ANPEC APA3002

APA3002
12W Stereo Class-D Audio Power Amplifier
Features
•
•
•
General Description
Class-D Operation with High Efficiency.
32-Step DC Volume Control With Hysteresis
The APA3002 is a monolithic integrated circuit, which provides precise DC volume control, and a stereo Class-D
9W Per Channel Output Power into 8Ω Load at
12V, Class-D Output
audio power amplifiers capable of producing 9W into 8Ω
(12V) with less than 10% THD+N. The attenuator range
12W Per Channel Output into 6Ω Load at 12V,
Class-D Output
of the volume control in the APA3002 is from 36dB
(VVOLUME=5V) to -40dB (VVOLUME=0V) with 32 steps. The ad-
5V LDO Output for Powering APA4801 Headphone Driver
vantage of internal gain setting can be less components
and PCB area. The circuitries of both thermal and the
Line Output for APA4801 Headphone Driver with
DC Volume Control
over-current protections are integrated in the APA3002. It
protects the chip from being destroyed by over tempera-
Low Current Consumption in Shutdown Mode
(10µA, Typical)
ture and over current failure.
To simplify the audio system design, the APA3002 com-
APA3002 will Auto-Recovery after Over-Current
Protection
bines a line output for external headphone driver with
volume control and a 5V regulator for external headphone
•
•
Thermal and Over-Current Protections
TQFN7x7-48 with Thermal Pad Package
drive, where the speaker output can be switched off by
the headphone jack’s switch pin that connects to the
APA3002’s mode pin as shown in the application circuit.
•
TQFP7x7-48P with Thermal Pad Package
Lead Free and Green Devices Available
•
•
•
•
•
Applications
(RoHS Compliant)
•
•
LCD TV
Active Speaker
Ordering and Marking Information
APA3002
Assembly Material
Handling Code
Temperature Range
Package Code
Package Code
QB: TQFN7x7-48
QCA: TQFP7x7-48P
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR: Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
APA3002 QB:
APA3002
XXXXX
XXXXX - Date Code
APA3002 QCA:
APA3002
XXXXX
XXXXX - Date Code
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
1
www.anpec.com.tw
APA3002
48
47
46
45
44
43
42
41
40
39
38
37
48
47
46
45
44
43
42
41
40
39
38
37
RBSRPVDD
RPVDD
ROUTROUTRPGND
RPGND
ROUT+
ROUT+
RPVDD
RPVDD
RBS+
RBSRPVDD
RPVDD
ROUTROUTRPGND
RPGND
ROUT+
ROUT+
RPVDD
RPVDD
RBS+
Pin Configurations
SD 1
RIN- 2
RIN+ 3
2.5VREF 4
LIN+ 5
LIN- 6
LDOREF 7
VREF 8
VARDIFF 9
VARMAX 10
VOLUME 11
REFGND 12
APA3002
RCLAMP
SD 1
MODEOUT
RIN- 2
MODE
RIN+ 3
AVDD
2.5VREF 4
RVAROUT
LIN+ 5
LVAROUT
LIN- 6
AGND
LDOREF 7
VREF 8
5VLDO
VARDIFF 9
COSC
VARMAX
10
ROSC
VOLUME 11
AGND
LCLAMP REFGND 12
36
35
34
33
32
31
30
29
28
27
26
25
APA3002
RCLAMP
MODEOUT
MODE
AVDD
RVAROUT
LVAROUT
AGND
5VLDO
COSC
ROSC
AGND
LCLAMP
LBSLPVDD
LPVDD
LOUTLOUTLPGND
LPGND
LOUT+
LOUT+
LPVDD
LPVDD
LBS+
13
14
15
16
17
18
19
20
21
22
23
24
LBSLPVDD
LPVDD
LOUTLOUTLPGND
LPGND
LOUT+
LOUT+
LPVDD
LPVDD
LBS+
13
14
15
16
17
18
19
20
21
22
23
24
(APA3002D)
36
35
34
33
32
31
30
29
28
27
26
25
TQFN7x7-48
(TOP VIEW)
TQFP7x7-48P
(TOP VIEW)
Absolute Maximum Ratings
(Note 1)
(Over operating free-air temperature range unless otherwise noted.)
Symbol
VDD
VMODE, VVREF, VVOLUME,
VVARDIFF, VVARMAX
VSD
VRIN+, VRIN-,VLIN+,VLIN-
Parameter
Rating
Unit
Supply Voltage (AVDD to AGND, LPVDD to LPGND, and
RPVDD to RPGND)
-0.3 to 15
V
Input Voltage (MODE to AGND, VREF, VOLUME, VARDIFF,
and VARMAX to REFGND)
-0.3 to 5.5
Input Voltage (SD to AGND)
-0.3 to VDD+0.3
Input Voltage (RIN+, RIN-, LIN+, and LIN- to AGND)
Input Voltage (RPGND and LPGND to AGND)
V
-0.3 to 7
-0.3 to +0.3
I5VLDO
Output Current (5VLDO)
120
ILDOREF
Output Current (LDOREF)
20
Maximum Junction Temperature
150
ο
-65 to +150
ο
260
ο
TJ
TSTG
TSDR
Storage Temperature Range
Maximum Lead Soldering Temperature, 10 Seconds
PD
Power Dissipation
RL
Class-D Power Amplifier Minimum Load Resistance
mA
C
C
C
Internally Limited
W
4
Ω
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
2
www.anpec.com.tw
APA3002
Thermal Characteristics
Symbol
θJA
Parameter
Thermal Resistance -Junction to Ambient
Typical Value
Unit
(Note 2)
TQFN7x7-48
TQFP7x7-48P
ο
21
25
C/W
Note 2: Please refer to “Thermal Pad Consideration”. The Thermal Pad on the bottom of the IC should be soldered directly to the PCB’s
Thermal Pad area connected to the ground plan by several thermal vias, and the PCB is a 2-layer, 5-inch square area with 2oz copper
thickness.
Recommended Operating Conditions
Symbol
VDD
Range
Parameter
Min.
Supply Voltage
14
V
3.0
5.5
V
VOLUME, VARMAX, VARDIFF
-
5.5
V
SD
2
-
V
3.5
-
V
-
0.8
V
VREF
Volume Control Pin, Input Voltage
High-level Input Voltage
VIL
Low-level Input Voltage
Unit
8.5
Volume Reference Voltage
VIH
Max.
MODE
SD
MODE
-
2
V
V5VLDO
-100m
-
V
-
+100m
V
VOH
High-level Output Voltage
MODEOUT sources 1mA
VOL
Low-level Output Voltage
MODEOUT sinks 1mA
fOSC
Oscillator Frequency
225
275
kHz
TA
Operating Free-Air Temperature
-40
85
°
C
RL
Class-D Power Amplifier Minimum Load Resistance
6
-
Ω
Electrical Characteristics
VDD =12V, DGND=AGND=0V, TA= 25οC (unless otherwise noted)
Symbol
VDD
IDD
ISD
Parameter
Test Condition
Supply Voltage
VDD Supply Current
VDD Shutdown Current
Class-D mode, VMODE=0V, VSD =5V,
no load
VAROUT mode, VMODE=5V, VSD =5V,
no load
VSD = 0V
APA3002
Unit
Min.
