MOTOROLA MRF134

Order this document
by MRF134/D
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
N–Channel Enhancement–Mode
. . . designed for wideband large–signal amplifier and oscillator applications up
to 400 MHz range.
• Guaranteed 28 Volt, 150 MHz Performance
Output Power = 5.0 Watts
Minimum Gain = 11 dB
Efficiency — 55% (Typical)
5.0 W, to 400 MHz
N–CHANNEL MOS
BROADBAND RF POWER
FET
• Small–Signal and Large–Signal Characterization
• Typical Performance at 400 MHz, 28 Vdc, 5.0 W
Output = 10.6 dB Gain
• 100% Tested For Load Mismatch At All Phase Angles
With 30:1 VSWR
• Low Noise Figure — 2.0 dB (Typ) at 200 mA, 150 MHz
• Excellent Thermal Stability, Ideally Suited For Class A
Operation
D
G
CASE 211–07, STYLE 2
S
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain–Source Voltage
VDSS
65
Vdc
Drain–Gate Voltage
(RGS = 1.0 MΩ)
VDGR
65
Vdc
VGS
± 40
Vdc
Drain Current — Continuous
ID
0.9
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
17.5
0.1
Watts
W/°C
Storage Temperature Range
Tstg
– 65 to +150
°C
Symbol
Value
Unit
RθJC
10
°C/W
Gate–Source Voltage
THERMAL CHARACTERISTICS
Rating
Thermal Resistance, Junction to Case
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
REV 6
RF DEVICE DATA
MOTOROLA
Motorola, Inc. 1994
MRF134
1
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)DSS
65
—
—
Vdc
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)
IDSS
—
—
1.0
mAdc
Gate–Source Leakage Current (VGS = 20 V, VDS = 0)
IGSS
—
—
1.0
µAdc
VGS(th)
1.0
3.5
6.0
Vdc
gfs
80
110
—
mmhos
Input Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Ciss
—
7.0
—
pF
Output Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Coss
—
9.7
—
pF
Reverse Transfer Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Crss
—
2.3
—
pF
Noise Figure
(VDS = 28 Vdc, ID = 200 mA, f = 150 MHz)
NF
—
2.0
—
dB
Common Source Power Gain
(VDD = 28 Vdc, Pout = 5.0 W, IDQ = 50 mA)
f = 150 MHz (Fig. 1)
f = 400 MHz (Fig. 14)
Gps
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 5.0 mA)
ON CHARACTERISTICS
Gate Threshold Voltage (ID = 10 mA, VDS = 10 V)
Forward Transconductance (VDS = 10 V, ID = 100 mA)
DYNAMIC CHARACTERISTICS
FUNCTIONAL CHARACTERISTICS
Drain Efficiency (Fig. 1)
(VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA)
η
Electrical Ruggedness (Fig. 1)
(VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA,
VSWR 30:1 at all Phase Angles)
ψ
dB
11
—
14
10.6
—
—
50
55
—
%
No Degradation in Output Power
L4
R3*
R4
D1
+
C7
+
C8
L3
R2
C5
–
R5
C10
VDD = 28 V
C11
C9
C12
C6
C4
R1
RF OUTPUT
L2
L1
RF INPUT
C3
DUT
C1
C2
*Bias Adjust
C1, C4 — Arco 406, 15– 115 pF
C2 — Arco 403, 3.0– 35 pF
C3 — Arco 402, 1.5– 20 pF
C5, C6, C7, C8, C12 — 0.1 µF Erie Redcap
C9 — 10 µF, 50 V
C10, C11 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
L1 — 3 Turns, 0.310″ ID, #18 AWG Enamel, 0.2″ Long
L2 — 3–1/2 Turns, 0.310″ ID, #18 AWG Enamel, 0.25″ Long
L3 — 20 Turns, #20 AWG Enamel Wound on R5
L4 — Ferroxcube VK–200 — 19/4B
