
500 1000 2000
300
Ta=25°C
f=1MHz
IE=0A
IC=0A
Cib
200
100
Cob
50
20
10
−0.5
−1
−2
−5
−10
−20 −30
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.8 Gain Bandwidth Product vs.
Emitter Current
Fig.7 Base-Emitter Saturation Voltage
vs. Collector current
Fig.9 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
10
-10
COLLECTOR CURRENT : IC (A)
㪈㪇
Ta=25
Normalized Transient
Thermal Resistance : r(t)
20
EMITTER CURRENT : IE (mA)
COLLETOR CURRENT : IC (mA)
㪈
㪇㪅㪈
㪇㪅㪇㪈
㪇㪅㪇㪇㪈
10
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
Ta=25°C
TRANSITION FREQUENCY : fT (MHz)
BASE SATURATION VOLTAGE : VBE(sat)(V)
Transistors
㪇㪅㪈
㪈㪇
㪈㪇㪇㪇
100m 10ms
1ms
-11
DC
0.1
-0.1
Ta=25㷄
Single
Pulse
0.01
-0.01
0.1
-0.1
-11
10
-10
100
-100
Pulse width : Pw(s)
COLLECTOR TO EMITTER VOLTAGE
: VCE (V)
Fig.10 Normalized Thermal Resistance
Fig.11 Safe Operating Area
(Element)
Rev.A
5/5
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level
of reliability and the malfunction of which would directly endanger human life (such as medical
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers
and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM
cannot be held responsible for any damages arising from the use of the products under conditions out of the
range of the specifications or due to non-compliance with the NOTES specified in this catalog.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.
ROHM Customer Support System
www.rohm.com
Copyright © 2008 ROHM CO.,LTD.
THE AMERICAS / EUROPE / ASIA / JAPAN
Contact us : webmaster@ rohm.co. jp
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL : +81-75-311-2121
FAX : +81-75-315-0172
Appendix1-Rev2.0