Typ.
Max.
8.5
-
14
V
-
20
40
mA
-
3
6
mA
-
10
100
µA
CLASS-D MODE, AV=15.7dB (VOLTAGE GAIN=RATIO OF THE FILTERED OUTPUT VOLTAGE TO INPUT VOLTAGE)
PO
Output Power
Crosstalk
Total Harmonic Distortion Plus
Noise
Channel Separation
PSRR
Power Supply Rejection Ratio
THD+N
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
THD+N = 1%, fin = 1kHz, RL = 6Ω
-
10
THD+N = 1%, fin = 1kHz, RL = 8Ω
6
7.5
-
THD+N = 10%, fin = 1kHz, RL = 6Ω
-
12
-
THD+N = 10%, fin = 1kHz, RL = 8Ω
-
9
-
PO= 5W, fin= 1kHz, RL = 8Ω
-
0.2
-
%
PO= 5W, fin=1kHz, CB=1µF
-
90
-
dB
RL = 8Ω, fin = 120Hz
-
85
-
dB
3
W
www.anpec.com.tw
APA3002
Electrical Characteristics (Cont.)
VDD =12V, DGND=AGND=0V, TA= 25οC (unless otherwise noted)
Symbol
APA3002
Unit
Min.
Typ.
Max.
CLASS-D MODE, AV=15.7dB (VOLTAGE GAIN=RATIO OF THE FILTERED OUTPUT VOLTAGE TO INPUT VOLTAGE)
(CONT.)
With A-Weighting Filter
S/N
85
dB
PO = 5W, RL = 8Ω
VOS
Output Offset Voltage
20
mV
RL = 8Ω
Vn
Parameter
Test Condition
Noise Output Voltage
High side
Rds(on)
Power MOSFET Drain-Source
On-State Resistance
-
250
-
-
300
-
µV
(rms)
Low side
-
250
-
Total
-
550
650
THD+N = 1%, fin = 1kHz, RL = 32Ω
-
20
-
THD+N = 10%, fin = 1kHz, RL = 32Ω
-
25
-
fin= 1kHz, RL = 32Ω, PO = 14mW,
-
0.05
-
VO= 1Vrms, RL=47kΩ, fin=1kHz
-
0.005
-
-
63
-
dB
-
85
-
dB
-
-
20
mV
-
80
-
dB
-
30
-
µV
(rms)
IO=1A
mΩ
VAROUT OUTPUT, AV=10dB
PO
THD+N
Crosstalk
PSRR
Vos
Output Power
Total Harmonic Distortion Plus
Noise
Channel Separation
Power Supply Rejection Ratio
Output Offset Voltage
S/N
Vn
Noise Output Voltage
PO=14mW, RL = 32Ω, fin=1kHz,
CB=1µF
CB = 1µF, RL = 32Ω, fin =120Hz,
VRR=0.2Vrms
RL = 32Ω
With A-Weighting Filter
PO= 20mW, RL = 32Ω,
CB = 1µF
mW
%
LINEAR REGULATORS (LDO)
V5VLDO
5V LDO Regulator Output
I5VLDO =0-100mA, VSD =5V
V2.5VREF
2.5V Reference Voltage
No load
PSRR
Power Supply Rejection Ratio
CB = 1µF, fin= 120Hz
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
4
4.5
5
5.5
V
0.45X
V5VLDO
0.50X
V5VLDO
0.55X
V5VLDO
V
-
73
-
dB
www.anpec.com.tw
APA3002
Typical Operating Characteristics
Efficiency vs. Output Power
100
100
90
90
80
80
70
70
Efficiency (%)
Efficiency (%)
Efficiency vs. Output Power
60
50
VDD =12V
RL=8Ω
AV=36dB
Bead filter
AUX-0025
AES-17(20kHz)
Class-D
40
30
20
10
0
0
2
4
6
8
Output Power (W)
10
60
50
VDD =12V
RL=8Ω+33µH
AV=36dB
Bead filter
AUX-0025
AES-17(20kHz)
Class-D
40
30
20
10
0
12
0
Output Power vs. Load Resistance
16
VDD=14V
THD+N=10%
Output Power (W)
14
12
10
6
VDD=8.5V
THD+N=10%
4
0
6
8
Ci=1µF
RL=8Ω
12 AV=36dB
fin=1kHz
AUX-0025
10 AES-17 (20kHz)
Class-D
10
12
14
Load Resistance (Ω)
14
12
THD+N=1%
6
2
8.5 9
16
12
10
11
Supply Voltage (V)
13
14
THD+N vs. Output Power
10
fin=1kHz
THD+N=10%
1
THD+N (%)
Output Power (W)
16
Ci=1µF
RL=6Ω
Av=36dB
fin=1kHz
AUX-0025
AES-17 (20kHz)
Class-D
THD+N=10%
8
Output Power vs. Supply Voltage
18
12
4
VDD=8.5V
THD+N=1%
2
10
14
Ci=1µF
Av=36dB
fin=1kHz
AUX-0025
AES-17
(20kHz)
Class-D
VDD=14V
THD+N=1%
8
4
6
8
Output Power (W)
Output Power vs. Supply Voltage
Output Power (W)
18
2
10
0.1
VDD=12V
Ci=1µF
RL=6Ω
Av=15.7dB
AUX-0025
AES-17
(20kHz)
Class-D
fin=50Hz
8
THD+N=1%
fin=15kHz
6
4
8.5 9
10
11
12
Supply Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
13
0.01
0.005
10m
14
5
100m
1
Output Power (W)
10 20
www.anpec.com.tw
APA3002
Typical Operating Characteristics (Cont.)
