Order this document by MRF134/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line N–Channel Enhancement–Mode . . . designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range. • Guaranteed 28 Volt, 150 MHz Performance Output Power = 5.0 Watts Minimum Gain = 11 dB Efficiency — 55% (Typical) 5.0 W, to 400 MHz N–CHANNEL MOS BROADBAND RF POWER FET • Small–Signal and Large–Signal Characterization • Typical Performance at 400 MHz, 28 Vdc, 5.0 W Output = 10.6 dB Gain • 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR • Low Noise Figure — 2.0 dB (Typ) at 200 mA, 150 MHz • Excellent Thermal Stability, Ideally Suited For Class A Operation D G CASE 211–07, STYLE 2 S MAXIMUM RATINGS Rating Symbol Value Unit Drain–Source Voltage VDSS 65 Vdc Drain–Gate Voltage (RGS = 1.0 MΩ) VDGR 65 Vdc VGS ± 40 Vdc Drain Current — Continuous ID 0.9 Adc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 17.5 0.1 Watts W/°C Storage Temperature Range Tstg – 65 to +150 °C Symbol Value Unit RθJC 10 °C/W Gate–Source Voltage THERMAL CHARACTERISTICS Rating Thermal Resistance, Junction to Case Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 6 RF DEVICE DATA MOTOROLA Motorola, Inc. 1994 MRF134 1 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit V(BR)DSS 65 — — Vdc Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) IDSS — — 1.0 mAdc Gate–Source Leakage Current (VGS = 20 V, VDS = 0) IGSS — — 1.0 µAdc VGS(th) 1.0 3.5 6.0 Vdc gfs 80 110 — mmhos Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss — 7.0 — pF Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss — 9.7 — pF Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss — 2.3 — pF Noise Figure (VDS = 28 Vdc, ID = 200 mA, f = 150 MHz) NF — 2.0 — dB Common Source Power Gain (VDD = 28 Vdc, Pout = 5.0 W, IDQ = 50 mA) f = 150 MHz (Fig. 1) f = 400 MHz (Fig. 14) Gps OFF CHARACTERISTICS Drain–Source Breakdown Voltage (VGS = 0, ID = 5.0 mA) ON CHARACTERISTICS Gate Threshold Voltage (ID = 10 mA, VDS = 10 V) Forward Transconductance (VDS = 10 V, ID = 100 mA) DYNAMIC CHARACTERISTICS FUNCTIONAL CHARACTERISTICS Drain Efficiency (Fig. 1) (VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA) η Electrical Ruggedness (Fig. 1) (VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA, VSWR 30:1 at all Phase Angles) ψ dB 11 — 14 10.6 — — 50 55 — % No Degradation in Output Power L4 R3* R4 D1 + C7 + C8 L3 R2 C5 – R5 C10 VDD = 28 V C11 C9 C12 C6 C4 R1 RF OUTPUT L2 L1 RF INPUT C3 DUT C1 C2 *Bias Adjust C1, C4 — Arco 406, 15– 115 pF C2 — Arco 403, 3.0– 35 pF C3 — Arco 402, 1.5– 20 pF C5, C6, C7, C8, C12 — 0.1 µF Erie Redcap C9 — 10 µF, 50 V C10, C11 — 680 pF Feedthru D1 — 1N5925A Motorola Zener L1 — 3 Turns, 0.310″ ID, #18 AWG Enamel, 0.2″ Long L2 — 3–1/2 Turns, 0.310″ ID, #18 AWG Enamel, 0.25″ Long L3 — 20 Turns, #20 AWG Enamel Wound on R5 L4 — Ferroxcube VK–200 — 19/4B R1 — 68 Ω, 1.0 W Thin Film R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ Beckman Instruments 8108 R4 — 1.8 kΩ, 1/2 W R5 — 1.0 MΩ, 2.0 W Carbon Board — G10, 62 mils Figure 1. 150 MHz Test Circuit MRF134 2 MOTOROLA RF DEVICE DATA 5 f = 100 MHz 150 225 400 8 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 10 6 4 2 0 VDD = 28 V IDQ = 50 mA 0 200 400 600 Pin, INPUT POWER (MILLWATTS) 800 4 150 225 3 400 2 1 0 1000 f = 100 MHz VDD = 13.5 V IDQ = 50 mA 0 Figure 2. Output Power versus Input Power 8 Pin = 600 mW 300 mW 6 150 mW 4 2 0 12 IDQ = 50 mA f = 100 MHz 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 1000 Pin = 800 mW 400 mW 4 200 mW 2 IDQ = 50 mA f = 150 MHz 0 12 28 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 Figure 5. Output Power versus Supply Voltage 8 8 Pin = 800 mW Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 800 6 Figure 4. Output Power versus Supply Voltage 6 400 