R1 — 68 Ω, 1.0 W Thin Film
R2 — 10 kΩ, 1/4 W
R3 — 10 Turns, 10 kΩ Beckman Instruments 8108
R4 — 1.8 kΩ, 1/2 W
R5 — 1.0 MΩ, 2.0 W Carbon
Board — G10, 62 mils
Figure 1. 150 MHz Test Circuit
MRF134
2
MOTOROLA RF DEVICE DATA
5
f = 100 MHz
150
225
400
8
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
10
6
4
2
0
VDD = 28 V
IDQ = 50 mA
0
200
400
600
Pin, INPUT POWER (MILLWATTS)
800
4
150
225
3
400
2
1
0
1000
f = 100 MHz
VDD = 13.5 V
IDQ = 50 mA
0
Figure 2. Output Power versus Input Power
8
Pin = 600 mW
300 mW
6
150 mW
4
2
0
12
IDQ = 50 mA
f = 100 MHz
14
16
18
20
22
24
VDD, SUPPLY VOLTAGE (VOLTS)
26
1000
Pin = 800 mW
400 mW
4
200 mW
2
IDQ = 50 mA
f = 150 MHz
0
12
28
14
16
18
20
22
24
VDD, SUPPLY VOLTAGE (VOLTS)
26
28
Figure 5. Output Power versus Supply Voltage
8
8
Pin = 800 mW
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
800
6
Figure 4. Output Power versus Supply Voltage
6
400 mW
4
200 mW
2
IDQ = 50 mA
f = 225 MHz
0
12
400
600
Pin, INPUT POWER (MILLWATTS)
Figure 3. Output Power versus Input Power
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
8
200
14
16
18
20
22
24
VDD, SUPPLY VOLTAGE (VOLTS)
26
Figure 6. Output Power versus Supply Voltage
MOTOROLA RF DEVICE DATA
28
Pin = 800 mW
IDQ = 50 mA
f = 400 MHz
6
400 mW
4
200 mW
2
0
12
14
16
18
20
22
24
VDD, SUPPLY VOLTAGE (VOLTS)
26
28
Figure 7. Output Power versus Supply Voltage
MRF134
3
500
VDD = 28 V
IDQ = 50 mA
Pin = CONSTANT
5
I D, DRAIN CURRENT (MILLAMPS)
Pout , OUTPUT POWER (WATTS)
6
f = 400 MHz
4
150 MHz
3
2
1
TYPICAL DEVICE SHOWN,
VGS(th) = 3.5 V
0
–2
–1
0
1
2
3
VGS, GATE–SOURCE VOLTAGE (VOLTS)
4
300
200
TYPICAL DEVICE SHOWN,
VGS(th) = 3.5 V
100
0
5
VDS = 10 V
400
0
VDD = 28 V
IDQ = 200 mA
1
8
0.98
100 mA
0.96
50 mA
0.94
0.92
0.9
– 25
0
25
50
75
100
TC, CASE TEMPERATURE (°C)
125
40
20
10
0
150
|S21|2
GMAX =
(1 – |S11|2) (1 – |S22|2)
30
VDS = 28 V
ID = 100 mAdc
1
Figure 10. Gate–Source Voltage versus
Case Temperature
10
100
f, FREQUENCY (MHz)
1000
Figure 11. Maximum Available Gain
versus Frequency
1
28
I D, DRAIN CURRENT (AMPS)
VGS = 0 V
f = 1 MHz
24
C, CAPACITANCE (pF)
7
50
1.02
20
16
12
Coss
8
Ciss
4
Crss
0
2
3
4
5
6
VGS, GATE–SOURCE VOLTAGE (VOLTS)
Figure 9. Drain Current versus Gate Voltage
(Transfer Characteristics)
G MAX, MAXIMUM AVAILABLE GAIN (dB)
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
Figure 8. Output Power versus Gate Voltage
1
0
4
8
12
16
20
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
24
Figure 12. Capacitance versus Voltage
MRF134
4
28
0.7
0.5
0.3
0.2
TC = 25°C
0.1
0.07
0.05
0.03
0.02
0.01
1
2
5
10
20
50 70
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
100
Figure 13. Maximum Rated Forward Biased
Safe Operating Area
MOTOROLA RF DEVICE DATA
L2
R3*
R4
C11
+
C9
D1
C10
VDD = 28 V
C12
C13
C14
–
L1
R2
C7
Z4
C8
Z5
C6
RF OUTPUT
R1
C1
Z1
Z2
Z3
RF INPUT
C4
DUT
C2
C5
C3
*Bias Adjust
R2 — 10 kΩ, 1/4 W
R3 — 10 Turns, 10 kΩ Beckman Instruments 8108
R4 — 1.8 kΩ, 1/2 W
Z1 — 1.4″ x 0.166″ Microstrip