THD+N vs. Output Power
10
10
VDD =14V
Ci=1µF
RL=8Ω
AV=15.7dB
AUX-0025
AES-17 (20kHz)
Class-D
fin=1kHz
1
THD+N (%)
1
THD+N (%)
THD+N vs. Frequency
0.1
fin=50Hz
R
VDD =14V
Ci=1µF
RL=8Ω
AV=15.7dB
AUX-0025
AES-17 (20kHz)
Class-D
PO=7W
0.1
PO=3.5W
0.01
0.005
10m
fin=15kHz
100m
PO=0.5W
1
0.01
20
10 20
100
Output Power (W)
THD+N vs. Frequency
THD+N (%)
1
VDD =14V
Ci=1µF
RL=8Ω
PO=7W
AUX-0025
AES-17 (20kHz)
Class-D
VDD =14V
Ci=1µF
RL=8Ω
PO=3.5W
AV=15.7dB
AUX-0025
AES-17 (20kHz)
Class-D
-10
-20
-30
AV=36dB
0.1
AV=20.8dB
10K 20K
Crosstalk vs. Frequency
+0
Crosstalk (dB)
10
1K
Frequency (Hz)
-40
-50
-60
-70
-80
AV=10.7dB
Left channel to Right channel
-90
0.01
Right channel to Left channel
20
100
1k
Frequency (Hz)
-100
20
10k 20k
Noise vs. Frequency
10
Left Channel
1
THD+N (%)
Output Noise Voltage (µV)
Right Channel
100µ
VDD =14V
Ci=1µF
RL=8Ω
AV=15.6dB
AUX-0025
LPF=22~22kHz
A-Weighting
Class-D
20
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
1k
Frequency (Hz)
10k 20k
THD+N vs. Output Power
500µ
10µ
100
VDD =12V
Ci=1µF
RL=8Ω
Av=15.7dB
AUX-0025
fin=1kHz
0.1
fin=50Hz
0.01
fin=20kHz
AES-17(20kHz)
Class-D
0.001
10m
10k 20k
6
100m
1
Output Power (W)
5 10
www.anpec.com.tw
APA3002
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
10
VDD =12V
Ci=1µF
RL=8Ω
AV=15.7dB
AUX-0025
AES-17(20kHz)
Class-D
1
THD+N (%)
1
THD+N (%)
THD+N vs. Frequency
10
PO=0.5W
PO=5W
0.1
VDD =12V
Ci=1µF
RL=8Ω
PO=5W
AUX-0025
AES-17 (20kHz)
Class-D
AV=36dB
0.1
PO=2.5W
0.01
20
100
1k
Frequency (Hz)
10k 20k
100
Crosstalk vs. Frequency
Output Noise Voltage (µV)
Crosstalk (dB)
Right Channel
-60
Left channel to Right channel
-100
Right channel to Left channel
100
500
Frequency (Hz)
Left Channel
100µ
10µ
10k 20k
VDD =12V
Ci=1µF
RL=8Ω
AV=15.6dB
AUX-0025
LPF=22~22kHz
A-Weighting
Class-D
20
THD+N vs. Output Power
10
0.1
10
VDD =8.5V
Ci=1µF
RL=8Ω
AV=15.7dB
AUX-0025
AES-17 (20kHz)
Class-D
fin=1kHz
1
fin=50Hz
100m
1
Output Power (W)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
1k
Frequency (Hz)
10k 20k
0.1
VDD =8.5V
Ci=1µF
RL=8Ω
AV=15.7dB
AUX-0025
AES-17(20kHz)
Class-D
PO=2.5W
PO=0.5W
PO=1.25W
fin=15kHz
0.01
10m
100
THD+N vs. Frequency
THD+N (%)
THD+N (%)
1
10k 20k
500µ
VDD =12V
Ci=1µF
-20 RL=8Ω
PO=2.5W
AV=15.7dB
-40 AUX-0025
AES-17 (20kHz)
Class-D
-120
20
1k
Frequency (Hz)
Noise vs. Frequency
+0
-80
AV=10.7dB
AV=20.8dB
0.01
20
0.01
20
5
7
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA3002
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
10
500µ
VDD =8.5V
Ci=1µF
RL=8Ω
PO=2.5W
AUX-0025
AES-17 (20kHz)
Class-D
Right Channel
Output Noise Voltage (µV)
1
THD+N (%)
Noise vs. Frequency
AV=36dB
0.1
AV=20.8dB
AV=10.7dB
0.01
20
100
1k
Left Channel
100µ
10µ
20
10k 20k
VDD =8.5V
Ci=1µF
RL=8Ω
AV=15.6dB
AUX-0025
LPF=22~22kHz
A-Weighting
Class-D
100
Frequency (Hz)
Input Resistance vs. Gain
Common-Mode Rejection Ratio (dB)
Class-D
Input Resistance (kΩ)
140
120
100
80
60
40
20
-30
-10
10
Gain (dB)
30
Gain (36dB)
+25
+20
+15
Phase (36dB)
Phase (15.7dB)
Gain (15.7dB)
+10
+50
+0
-50
-100
+5
+010
+100
Phase (degree)
Gain (dB)
+30
+150
VDD =12V
Ci=1µF
RL=8Ω
PO=0.75W
AUX-0025
Class-D
-150
100
1k
10k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
-30
-40
-50
-60
-70
100
1k
Frequency (Hz)
10k 20k
Shutdown Attenuation vs. Frequency
Shutdown Attenuation (dB)
+35
VDD =12V
Ci=1µF
RL=8Ω
VO=1V
AV=15.7dB
AUX-0025
Class-D
-20
20
50
Frequency Response
+40
10k 20k
CMRR vs. Frequency
160
0
-50
1k
Frequency (Hz)
100k
8
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
20
VDD =12V
Ci=1µF
RL=8Ω
PO=1W
AV=36dB
VSD=0V
AUX-0025
AES-17(20kHz)
Class-D
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA3002
Typical Operating Characteristics (Cont.)
Mode Attenuation vs. Frequency
Mute Attenuation vs. Frequency
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
VDD =12V
-10 Ci=1µF
RL=8Ω
PO=1W
-20 Volume=0V
AUX-0025
-30 AES-17(20kHz)
Class-D
-40
-50
-60
-70
-80
20
100
VDD =12V
Ci=1µF
RL=8Ω
PO=1W
AV=36dB
Mode=5V
AUX-0025
AES-17(20kHz)
Class-D
Mode Attenuation (dB)
Mute Attenuation (dB)
+0
1k
Frequency (Hz)
20
10k 20k
100
PSRR vs. Frequency
Inter-modulation Performance
+0
-60
VDD =12V
RL=8Ω
VRR=0.5Vrms
AV=36dB
AUX-0025
AES-17(20kHz)
Class-D
-10
-20
-30
PSRR (dB)
-40
FFT (dB)
+0
VDD =12V
Ci=1µF
fin=19kHz&20kHz
RL=8Ω
PO=1W
AV=36dB
AUX-0025
Class-D
-20
10k 20k
1k
Frequency (Hz)
-80
-40
-50
-60
-70
-100
-80
-120
-90
-140
50 100
1k
Frequency (Hz)
-100
10k 20k
VRR: Ripple Voltage on VDD
20
PSRR vs. Frequency
+0
-10
-20
+0
TTVTDD
TTT=12V
TTTTT
-10
RL=10kΩ
VRR=0.5Vrms
AV=20dB
VAROUT
-60
-40
-50
-60
-70
-70
-80
-80
20
-90
VRR: Ripple Voltage on VDD
100
No load
VRR=0.5Vrms
LDO
-30
-50
-90
10k 20k
TTVTDD
TTT=12V
TTT
-20
-40
-100
1k
Frequency (Hz)
PSRR vs. Frequency
PSRR (dB)
PSRR (dB)
-30
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
-100
20
10k 20k
9
VRR: Ripple Voltage on VDD
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA3002
Typical Operating Characteristics (Cont.)
