MP6Z2 Transistors Medium Power Transistor (32V, 2A) MP6Z2 zApplications Low frequency amplifier zDimensions (Unit : mm) MPT6 zFeatures 1) Low VCE(sat) VCE(sat) = 0.5V(Typ.) (IC /IB = 2A / 0.2A) 2) Contains 2SD1766-die and 2SB1188-die in a package. (6) (5) (4) (1) (2) (3) zStructure Silicon epitaxial planar transistor zPackaging specifications Package zInner circuit Taping (6) Type Code (5) (4) TR Basic ordering unit(pieces) 1000 MP6Z2 <Tr2> <Tr1> (1) (2) (1) Emitter <Tr1> (2) Base <Tr1> (3) Collector <Tr2> (4) Emitter <Tr2> (5) Base <Tr2> (6) Collector <Tr1> (3) zAbsolute maximum ratings (Ta=25qC) Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Continuous Pulsed Power dissipation Junction temperature Range of storage temperature Symbol VCBO VCEO VEBO IC ICP ∗1 PD ∗2 Tj Tstg Limits Tr1 40 32 5 Tr2 −40 −32 −5 2.0 2.5 −2.0 −2.5 2.0 1.4 150 −55 to 150 Unit V V V A A W / TOTAL W / ELEMENT °C °C ∗1 Pw=10ms 1Pulse ∗2 Mounted on a ceramic board Rev.A 1/5 MP6Z2 Transistors zElectrical characteristics (Ta=25qC) <Tr1> Symbol Min. Typ. Max. Unit Collector-emitter breakdown voltage Parameter BVCEO 32 − − V IC=1mA Collector-base breakdown voltage BVCBO 40 − − V IC=50μA Emitter-base breakdown voltage BVEBO 5 − − V IE=50μA Collector cut-off current ICBO − − 1.0 μA VCB=20V Emitter cut-off current IEBO − − 1.0 μA VEB=4V VCE(sat)∗ − 500 800 mV IC=2A, IB=200mA hFE 120 − 390 − − 100 − MHz Cob − 30 − pF Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance fT ∗ Conditions VCE=3V, IC=500mA VCE=5V, IE=−50mA, f=100MHz VCB=10V, IE=0A, f=1MHz ∗ Pulsed <Tr2> Symbol Min. Typ. Max. Unit Collector-emitter breakdown voltage Parameter BVCEO −32 − − V IC= −1mA Collector-base breakdown voltage BVCBO −40 − − V IC= −50μA Emitter-base breakdown voltage BVEBO −5 − − V IE= −50μA Collector cut-off current ICBO − − −1.0 μA VCB= −20V Emitter cut-off current IEBO − − −1.0 μA VEB= −4V VCE(sat) − −500 −800 mV IC= −2A, IB= −200mA hFE 120 − 390 − − 100 − MHz − 50 − pF Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance ∗ fT Cob ∗ Conditions VCE= −3V, IC= −500mA VCE= −5V, IE=50mA, f=100MHz VCB= −10V, IE=0A, f=1MHz ∗ Pulsed Rev.A 2/5 MP6Z2 Transistors zElectrical characteristics curves <Tr1> 0.01 1.6mA 1.4mA 1.2mA 0.2 1.0mA 0.15 0.8mA 0.6mA 0.1 0.4mA 0.05 0.5 1 1.5 IB=0mA 0 BASE TO EMITTER VOLTAGE䋺VBE(V) 100 Ta=100㷄 䇭䇭䇭 25㷄 䇭䇭䇭-40㷄 10 0.001 0.01 0.1 1 10 COLLECTOR CURRENT䋺Ic(A) COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV) 㪭㪚㪜㪔㪊V 50 0.5 1 1.5 20 2 Ta=25°C 500 200 100 IC/IB=50 50 20 20 5 10 10 20 50 100 200 500 1A 2A COLLECTOR CURRENT : IC (mA) 0.2 0.1 5 10 20 50 100 200 500 1A 2A COLLECTOR CURRENT : IC (mA) Fig.7 Collector-Emitter Saturation Voltage vs. Collector Current 500 1A 2A IC/IB=10 Ta=100㷄 䇭䇭䇭 25㷄 䇭䇭䇭-40㷄 0.1 0.01 0.001 0.01 0.1 1 10 COLLECTOR CURRENT䋺Ic(A) Fig.6 Collector-Enitter Saturation Voltage vs. Collector Current (㸈) Ta=25°C VCE=5V 500 200 100 50 20 −1 -2 −5 −10 −20 −50 −100−200 −500 −1A EMITTER CURRENT : IE (mA) Fig.8 Transition Frequency vs. Emitter Current COLLECTOR OUTPUT CAPACITANCE : Cob (pF) EMITTER INPUT CAPACITANCE : Cib (pF) IC/IB=10 0.5 50 100 200 1 Fig.5 Collector-Emitter Saturation Voltage vs. Collector Current ( Ι ) TRANSITION FREQUENCY : fT (MHz) BASE SATURATION VOLTAGE : VBE(sat) (V) 1 10 20 Fig.3 DC Current Gain vs. Collector Current ( Ι ) Fig.2 Ground Emitter Output Caracteristics 1000 Ta=25°C 5 COLLECTOR CURRENT : IC (mA) Fig.4 DC Current Gain vs. Collector Current (㸈) 2 VCE=3V 1V 100 COLLECTOR TO EMITTER VOLTAGE䋺VCE(V䋩 Fig.1 Grounded Emitter