Z2 — 1.1″ x 0.166″ Microstrip
Z3 — 0.95″ x 0.166″ Microstrip
Z4 — 2.2″ x 0.166″ Microstrip
Z5 — 0.85″ x 0.166″ Microstrip
Board — Glass Teflon, 62 mils
C1, C6 — 270 pF, ATC 100 mils
C2, C3, C4, C5 — 0–20 pF Johanson
C7, C9, C10, C14 — 0.1 µF Erie Redcap, 50 V
C8 — 0.001 µF
C11 — 10 µF, 50 V
C12, C13 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
L1 — 6 Turns, 1/4″ ID, #20 AWG Enamel
L2 — Ferroxcube VK–200 — 19/4B
R1 — 68 Ω, 1.0 W Thin Film
Figure 14. 400 MHz Test Circuit
400
VDD = 28 V, IDQ = 50 mA, Pout = 5.0 W
Zo = 50 Ω
225
Zin{
150
400
f = 100 MHz
225
150
f = 100 MHz
f
MHz
Zin{
Ohms
ZOL*
Ohms
100
150
225
400
21.2 – j25.4
14.6 – j22.1
9.1 – j18.8
6.4 – j10.8
20.1 – j46.7
19.2 – j38.2
17.5 – j33.5
16.9 – j26.9
{68 Ω Shunt Resistor Gate–to–Ground
ZOL*
ZOL* = Conjugate of the optimum load impedance
ZOL* = into which the device output operates at a
ZOL* = given output power, voltage and frequency.
Figure 15. Large–Signal Series Equivalent
Input/Output Impedances, Zin†, ZOL*
MOTOROLA RF DEVICE DATA
MRF134
5
S11
f
(MHz)
|S11|
1.0
S21
±
S12
φ
|S21|
±
φ
φ
|S22|
0.989
– 1.0
11.27
179
0.0014
89
0.954
– 1.0
2.0
0.989
– 2.0
11.27
179
0.0028
89
0.954
– 2.0
5.0
0.988
– 5.0
11.26
176
0.0069
86
0.954
– 4.0
10
0.985
20
0.977
– 10
11.20
173
0.014
83
0.951
– 9.0
– 20
10.99
166
0.027
76
0.938
– 18
30
0.965
– 30
10.66
159
0.039
69
0.918
– 26
40
0.950
– 39
10.25
153
0.051
63
0.895
– 34
50
0.931
– 47
9.777
147
0.060
57
0.867
– 42
60
0.912
– 53
9.359
142
0.069
53
0.846
– 49
70
0.892
– 58
8.960
138
0.077
49
0.828
– 56
80
0.874
– 62
8.583
135
0.085
46
0.815
– 62
90
0.855
– 66
8.190
131
0.091
43
0.801
– 68
100
0.833
– 70
7.808
128
0.096
40
0.785
– 74
|S12|
±
S22
±
φ
110
0.827
– 73
7.661
125
0.101
38
0.784
– 77
120
0.821
– 76
7.515
122
0.107
36
0.784
– 82
130
0.814
– 79
7.368
119
0.113
34
0.784
– 85
140
0.808
– 82
7.222
116
0.119
32
0.783
– 88
150
0.802
– 86
7.075
114
0.125
31
0.783
– 90
160
0.788
– 89
6.810
112
0.127
30
0.780
– 92
170
0.774
– 92
6.540
110
0.128
28
0.774
– 94
180
0.763
– 94
6.220
108
0.130
26
0.762
– 98
190
0.751
– 97
5.903
106
0.132
24
0.760
– 100
200
0.740
– 100
5.784
104
0.134
23
0.758
– 103
225
0.719
– 104
5.334
100
0.136
20
0.757
– 107
250
0.704
– 108
4.904
97
0.139
19
0.758
– 110
275
0.687
– 113
4.551
92
0.141
16
0.757
– 114
300
0.673
– 117
4.219
89
0.141
14
0.750
– 117
325
0.668
– 120
3.978
86
0.142
12
0.757
– 120
350
0.669
– 123
3.737
83
0.142
10
0.766
– 121
375
0.662
– 125
3.519
80
0.143
9.0
0.768
– 123
400
0.654
– 127
3.325
77
0.142
8.0
0.772
– 124
425
0.650
– 129
3.170
75
0.140
7.0
0.772
– 125
450
0.638
– 131
3.048
72
0.141
6.0
0.783
– 125
475
0.614
– 132
2.898
71
0.136
6.0
0.786
– 126
500
0.641
– 133
2.833
68
0.136
5.0
0.795
– 127
525
0.638
– 135
2.709
66
0.135
5.0
0.801
– 127
550
0.633
– 137
2.574
64
0.133
4.0
0.802
– 128
575
0.628
– 138
2.481
62
0.131
5.0
0.805
– 128
600
0.625
– 140
2.408
60
0.129
5.0
0.814
The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port.