THD+N vs. Output Power
10
10
VDD =12V
Ci=1µF
COUT=150µF
RL=32Ω
AV=10dB
LPF=80kHz
VAROUT
1
THD+N (%)
1
THD+N (%)
THD+N vs. Frequency
fin=20kHz
fin=50Hz
0.1
VDD =12V
Ci=1µF
COUT=150µF
RL=32Ω
AV=10dB
PO=14mW
LPF=80kHz
VAROUT
0.1
fin=1kHz
0.01
0
5m
10m
15m
20m
0.01
20
25m 30m
100
1k
Frequency (Hz)
Output Power (W)
Crosstalk vs. Frequency
100µ
RRV
RDD =12V
-10
-20
Crosstalk (dB)
Noise vs. Frequency
-30
-40
Ci=1µF
COUT=150µF
RL=32Ω
AV=10dB
PO=14mW
LPF=80kHz
VAROUT
Output Noise Voltage (V)
+0
-50
-60
Left channel to Right channel
-70
Right channel to Left channel
10µ
VDD =12V
Ci=1µF
COUT=150µF
RL=32Ω
AV=10dB
A-weighting
VAROUT
-80
-90
20
100
1k
Frequency (Hz)
1µ
20
10k 20k
Frequency Response
Gain
+6
+5
+4
+260
+240
+220
+200
+180
+3
Phase
+2
+160
+1
+140
+0
20
100
1k
10k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
1
Phase (Degree)
Gain (dB)
+280
VDD =12V
Ci=1µF
COUT=150µF
RL=32Ω
AV=10dB
PO=2mW
VAROUT
+7
10
THD+N (%)
+8
100
1k
Frequency (Hz)
10k 20k
THD+N vs. Output Voltage
+300
+10
+9
10k 20k
0.1
VDD =12V
Ci=1µF
COUT=150µF
RL=10kΩ
AV=10dB
LPF=80kHz
VAROUT
fin=20kHz
fin=50Hz
0.01
fin=1kHz
0.001
0
+120
200k
500m
1
1.5
2
2.5
Output Voltage (V)
10
www.anpec.com.tw
APA3002
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
Crosstalk vs. Frequency
10
+0
TTTVTT T=12V
TTT
DD
-20
VDD =12V
Ci=1µF
COUT=150µF
RL=10kΩ
AV=10dB
VO=1.25V
LPF=80kHz
VAROUT
0.1
Crosstalk (dB)
THD+N (%)
1
-40
-60
Ci=1µF
COUT=150µF
RL=10kΩ
AV=10dB
VO=1.25V
LPF=80kHz
VAROUT
-80
0.01
Left channel to Right channel
-100
Right channel to Left channel
0.001
20
100
1k
Frequency (Hz)
-120
20
10k 20k
100
Noise vs. Frequency
1k
Frequency (Hz)
10k 20k
Frequency Response
100µ
+10
+230
Gain
Gain (dB)
+8
10µ
VDD =12V
Ci=1µF
COUT=150µF
RL=10kΩ
AV=10dB
A-Weighting
VAROUT
1µ
20
100
+7
+6
+210
+200
+190
+180
Phase
+170
+5
1k
Frequency (Hz)
+4
10
10k 20k
Input Resistance vs. Gain
+160
100
+150
200k
1k
10k
Frequency (Hz)
Supply Current vs. Output Power
1.2
160
VAROUT
140
1.0
120
Supply Current (A)
Input Resistance (kΩ)
+220
VDD =12V
Ci=1µF
COUT=150µF
RL=10kΩ
AV=10dB
PO=0.18V
VAROUT
Phase (Degree)
Output Noise Voltage (V)
+9
100
80
60
0.8
0.6
RL=8Ω&33µH
fin=1kHz
Ci=1µF
Mono
AUX-0025
AES-17 (20kHz)
VDD=12V
VDD=14V
VDD=8.5V
0.4
40
0.2
20
0
-60
-45
-30
-15
0
Gain (dB)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
15
00
30
11
2
4
6
8
Output Power (W)
10
12
www.anpec.com.tw
APA3002
Typical Operating Characteristics (Cont.)
Supply Current vs. Supply Voltage
30
No Load
Supply Current (mA)
25
20
15
10
5
0
0
5
10
15
Supply Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
12
www.anpec.com.tw
APA3002
Pin Description
PIN
I/O
FUNCTION
NO.
NAME
1
SD
I
2
RIN-
I
Shutdown mode control signal input. Pulling the voltage on SD below 0.8V makes the IC enter
low-power shutdown mode with 10µA (typical) IDD.
Right channel negative input.
3
RIN+
I
Right channel positive input.
4
2.5VREF
O
2.5V reference for analog circuits.
5
LIN+
I
Left channel positive input.
Left channel negative input.
6
LIN-
I
7
LDOREF
O
5V reference output (5V LDO), connect it to VREF pin.
8
VREF
I
Gain control section’s reference voltage input.
9
VARDIFF
I
Input pin to set the difference in gain between the VAROUT and Class-D outputs by using the DC
voltage. Connect this pin to the ground or LDOREF when the VAROUT is not used.
10
VARMAX
I
Input pin to set the maximum gain of VAROUT by using the DC voltage. Connect this pin to
ground or LDOREF directly when the VAROUT is not used.
11
VOLUME
1
Input pin to set the gain of VAROUT and Class-D outputs by using the DC voltage.
-
Ground for gain control circuitry. Connect to AGND. If using a DAC to control the volume, connect
the DAC ground to this terminal.
12
REFGND
13
LBS-
14,15,22
,23
LPVDD
-
Power supply for left channel H-bridge.
16,17
LOUT-
O
Class-D left channel negative output.
18,19
LPGND
-
Power ground for left channel H-bridge.
20,21
LOUT+
O
Class-D left channel positive output.
24
LBS+
I/O Left channel bootstrap power input for negative high-side MOSFET.
I/O Left channel bootstrap power input for positive high-side MOSFET.
25
LCLAMP
-
Left channel internal voltage supply output for bootstrap capacitor.
26,30
AGND
-
Analog ground.
27
ROSC
I/O Voltage of ROSC pin equal 0.125VDD, current setting resistor for internal ramp generator.
28
COSC
I/O Charge/Discharge capacitor for generating triangle wave.
29
5VLDO
O
Internal 5V regulator output for external headphone driver used.
31
LVAROUT
O
Left channel variable audio output, for external headphone driver.
32
RVAROUT
O
Right channel variable audio output, for external headphone driver.
33
AVDD
-
Analog power supply (8.5 to 14V).
34
MODE
I
Control pin for amplifier operation. A logic high places the amplifier in variable output mode, and
the Class-D output will disable; a logic low places the amplifier in variable output mode (line-level
output for external amplifier) and stereo Class-D outputs.
35
MODEOUT
O
Inverse output of MODE pin, this pin can control the external headphone driver’s (APA4801) mute
pin for changing operation from speaker operation to headphone operation. Leave this pin
unconnected when the external headphone driver is not in using.