Propagation Characteristics 1000 200 0.2mA 0 0 500 DC CURRENT GAIN : hFE 0.1 Ta=25°C 1.8mA 0.25 0.001 DC CURRENT GAIN䋺hFE 2.0mA Ta=25㷄 0.3 COLLECTOR SATURATION VOLTAGE 䋺VCE(sat)(V) 1 0.35 VCE=3V Ta=100㷄 䇭䇭䇭 25㷄 䇭䇭䇭-40㷄 COLLECTOR CURRENT䋺Ic(A) COLLECTOR CURRENT䋺Ic(A) 10 1000 Ta=25°C f=1MHz IE=0A IC=0A 500 Cib 200 100 Cob 50 20 10 0.5 1 2 5 10 20 COLLECTOR TO BASE VOLTAGE : VCB (V) EMITTER TO BASE VOLTAGE : VEB (V) Fig.9 Collector Output Capacitance vs. Collector-Base Voltage Emitter Input Capacitance vs. Emitter-Base Voltage Rev.A 3/5 MP6Z2 Transistors 10 COLLECTOR CURRENT : IC (A) 㪈㪇 Normalized Transient Thermal Resistance : r(t) Ta=25 㪈 㪇㪅㪈 㪇㪅㪇㪈 㪇㪅㪇㪇㪈 㪇㪅㪈 㪈㪇 100m 10ms 1ms 1 DC 0.1 Ta=25㷄 Single Pulse 0.01 㪈㪇㪇㪇 0.1 1 10 100 Pulse width : Pw(s) COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.11 Safe Operating Area Fig.10 Normalized Thermal Resistance (Element) ! ! zใࡂศຟౕࣆದ! <Tr2> COLLECTOR CURRENT : IC (A) −100 −50 −20 −10 −5 −2 −1 DC CURRENT GAIN : hFE 200 100 50 20 −5 −10 −20 −50 −100 −200 −500 −1000 −2000 COLLECTOR CURRENT : IC (mA) Fig.4 DC Current Gain vs. Collector Current ( ) −1.25mA −1mA −0.2 −750μA −500μA −0.1 100 50 −250μA −0.4 −0.8 −1.2 IB=0A −1.6 −2 −500 Ta=25°C −200 −100 −50 VCE= −6V −3V −1V 200 20 IC/IB=50 20 10 −5 −10 −20 −50 −100 −200 −500 −1000 −2000 COLLECTOR CURRENT : IC (mA) Fig.5 Collector-Emitter Saturation Voltage vs. Collector Vurrent ( ) −5 −10 −20 −50 −100 −200 −500 −1000 −2000 COLLECTOR CURRENT : IC (mA) Fig.3 DC Current Gain vs. Collector Curren ( ) Fig.2 Grounded Emitter Output Characteristics COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV) VCE= −3V Ta=100°C 25°C −25°C −1.5mA −0.3 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.1 Grounded Emitter Propagation Characteristics 500 −2mA −1.75mA 0 BASE TO EMITTER VOLTAGE : VBE (V) −2.25mA −0.4 0 0 −0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6 −1.8 −2.0 −2.2 Ta=25°C 500 −2.5mA COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV) COLLECTOR CURRENT : IC (mA) −200 Ta=25°C DC CURRENT GAIN : hFE −0.5 VCE= −3V −1000 Ta=100°C 25°C −500 −40°C −500 lC/lB=10 −200 −100 −50 Ta=100°C 25°C −40°C −20 −5 −10 −20 −50 −100 −200 −500 −1000 −2000 COLLECTOR CURRENT : IC (mA) Fig.6 Collector-Emitter Saturation Voltage vs. Collector Current ( ) Rev.A 4/5 MP6Z2 −1 IC /IB=10 −0.5 −0.2 −0.1 −0.05 Ta=25°C VCE= −5V 500 200 100 −5 −10 −20 −50 −100 −200 −500 −1000 −2000 50 5 50 100 200 500 1000 2000 300 Ta=25°C f=1MHz IE=0A IC=0A Cib 200 100 Cob 50 20 10 −0.5 −1 −2 −5 −10 −20 −30 COLLECTOR TO BASE VOLTAGE : VCB (V) EMITTER TO BASE VOLTAGE : VEB (V) Fig.8 Gain Bandwidth Product vs. Emitter Current Fig.7 Base-Emitter Saturation Voltage vs. Collector current Fig.9 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage 10 -10 COLLECTOR CURRENT : IC (A) 㪈㪇 Ta=25 Normalized Transient Thermal Resistance : r(t) 20 EMITTER CURRENT : IE (mA) COLLETOR CURRENT : IC (mA) 㪈 㪇㪅㪈 㪇㪅㪇㪈 㪇㪅㪇㪇㪈 10 COLLECTOR OUTPUT CAPACITANCE : Cob (pF) EMITTER INPUT CAPACITANCE : Cib (pF) Ta=25°C TRANSITION FREQUENCY : fT (MHz) BASE SATURATION VOLTAGE : VBE(sat)(V) Transistors 㪇㪅㪈 㪈㪇 㪈㪇㪇㪇 100m 10ms 1ms -11 DC 0.1 -0.1 Ta=25㷄 Single Pulse 0.01 -0.01 0.1 -0.1 -11 10 -10 100 -100 Pulse width : Pw(s) COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.10 Normalized Thermal Resistance Fig.11 Safe Operating Area (Element) Rev.A 5/5 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2008 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster@ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix1-Rev2.0