The scattering parameters were measured on the MRF134 device alone with no external components.
– 128
(continued)
Table 1. Common Source Scattering Parameters
VDS = 28 V, ID = 100 mA
MRF134
6
MOTOROLA RF DEVICE DATA
S11
S21
f
(MHz)
|S11|
625
0.619
– 142
650
0.617
675
±
φ
φ
|S12|
2.334
58
– 144
2.259
0.618
– 146
700
0.619
725
0.618
750
±
S22
φ
|S22|
0.128
5.0
0.818
– 129
56
0.125
6.0
0.824
– 130
2.192
55
0.123
7.0
0.834
– 130
– 147
2.124
53
0.122
8.0
0.851
– 131
– 150
2.061
51
0.120
9.0
0.859
– 132
0.614
– 152
1.983
49
0.118
11
0.857
– 133
775
0.609
– 154
1.908
48
0.119
13
0.865
– 133
800
0.562
– 155
1.877
49
0.118
15
0.872
– 133
825
0.587
– 156
1.869
46
0.119
16
0.869
– 134
850
0.593
– 158
1.794
44
0.118
18
0.875
– 135
875
0.597
– 160
1.749
43
0.119
18
0.881
– 135
900
0.598
– 162
1.700
41
0.118
18
0.889
– 136
925
0.592
– 164
1.641
40
0.115
18
0.888
– 138
950
0.588
– 166
1.590
39
0.112
20
0.877
– 138
975
0.586
– 168
1.572
39
0.108
23
0.864
– 137
1000
0.590
– 171
1.551
37
0.107
28
0.863
– 137
|S21|
±
S12
±
φ
The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were
measurd on the MRF134 device alone with no external components.
Table 1. Common Source Scattering Parameters (continued)
VDS = 28 V, ID = 100 mA
MOTOROLA RF DEVICE DATA
MRF134
7
+ j50
+ 90°
+ j25
+ 60°
+120°
+ j100
+ j150
S12
+150°
+ j10
+ j250
100 150
50
+ j500
10
0
25
50
100
150
.20
250 500
180°
f = 1000
MHz
.18 .16 .14 .12 .10 .08 .06 .04 .02
+ 30°
200
300
500
0°
f = 1000 MHz
– j500
– j10
500
400
300
– j250
200
150 100
50
– j150
– 30°
–150°
– j100
– j25
– 60°
–120°
– 90°
– j50
Figure 16. S11, Input Reflection Coefficient
versus Frequency
VDS = 28 V ID = 100 mA
Figure 17. S12, Reverse Transmission Coefficient
versus Frequency
VDS = 28 V ID = 100 mA
+ j50
+ 90°
+ 60°
+120°
+ j25
+ j100
100 150
+150°
f = 50 MHz
S21
.10
180°
+ j150
200
+ 30°
+ j10
300
400
500
+ j500
1000
9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
+ j250
0°
0
10
25
50
100
150
250 500
– j500
– j250
– j10
– 30°
–150°
f = 1000 MHz
500
– 60°
–120°
– 90°
Figure 18. S21, Forward Transmission Coefficient
versus Frequency
VDS = 28 V ID = 100 mA
MRF134
8
– j25
S22
50
300 200
150 100
80
– j150
– j100
– j50
Figure 19. S22, Output Reflection Coefficient
versus Frequency
VDS = 28 V ID = 100 mA
MOTOROLA RF DEVICE DATA
DESIGN CONSIDERATIONS
The MRF134 is a RF power N–Channel enhancement
mode field–effect transistor (FET) designed especially for
VHF power amplifier and oscillator applications. Motorola RF
MOS FETs feature a vertical structure with a planar design,
thus avoiding the processing difficulties associated with
V–groove vertical power FETs.