36
RCLAMP
-
Right channel internal voltage supply output for bootstrap capacitor.
37
RBS+
38,39,46
,47
RPVDD
-
Power supply for right channel H-bridge.
40,41
ROUT+
O
Class-D right channel positive output.
42,43
RPGND
-
Power ground for right channel H-bridge.
44,45
ROUT-
O
Class-D right channel negative output.
48
RBS-
I/O Right channel bootstrap voltage input for positive high-side MOSFET.
I/O Right channel bootstrap voltage input for negative high-side MOSFET.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
13
www.anpec.com.tw
APA3002
Block Diagram
RCLAMP
RBSRPVDD
VOLTAGE
CLAMP
GEN.
ROUT-
Gate
Drive
RIN-
RPGND
RBS+
RPVDD
De-glitch &
Modulation
Logic
Gain
Adj.
RIN+
ROUT+
Gate
Drive
RPGND
Gain
Adj.
2.5VREF
Over-Current
Protection
RVAROUT
ROSC
RAMP
GEN.
COSC
VREF
Biases
&
Reference
Startup
protection
logic
AVDD
5VLDO ok
AGND
VARDIFF
VARMAX
VOLUME
Thermal
Shutdown
AVDD ok
Gain
Control
REFGND
SD
5VLDO
5VLDO
TTL Input
Buffer
Gain
Adj.
LDOREF
LCLAMP
LBS-
VOLTAGE
CLAMP
GEN.
LPVDD
LVAROUT
Gate
Drive
LIN-
LPGND
LBS+
LPVDD
De-glitch &
Modulation
Logic
Gain
Adj.
LOUT-
LIN+
Gate
Drive
LOUT+
LPGND
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
14
www.anpec.com.tw
APA3002
Operating Mode Selection Table
MODE
SD
Operating mode
H
L
H
L
H
H
Shutdown mode
Class-D operation
Class-D disable, VAROUT output.
Class-D DC Volume Control Table
GAIN
Voltage range (% of VVREF)
Increasing VVOLUME
Decreasing VVOLMUE
(dB)
(%)
(%)
-75
0 -4.5
0 -2.9
-40
4.5 -6.7
2.9 -5.1
-37.5
6.7 -8.9
5.1 -7.2
-35
8.9 -11.1
7.2 -9.4
-32.4
11.1 -13.3
9.4 -11.6
-29.9
13.3 -15.5
11.6 -13.8
-27.4
15.5 -17.7
13.8 -16.0
-24.8
17.7 -19.9
16.0 -18.2
-22.3
19.9 -22.1
18.2 -20.4
-19.8
22.1 -24.3
20.4 -22.6
-17.2
24.3 -26.5
22.6 -24.8
-14.7
26.5 -28.7
24.8 -27.0
-12.2
28.7 -30.9
27.0 -29.1
-9.6
30.9 -33.1
29.1 -31.3
-7.1
33.1 -35.3
31.3 -33.5
-4.6
35.3 -37.5
33.5 -35.7
-2
37.5 -39.7
35.7 -37.9
0.5
39.7 -41.9
37.9 -40.1
3.1
41.9 -44.1
40.1 -42.3
5.6
44.1 -46.4
42.3 -44.5
8.1
46.4 -48.6
44.5 -46.7
10.7
48.6 -50.8
46.7 -48.9
13.2
50.8 -53
48.9 -51.0
15.7
53 -55.2
51.0 -53.2
18.3
55.2 -57.4
53.2 -55.4
20.8
57.4 -59.6
55.4 -57.6
23.3
59.6 -61.8
57.6 -59.8
25.9
61.8 -64
59.8 -62.0
28.4
64 -66.2
62.0 -64.2
30.9
66.2 -68.4
64.2 -66.4
33.5
68.4 -70.6
66.4 -68.4
36
>70.6
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
>68.6
15
www.anpec.com.tw
APA3002
VAROUT VOLUME Control Table
GAIN
Voltage range (% of V VREF)
Increasing V VOLUME
Decreasing V VOLMUE
(dB)
(%)
(%)
-66
0 -4.5
0 -2.9
-56
4.5 -6.7
2.9 -5.1
-53.5
6.7 -8.9
5.1 -7.2
-50.9
8.9 -11.1
7.2 -9.4
-48.4
11.1 -13.3
9.4 -11.6
-45.9
13.3 -15.5
11.6 -13.8
-43.3
15.5 -17.7
13.8 -16.0
-40.8
17.7 -19.9
16.0 -18.2
-38.3
19.9 -22.1
18.2 -20.4
-35.7
22.1 -24.3
20.4 -22.6
-33.2
24.3 -26.5
22.6 -24.8
-30.7
26.5 -28.7
24.8 -27.0
-28.1
28.7 -30.9
27.0 -29.1
-25.6
30.9 -33.1
29.1 -31.3
-23.1
33.1 -35.3
31.3 -33.5
-20.5
35.3 -37.5
33.5 -35.7
-18.0
37.5 -39.7
35.7 -37.9
-15.5
39.7 -41.9
37.9 -40.1
-13.0
41.9 -44.1
40.1 -42.3
-10.4
44.1 -46.4
42.3 -44.5
-7.9
46.4 -48.6
44.5 -46.7
-5.3
48.6 -50.8
46.7 -48.9
-2.8
50.8 -53
48.9 -51.0
-0.3
53 -55.2
51.0 -53.2
2.3
55.2 -57.4
53.2 -55.4
4.8
57.4 -59.6
55.4 -57.6
7.3
59.6 -61.8
57.6 -59.8
9.9
61.8 -64
59.8 -62.0
12.4
64 -66.2
62.0 -64.2
14.9
66.2 -68.4
64.2 -66.4
17.5
68.4 -70.6
66.4 -68.4
20.0
>70.6
>68.6
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
16
www.anpec.com.tw
APA3002
Typical Application Circuits
Right
channel
SPEAKER
1nF
1nF
Bead
Bead
VDD
CBS(R-)
VDD
10µF
CBS(R+)
10nF
10nF
1µF
1µF
RIN+
CB
1µF
37
RPVDD
RBS+
38
40
39
ROUT+
ROUT+
41
RPGND
42
RPGND
43
ROUT44
45
ROUT-
RPVDD
46
RPVDD
33
AVDD
32
31
LVAROUT
30
AGND
29
5VLDO
TOP VIEW
APA3002
ROSC
11
26
AGND
REFGND 12
25
LCLAMP
CBS(L-)
10nF
VDD
10µF
RVAROUT
LVAROUT
0.1µF
5V
COSC
COSC
220pF
ROSC
120kΩ
24
1µF
CCLAMP(L)
LBS+
LPVDD
LOUT+
LPVDD
LOUT+
LPGND
LBS-
RVARMAX
23
27
22
10
VOLUME
21
28
20
9
19
VARDIFF
18
8
MODE
0.1µF
RVAROUT
6
7
MODEOUT
VDD
5
17
50kΩ
RVOLUME
4
MODEOUT
VREF
VARMAX
50kΩ
MODE
LPGND
RVARDIFF
34
16
50kΩ
LDOREF
3
LOUT-
Ci(LIN-)
LIN-
35
LOUT-
Ci(LIN+)
LIN+
2
15
LIN-
2.5VREF
1µF
1µF
RCLAMP
36
14
1µF
RIN-
CCLAMP(R)
1
LPVDD
Ci(RIN-)
Ci(RIN+)
47
RBS48
SD
13
SHUTDOWN
LPVDD
RIN-
RPVDD
0.1µF
0.1µF
0.1µF
0.1µF
10nF
10µF
VDD
Bead
1nF
Left
channel
CBS(L+)
AGnd
PGnd
Bead
1nF
SPEAKER
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise
customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
17
www.anpec.com.tw
APA3002
Typical Application Circuits (Cont.)
