QSZ3 Transistors General purpose transistor (isolated transistor and diode) QSZ3 A 2SB1705 and a 2SD2670 are housed independently in a TSMT5 package. zExternal dimensions (Unit : mm) zApplications DC / DC converter Motor driver QSZ3 zStructure Silicon epitaxial planar transistor ROHM : TSMT5 (5) 0.95 0.95 1.9 2.9 0.85 0∼0.1 0.3∼0.6 0.7 0.16 (3) (4) (2) zFeatures 1) Low VCE(sat) 2) Small package (1) 0.4 2.8 1.6 Each lead has same dimensions Abbreviated symbol : Z03 zEquivalent circuit (5) (4) Tr1 Tr2 (1) (2) (3) zPackaging specifications Type QSZ3 Package TSMT5 Marking Code Z03 Basic ordering unit(pieces) 3000 TR 1/4 QSZ3 Transistors zAbsolute maximum ratings (Ta=25°C) Tr1 Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Power dissipation Junction temperature Range of storage temperature Symbol VCBO VCEO VEBO IC ICP Pc Tj Tstg Limits −15 −12 −6 −3 −6 500 1.25 0.9 150 −55 to +150 Unit V V V A ∗1 A mW/Total ∗2 W/Total ∗3 W/Element ∗3 °C °C Limits 15 12 6 3 6 500 1.25 0.9 150 −50 to +150 Unit V V V A ∗1 A mW/Total ∗2 W/Total ∗3 W/Element ∗3 °C °C ∗1 Single pulse, Pw=1ms. ∗2 Each terminal mounted on a recommended land. ∗3 Mounted on a 25×25× t 0.8mm ceramic substrate. Tr 2 Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Power dissipation Junction temperature Range of storage temperature Symbol VCBO VCEO VEBO IC ICP Pc Tj Tstg ∗1 Single pulse, Pw=1ms. ∗2 Each terminal mounted on a recommended land. ∗3 Mounted on a 25×25× t 0.8mm ceramic substrate. zElectrical characteristics (Ta=25°C) Tr1 Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance Symbol BVCBO BVCEO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. −15 −12 −6 − − − 270 − − Typ. − − − − − −120 − 280 30 Max. − − − −100 −100 −250 680 − − Unit V V V nA nA mV − MHz pF Conditions IC= −10µA IC= −1mA IE= −10µA VCB= −15V VEB= −6V IC= −1.5A, IB= −30mA VCE= −2V, IC= −500mA∗ VCE= −2V, IE=500mA, f=100MHz∗ VCB= −10V, IE=0A, f=1MHz Symbol BVCBO BVCEO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. 15 12 6 − − − 270 − − Typ. − − − − − 120 − 360 30 Max. − − − 100 100 250 680 − − Unit V V V nA nA mV − MHz pF Conditions IC=10µA IC=1mA IE=10µA VCB=15V VEB=6V IC=1.5A, IB=30mA VCE=2V, IC=500mA ∗ VCE=2V, IE= −500mA, f=100MHz∗ VCB=10V, IE=0A, f=1MHz ∗ Pulsed Tr 2 Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance ∗ Pulsed 2/4 QSZ3 Transistors zElectrical characteristic curves Tr1(PNP) 125˚C 100 VCE=−2V Pulsed 10 0.001 0.01 0.1 1 10 125˚C 0.1 25˚C − 40˚C 0.01 IC/IB=20/1 Pulsed 0.001 0.001 0.01 COLLECTOR CURRENT : IC (A) 1000 TRANSITION FREQUENCY : fr (MHz) 1 25˚C 0.1 125˚C − 40˚C IC/IB=20/1 0.001 Pulsed 0.1 10 1 IC/IB=20/1 0.1 Pulsed 0.001 100 BASE TO EMITTER CURRENT : VBE (V) 0.1 1 1 10 Fig.3 Base−emitter saturation voltage vs.collector current 10 IC=0A f=1MHz Ta=25°C Cib Cob 100 10 0.001 0.01 0.1 1 10 100 EMITTER TO BASE VOLTAGE : VEB(V) COLLECTOR TO BASE VOLTAGE : VCB(V) EMITTER CURRENT : IE (A) Fig.4 Grounded emitter propagation charactereistics 0.1 1000 Ta=25°C VCE=2V f=100MHz 10 0.01 0.01 COLLECTOR CURRENT : IC (A) Fig.2 Collector-emitter saturation voltage vs. collector current 10 0.01 − 40˚C 125˚C 10 1 25˚C 1 COLLECTOR CURRENT : IC (A) Fig1. DC current gain vs. collector current COLLECTOR CURRENT : IC (A) 0.1 10 EMITTER INPUT CAPACITANCE : Cib (pF) COLLECTOR OUTPUT CAPACITANCE : Cob (pF) DC CURRENT GAIN : hFE 25˚C − 40˚C 1 BASE SATURATION VOLTAGE : VBE(sat) (V) COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) 1000 Fig 6. Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base volatage Fig.5 Gain bandwidth product vs. emitter current 1000 10 COLLECTOR TO EMITTER SATURATION VOLTAGE : VCE(sat) (V) VCE=−2V Pulsed DC CURRENT GAIN : hFE Ta=100 C Ta=25 C Ta=40 C 100 10 0.001 0.01 0.1 1 COLLECTOR CURRENT : IC (A) Fig.7 DC current gain vs. collector current 10 IC/IB=20/1 VCE=2V Pulsed BASE SATURATION VOLTAGE : VBE(sat) (V) Tr2(NPN) Ta=25 C 1 Ta=−45 C Ta=100 C 0.1 0.01 0.001 0.01 0.1 1 10 COLLECTOR CURRENT : IC (A) Fig.8 Collector-emitter saturation voltage vs. collector current 10 1 Ta=25 C Pulsed IC/IB=50/1 IC/IB=10/1 IC/IB=20/1 0.1 0.001 0.01 0.1 1 10 COLLECTOR CURRENT : IC (A) Fig.9 Base-emitter saturation voltage vs.collector current 3/4 QSZ3 Transistors Ta=100 C Ta=25 C 1 Ta=−45 C 0.1 0.01 0.001 0.1 1 10 BASE TO EMITTER CURRENT : VBE (V) Fig.10 Grounded emitter propagation characteristics 1000 1000 Ta=25 C VCE=−2V f= 100MHz COLLECTOR TO EMITTER SATURATION VOLTAGE : VBE(sat) (V) IC/IB=20/1 Pulsed TRANSITION FREQUENCY : fT (MHz) COLLECTOR CURRENT :IC (A) 10 100 10 0.01 0.1 1 EMITTER CURRENT : IE (A) Fig.11 Gain bandwidth product vs. emitter current 10 IC=0A f=1MHz Ta=25 C Cib 100 Cob 10 0.001 0.01 0.1 1 10 100 EMITTER TO BASE VOLTAGE : VEB(V) COLLECTOR TO BASE VOLTAGE : VCB(V) Fig.12 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Appendix1-Rev1.1