Motorola Application Note AN–211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high gain,
low noise, simple bias systems, relative immunity from
thermal runaway, and the ability to withstand severely
mismatched loads without suffering damage. Power output
can be varied over a wide range with a low power dc control
signal, thus facilitating manual gain control, ALC and modulation.
DC BIAS
The MRF134 is an enhancement mode FET and, therefore,
does not conduct when drain voltage is applied. Drain current
flows when a positive voltage is applied to the gate. See Figure
9 for a typical plot of drain current versus gate voltage. RF
power FETs require forward bias for optimum performance.
The value of quiescent drain current (IDQ) is not critical for
many applications. The MRF134 was characterized at IDQ =
50 mA, which is the suggested minimum value of IDQ. For
special applications such as linear amplification, IDQ may
have to be selected to optimize the critical parameters.
The gate is a dc open circuit and draws no current.
Therefore, the gate bias circuit may generally be just a simple
resistive divider network. Some special applications may
require a more elaborate bias system.
MOTOROLA RF DEVICE DATA
GAIN CONTROL
Power output of the MRF134 may be controlled from its
rated value down to zero (negative gain) by varying the dc gate
voltage. This feature facilitates the design of manual gain
control, AGC/ALC and modulation systems. (See Figure 8.)
AMPLIFIER DESIGN
Impedance matching networks similar to those used with
bipolar VHF transistors are suitable for MRF134. See
Motorola Application Note AN721, Impedance Matching
Networks Applied to RF Power Transistors. The higher input
impedance of RF MOS FETs helps ease the task of broadband
network design. Both small signal scattering parameters and
large signal impedances are provided. While the s–parameters will not produce an exact design solution for high power
operation, they do yield a good first approximation. This is an
additional advantage of RF MOS power FETs.
RF power FETs are triode devices and, therefore, not
unilateral. This, coupled with the very high gain of the
MRF134, yields a device capable of self oscillation. Stability
may be achieved by techniques such as drain loading, input
shunt resistive loading, or output to input feedback. The
MRF134 was characterized with a 68–ohm input shunt
loading resistor. Two port parameter stability analysis with the
MRF134 s–parameters provides a useful–tool for selection of
loading or feedback circuitry to assure stable operation. See
Motorola Application Note AN215A for a discussion of two port
network theory and stability.
Input resistive loading is not feasible in low noise applications. The MRF134 noise figure data was generated in a circuit
with drain loading and a low loss input network.
MRF134
9
PACKAGE DIMENSIONS
A
U
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
M
Q
M
1
DIM
A
B
C
D
E
H
J
K
M
Q
R
S
U
4
R
2
S
B
3
D
K
STYLE 2:
PIN 1.
2.
3.
4.
J
C
H
E
INCHES
MIN
MAX
0.960
0.990
0.370
0.390
0.229
0.281
0.215
0.235
0.085
0.105
0.150
0.108
0.004
0.006
0.395
0.405
40 _
50 _
0.113
0.130
0.245
0.255
0.790
0.810
0.720
0.730
MILLIMETERS
MIN
MAX
24.39
25.14
9.40
9.90
5.82
7.13
5.47
5.96
2.16
2.66
3.81
4.57
0.11
0.15
10.04
10.28
40 _
50 _
2.88
3.30
6.23
6.47
20.07
20.57
18.29
18.54
SOURCE
GATE
SOURCE
DRAIN
SEATING
PLANE
CASE 211–07
ISSUE N
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
MRF134
10
◊
*MRF134/D*
MRF134/D
MOTOROLA RF DEVICE
DATA