Right
channel
SPEAKER
1nF
Bead
10µF
VDD
VDD
10nF
50kΩ
REFGND 12
21
LPVDD
22
LPVDD
23
LBS+
24
LOUT+
LPGND
17
18
19
LOUT+
20
CBS(L-) 0.1µF
LPGND
LOUT-
14
LPVDD
15
LOUT16
LBS-
LPVDD
13
25
MUTE
OUTA
VSS
Sleeve
Jack
10µF
120kΩ ROSC
LCLAMP
1kΩ
1µF
220µF
4.7µF
1µF
CCLAMP(L)
0.1µF
10nF
VDD
Tip
APA4801
VDD
28
27 ROSC
26 AGND
VOLUME 11
RVARMAX RVOLUME
COSC
220pF
COSC
VARDIFF 9
VARMAX 10
50kΩ
1kΩ
Headphone
OUTB
TOP VIEW
APA3002
6
LDOREF 7
VREF 8
RVARDIFF 50kΩ
0.1µF
RVAROUT
32
LVAROUT
31
0.1µF
30 AGND
29 5VLDO
Ring
Pin
1µF
INPUTA
Ci(LIN+)
CB
1µF 1µF LIN+
5
Ci(LIN-) 1µF LIN-
35
MODE VDD
34
AVDD 10µF
33
3
2.5VREF 4
Control
220µF
MODEOUT
BIAS
Ci(RIN+)
120kΩ
36 RCLAMP
1
Ci(RIN-) 1µF RIN2
1µF
RIN+
CCLAMP(R)
1µF
INPUTB
RBS+
ROUT+
ROUT+
RPGND
RPGND
ROUT-
ROUT-
RPVDD
46
45
44
43
42
41
RBS-
48
RPVDD
47
LIN-
SD
40
RPVDD
39
RPVDD
38
0.1µF
0.1µF
RIN- SHUTDOWN
CBS(R+)
10nF
37
CBS(R-)
1nF
Bead
10nF
10µF
VDD
CBS(L+)
AGnd
Bead
Bead
1nF
1nF
Left
channel
PGnd
SPEAKER
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise
customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
18
www.anpec.com.tw
APA3002
Application Information
Class-D Operation
Square Wave Into the Speaker
Output = 0V
To apply the square wave into the speaker may cause the
voice coil of speaker jumps out the air gap and defaces the
OUT+
voice coil. However, this depends on if the amplitude of
square wave is high enough and the bandwidth of speaker
OUT-
is higher than the square wave’s frequency. For 250kHz
switching frequency, this is not an issue for the
OUT
(OUT+)-(OUT-)
speaker because the frequency is beyond the audio band,
and can’t significantly move the voice coil, as cone move-
IOUT
ment is proportional to 1/f2 for frequency out of audio band.
Output > 0V
OUT+
Input Resistor (Ri)
OUT-
In order to achieve the 32 steps gain setting, the Ri varies
the input resistance network (Ri & Rf) of amplifier. The
input resistor’s range from the smallest to the maximum
is about 15 times, therefore, the input high-pass filter’s
OUT
(OUT+)-(OUT-)
IOUT
low cutoff frequency will change 15 times from low to
high. The cutoff frequency can be calculated by equation
Output < 0V
1.
OUT+
Input Capacitor (Ci)
In the typical application, an input capacitor, Ci, is required
OUT-
to allow the amplifier to bias the input signal to the proper
DC level for optimum operation. In this case, Ci and the
minimum input impedance Ri form a high-pass filter with
(OUT+)-(OUT-)
OUT
the corner frequency is determined in the following
equation:
1
fC(highpass) =
(1)
2πRiCi
IOUT
Figure1. APA3002 Output Waveform (Voltage & Current)
The value of Ci must be considered carefully because
The APA3002 modulation scheme is shown in Figure 1,
it directly affects the low frequency performance of the
circuit. Consider the example, where Ri is 10kΩ and
the outputs OUT+ and OUT- are in phase with each other
when no input signals. When output > 0V, the duty cycle
the specification calls for a flat bass response down
to 40Hz. The equation is reconfigured as below:
of OUT+ is greater than 50% and OUT- is less than 50%;
on the contrary, when output <0V, the duty cycle of OUT+
Ci =
is less than 50% and OUT- is greater than 50%. This
method reduces the switching current across the load
1
(2)
2πRifc
When the input resistance variation is considered, the Ci
is 0.40µF, so a value in the range of 0.47µF to 1.0µF
and reduces the I2R loss in the load that improves the
amplifier’s efficiency.
would be chosen. A further consideration for this capacitor is the leakage path from the input source
This modulation scheme has very short pulses across
the load. This makes the small ripple current and very
through the input network (Ri + Rf, Ci) to the load.
little loss on the load, and the LC filter can be eliminated
in most applications. Adding the LC filter can increase the
This leakage current creates a DC offset voltage at
the input to the amplifier that reduces useful headroom,
efficiency by filter the ripple current.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
19
www.anpec.com.tw
APA3002
Application Information (Cont.)
Input Capacitor (Ci) (Cont.)
CLAMP Capacitor (CCLAMP)
especially in high gain applications. For this reason, a
These capacitors are regulated the clamp voltage of N-
low-leakage tantalum or ceramic capacitor is the best
choice. When polarized capacitors are used, the positive
channel power MOSFET’s gate voltage, ensuring the
maximum gate-to-source voltage of the MOSFET not to
side of the capacitor should face the amplifier input in most
applications because the DC level of the amplifiers’inputs
exceed. 1µF/25V capacitors are recommended.
Power Supply Decoupling (Cs)
is held at 2.5VREF. Please note that it is important to
confirm the capacitor polarity in the application.
The APA3002 is a high-performance CMOS audio amplifier
COSC & ROSC
that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD+N) is
The Class-D amplifier’s switching frequency is determined by the component that connected to ROSC (pin)
as low as possible. Power supply decoupling also prevents the oscillations being caused by long lead
and COSC (pin). The frequency can be calculated by the
following equation:
length between the amplifier and the speaker.
The optimum decoupling is achieved by using two dif-
fosc =
ferent types of capacitors that target on different types of
noise on the power supply leads. For higher frequency
6.6
(3)
RoscCosc
transients, spikes, or digital hash on the line, a good low
equivalent-series-resistance (ESR) ceramic capacitor,
BS+ &BS- Capacitor (CBS)
typically is 0.1µF which is placed as close as possible
to the device VDD lead to achieve the best performance.
Since the Full-bridge output stages are only using the Nchannel power MOSFET, the high-side MOSFET’s driver
needs bootstrap circuit to turn on the high side power
For filtering lower frequency noise signals, a large aluminum electrolytic capacitor of 10µF or greater placed near
MOSFET correctly. A 10nF/35V ceramic capacitor is
recommended.
the audio power amplifier is recommended.
The bootstrap capacitors are like floating power supply
Ferrite Bead Selection
for high side N-channel power MOSFET gate driver. The
bootstrap capacitors hold the gate-to-source voltage high
If the traces from the APA3002 to speaker are short, the
ferrite bead filters can reduce the high frequency radiated
enough to keep the high-side N-channel power MOSFET
turn-on at high side switching cycle. At the high-side turn-
to meet the FCC & CE’s requirements.
on cycle, the voltage of bootstrap capacitors will decrease
through the leakage path. The bootstrap voltage can de-
A ferrite that has very low impedance at low frequencies
and high impedance at high frequencies (above 1 MHz)
is recommended.
crease below the minimum Vgs that required to keep the
high-side N-channel power MOSFET turn-on, if driving
Output LC Filter
into heavy clipping with a less than 50Hz sine wave. When
this occurs, the output power MOSFET becomes source-
If the traces from the APA3002 to speaker are short, it
doesn’t require output filter for FCC & CE standard. Fig-
follower and the output drops from VDD to approximately
Vclamp.
ure 2 is an example for adding the LC filter, it’s recommended for the situation that the trace from amplifier to
Driving a square wave at low frequencies is not a design
consideration for majority application, so the 10nf boot-
speaker is too long, and needed to eliminate the radiated
emission or EMI.
strap capacitor is recommended. If the low frequency is a
concern, please increase the bootstrap capacitor value to
hold the gate voltage for a longer period and the voltage
drop will not occur.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
20
www.anpec.com.tw
APA3002
Application Information (Cont.)
If a DAC controls the Class-D gain is used, VREF and
Output LC Filter (Cont.)
REFGND should be connected to the reference voltage
for the DAC and the GND terminal of the DAC respectively.
For the DAC application, LDOREF would be left
unconnected. The reference voltage of the DAC provides
OUT+ 33µH
the reference to the internal gain circuitry through the
VREF input and any fluctuations in the DAC output voltage
0.1µF
will not affect the Class-D gain.
0.47µF
OUT-
0.1µF 8 Ω
33µH
The percentages in the “Increasing VVOLUME” of table should
be used for setting the voltages of the DAC when the
voltage on the VOLUME pin is increased. The percentages in the “ decreasing VVOLUME” of the table should be
used for the DAC voltages when decreasing the voltage
on the VOLUME pin. Two lookup tables should be used
Figure 2. LC Output Filter
in software to control the gain based on an increase or
decrease in the desired system volume.
DC Volume
Decreasing VVOLUME
If using an analog potentiometer to control the gain, it
Class-D Gain (dB)
3.1
should be connected between VREF and REFGND.
VREF can be connected to LDODREF or an external
voltage source, if desired. The table of “Increasing VVOLUME”
and “Decreasing VVOLUME” in “Class-D DC Volume Control
0.5
Increasing VVOLUME
Table” should be used to determine the point at which
gain changes depending on the direction that the poten-
-2.0
tiometer is turned. If the voltage on the center tap of the
potentiometer is increasing, the table “Increasing VVOLUME”
(39.7% x VVREF)
1.90
(37.9% x V VREF )
1.99 2.01
(40.1% x VVREF)
2.12
(41.9% x V VREF)
at “Class-D DC Volume Control Table” should be referenced to determine the trip points. If the voltage is
Volume’s Voltage (V)
decreasing, the trip points in the ”Decreasing VVOLUME”
should be referenced.
Figure 3. DC Volume Control Operation (VVREF=5V)
The Class-D’s gain is determined by the voltage of VOL-
The trip point, where the gain actually changes, is various
depending on whether the voltage on the VOLUME pin is
UME control pin. “Class-D DC Volume Control Table” lists
the gain in Class-D that is determined by the VOLUME
increasing or decreasing as a result of hysteresis about
each trip point. The hysteresis ensures that the gain con-
pin’s voltage (VVOLUME) in reference to the VREF’s voltage
(V VREF). The maximum voltage of VOLUME should not
trol is monotonic and does not oscillate from one gain
step to another. A pictorial representation of the volume
exceed the VREF’s voltage.
If the resistor divider fixed the Class-D’s gain is used,
control can be found in Figure 3. The graph focuses on
three gain steps with the trip points defined in the table
and then the resistor divider values to center the voltage between the two percentage points of the table’s
“Increasing VVOLUME” and ”Decreasing VVOLUME” of “ClassD DC Volume Control Table” for Class-D gain. The dotted
column “Increasing VVOLUME” need to be calculated, see
figure 3. The resistor can be connected between VREF
lines represent the hysteresis about each gain step.
and REFGND, and then VREF and LDOREF are connected together.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
21
www.anpec.com.tw
APA3002
Application Information (Cont.)
LDO Operation
DC Volume
VVARDIFF(V)
The 5VLOD terminal is the output of an internal-generated 5V power supply that is used for oscillator, pream-
VVARMAX(V)
plifier and DC volume control circuitry. The regulator can
be powered the external headphone amplifier like the
- VVOLUMEVVARDIFF
+
VVOLUME(V)
YES
Is VVARMAX>(VVOLUMEVVARDIFF)
VAROUT s VOLUME(V) =
VVOLUME(V)-V VARDIFF(V)
APA4801, or other circuitry, up to the current limit of 5VLDO
pin (on specification table). With 10µF & 0.1µF capacitors
NO
connected to the terminal are recommended if powered
by the APA4801; however, if there is no other larger loading,
VAROUT s VOLUME(V) = VVARMAX(V)
1µF and 0.1µF are sufficient enough.
Figure 4. VAROUT Volume Control Flow
Shutdown Function
In order to reduce power consumption when not in use,
Three pins, VOLUME, VARMAX, and VARDIFF, determine
the VAROUT’s gain. The figure 4 shows the VAROUT vol-
the APA3002 contains a shutdown function to externally
turn off the amplifier bias circuitry. This shutdown feature
ume control flow. All the values are DC voltage, and the
VAROUT channel gain can be determined by consulting the
turns the amplifier off when logic low is placed on the SD
pin for the APA3002. The trigger point between a logic
table “VAROUT VOLUME Control Table”.
high and logic low level is typically 1.2V. It will be the best
to switch between ground and the supply voltage VDD to
VARMAX
The VARMAX limits the maximum gain of VAROUT chan-
provide maximum device performance. By switching the
SD pin to low level, the amplifier enters a low-consump-
nels to avoid the un-comfortable listening of headphone.
tion-current state, I DD for the APA3002 is in shutdown
mode. Under normal operating, APA3002’s SD pin should
VARDIFF
To avoid the uncomfortable listening when headphone is
plugging, the VARDIFF sets the different gain between
pull to a high level to keep the IC out of the shutdown
mode. The SD pin should be tied to a definite voltage to
the Class-D and VAROUT channels. At initial (VVARDIFF=0V),
the difference gain between the Class-D and VAROUT is
avoid unwanted state change.
Thermal Pad Consideration
16dB. W hen voltage of VARDIFF is increasing, the
VAROUT’s gain decreases.
The thermal pad must be connected to the ground. The
package with thermal pad of the APA3002 requires special attention on thermal design. If the thermal design
MODE Operation
The mode controls the output mode of the APA3002, a
logic “HIGH” will disable the Class-D outputs; a logic
issues are not properly addressed, the APA3002 will go
into thermal shutdown. The thermal pad on the bottom of
“LOW” will enable the Class-D outputs. This pin can connect to the switch on the headphone jack to disable the
the APA3002 should be soldered down to a copper pad
on the circuit board. Heat can be conducted away from
Class-D outputs when headphone plug is inserted. The
“Typical Application Circuit “ shows an example for this
the thermal pad through the copper plane to ambient. If
the copper plane is not on the top surface of the circuit
application.
board, 10 to 16 vias of 15 mil or smaller in diameter should
be used to thermally couple the thermal pad to the bot-
MODE_OUT Operation
tom plane. For good thermal conduction, the vias must
be plated through and solder filled. The copper plane
The MODE_OUT is the inverting output of MODE, and it
controls the external headphone amplifier’s SD pin (like
the APA4801) for switching the Speaker mode or
used to conduct heat away from the thermal pad should
headphone.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
22
www.anpec.com.tw
APA3002
Application Information (Cont.)
Thermal Pad Consideration (Cont.)
be as large as practical. If the ambient temperature is
higher than 25°C, a larger copper plane or forced-air cooling will be required to keep the APA3002 junction temperature below the thermal shutdown temperature
(150°C). In higher ambient temperature, higher airflow
rate and/or larger copper area will be required to keep the
IC out of thermal shutdown. See TQFP7x7-48 thermal
pad layout recommendation.
0.28mm
5.5mm
Via diameter
=0.3mm X16
1.7mm
0.5mm
6.5mm
4.5mm
Ground
plane for
Thermal
PAD
Exposed
for thermal
PAD
connected
Figure 5. TQFP7x7-48 thermal pad layout recommendation
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
23
www.anpec.com.tw
APA3002
Package Information
TQFN7x7-48
D
E
A
b
Pin 1
A1
D2
A3
L K
E2
Pin 1 Corner
e
S
Y
M
B
O
L
TQFN7x7-48
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
A
0.70
0.80
0.028
0.031
A1
0.00
0.05
0.000
0.002
0.30
0.007
0.012
0.280
A3
b
0.20 REF
0.18
0.008 REF
D
6.90
7.10
0.272
D2
5.50
5.80
0.217
0.228
E
6.90
7.10
0.272
0.280
E2
5.50
5.80
0.217
e
0.50 BSC
L
0.35
K
0.20
0.228
0.020 BSC
0.014
0.45
0.018
0.008
Note : 1. Followed from JEDEC MO-220 WKKD-4.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
24
www.anpec.com.tw
APA3002
Package Information
TQ
TQFP7x7-48P
D
D1
E
A
e
0.25
c
A1
b
E1
EXPOSED
PAD
A2
E2
D2
GAUGE PLANE
SEATING PLANE
S
Y
M
B
O
L
0
L
TQFP7x7-48P
MILLIMETERS
MIN.
INCHES
MIN.
MAX.
A
MAX.
0.047
1.20
A1
0.05
0.15
0.002
0.006
A2
0.95
1.05
0.037
0.041
b
0.17
0.27
0.007
0.011
c
0.09
0.20
0.004
0.008
D
8.80
9.20
0.346
0.362
D1
6.90
7.10
0.272
0.280
D2
3.00
4.50
0.118
0.177
E
8.80
9.20
0.346
0.362
E1
6.90
7.10
0.272
0.280
E2
3.00
4.50
0.118
0.177
e
L
0
0.50 BSC
0.45
0o
0.020 BSC
0.75
7o
0.018
0.030
0o
7o
Note : 1. Followed from JEDEC MS-026 ABC.
2. Dimension "D1" and "E1" do not include mold protrusions.
Allowable protrusions is 0.25 mm per side. "D1" and "E1" are
maximun plasticbody size dimensions including mold mismatch.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
25
www.anpec.com.tw
APA3002
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
A
H
330.0±2.00
50 MIN.
P0
P1
TQFP7x7-48P
4.0±0.10
12.0±0.10
A
H
Application
330.0±2.00
50 MIN.
P0
P1
TQFN7x7-48
4.0±0.10
T1
C
16.4+2.00 13.0+0.50
-0.00
-0.20
D
1.5 MIN.
20.2 MIN.
W
E1
16.0±0.30 1.75±0.10
F
7.5±0.10
P2
D0
D1
T
A0
B0
K0
2.0±0.10
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
9.4±0.20
9.4±0.20
1.8±0.20
T1
C
d
D
W
E1
F
1.5 MIN.
20.2 MIN.
16.4+2.00 13.0+0.50
-0.00
-0.20
12.0±0.10
d
P2
D0
2.0±0.10
1.5+0.10
-0.00
16.0±0.30 1.75±0.10
5.5±0.10
D1
T
A0
B0
K0
1.5 MIN.
0.6+0.00
-0.40
7.30±0.20
7.30±0.20
1.3±0.20
(mm)
Devices Per Unit
Package Type
Unit
Quantity
TQFP7x7-48P
Tape & Reel
2500
TQFN7x7-48
Tape & Reel
2500
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
26
www.anpec.com.tw
APA3002
Taping Direction Information
TQFN7x7-48
USER DIRECTION OF FEED
TQFP7x7-48P
USER DIRECTION OF FEED
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
27
www.anpec.com.tw
APA3002
Classification Profile
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
28
www.anpec.com.tw
APA3002
Classification Reflow Profiles
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
3
Package
Thickness
<2.5 mm
Volume mm
<350
235 °C
Volume mm
≥350
220 °C
≥2.5 mm
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
Description
5 Sec, 245°C
1000 Hrs, Bias @ 125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.6 - Sep., 2009
29
www.anpec.com.tw