mW 4 200 mW 2 IDQ = 50 mA f = 225 MHz 0 12 400 600 Pin, INPUT POWER (MILLWATTS) Figure 3. Output Power versus Input Power Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 8 200 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 Figure 6. Output Power versus Supply Voltage MOTOROLA RF DEVICE DATA 28 Pin = 800 mW IDQ = 50 mA f = 400 MHz 6 400 mW 4 200 mW 2 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 Figure 7. Output Power versus Supply Voltage MRF134 3 500 VDD = 28 V IDQ = 50 mA Pin = CONSTANT 5 I D, DRAIN CURRENT (MILLAMPS) Pout , OUTPUT POWER (WATTS) 6 f = 400 MHz 4 150 MHz 3 2 1 TYPICAL DEVICE SHOWN, VGS(th) = 3.5 V 0 –2 –1 0 1 2 3 VGS, GATE–SOURCE VOLTAGE (VOLTS) 4 300 200 TYPICAL DEVICE SHOWN, VGS(th) = 3.5 V 100 0 5 VDS = 10 V 400 0 VDD = 28 V IDQ = 200 mA 1 8 0.98 100 mA 0.96 50 mA 0.94 0.92 0.9 – 25 0 25 50 75 100 TC, CASE TEMPERATURE (°C) 125 40 20 10 0 150 |S21|2 GMAX = (1 – |S11|2) (1 – |S22|2) 30 VDS = 28 V ID = 100 mAdc 1 Figure 10. Gate–Source Voltage versus Case Temperature 10 100 f, FREQUENCY (MHz) 1000 Figure 11. Maximum Available Gain versus Frequency 1 28 I D, DRAIN CURRENT (AMPS) VGS = 0 V f = 1 MHz 24 C, CAPACITANCE (pF) 7 50 1.02 20 16 12 Coss 8 Ciss 4 Crss 0 2 3 4 5 6 VGS, GATE–SOURCE VOLTAGE (VOLTS) Figure 9. Drain Current versus Gate Voltage (Transfer Characteristics) G MAX, MAXIMUM AVAILABLE GAIN (dB) VGS, GATE-SOURCE VOLTAGE (NORMALIZED) Figure 8. Output Power versus Gate Voltage 1 0 4 8 12 16 20 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) 24 Figure 12. Capacitance versus Voltage MRF134 4 28 0.7 0.5 0.3 0.2 TC = 25°C 0.1 0.07 0.05 0.03 0.02 0.01 1 2 5 10 20 50 70 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) 100 Figure 13. Maximum Rated Forward Biased Safe Operating Area MOTOROLA RF DEVICE DATA L2 R3* R4 C11 + C9 D1 C10 VDD = 28 V C12 C13 C14 – L1 R2 C7 Z4 C8 Z5 C6 RF OUTPUT R1 C1 Z1 Z2 Z3 RF INPUT C4 DUT C2 C5 C3 *Bias Adjust R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ Beckman Instruments 8108 R4 — 1.8 kΩ, 1/2 W Z1 — 1.4″ x 0.166″ Microstrip Z2 — 1.1″ x 0.166″ Microstrip Z3 — 0.95″ x 0.166″ Microstrip Z4 — 2.2″ x 0.166″ Microstrip Z5 — 0.85″ x 0.166″ Microstrip Board — Glass Teflon, 62 mils C1, C6 — 270 pF, ATC 100 mils C2, C3, C4, C5 — 0–20 pF Johanson C7, C9, C10, C14 — 0.1 µF Erie Redcap, 50 V C8 — 0.001 µF C11 — 10 µF, 50 V C12, C13 — 680 pF Feedthru D1 — 1N5925A Motorola Zener L1 — 6 Turns, 1/4″ ID, #20 AWG Enamel L2 — Ferroxcube VK–200 — 19/4B R1 — 68 Ω, 1.0 W Thin Film Figure 14. 400 MHz Test Circuit 400 VDD = 28 V, IDQ = 50 mA, Pout = 5.0 W Zo = 50 Ω 225 Zin{ 150 400 f = 100 MHz 225 150 f = 100 MHz f MHz Zin{ Ohms ZOL* Ohms 100 150 225 400 21.2 – j25.4 14.6 – j22.1 9.1 – j18.8 6.4 – j10.8 20.1 – j46.7 19.2 – j38.2 17.5 – j33.5 16.9 – j26.9 {68 Ω Shunt Resistor Gate–to–Ground ZOL* ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency. Figure 15. Large–Signal Series Equivalent Input/Output Impedances, Zin†, ZOL* MOTOROLA RF DEVICE DATA MRF134 5 S11 f (MHz) |S11| 1.0 S21 ± S12 φ |S21| ± φ φ |S22| 0.989 – 1.0 11.27 179 0.0014 89 0.954 – 1.0 2.0 0.989 – 2.0 11.27 179 0.0028 89 0.954 – 2.0 5.0 0.988 – 5.0 11.26 176 0.0069 86 0.954 – 4.0 10 0.985 20 0.977 – 10 11.20 173 0.014 83 0.951 – 9.0 – 20 10.99 166 0.027 76 0.938 – 18 30 0.965 – 30 10.66 159 0.039 69 0.918 – 26 40 0.950 – 39 10.25 153 0.051 63 0.895 – 34 50 0.931 – 47 9.777 147 0.060 57 0.867 – 42 60 0.912 – 53 9.359 142 0.069 53 0.846 – 49 70 0.892 – 58 8.960 138 0.077 49 0.828 – 56 80 0.874 – 62 8.583 135 0.085 46 0.815 – 62 90 0.855 – 66 8.190 131 0.091 43 0.801 – 68 100 0.833 – 70 7.808 128 0.096 40 0.785 – 74 |S12| ± S22 ± φ 110 0.827 – 73 7.661 125 0.101 38 0.784 – 77 120 0.821 – 76 7.515 122 0.107 36 0.784 – 82 130 0.814 – 79 7.368 119 0.113 34 0.784 – 85 140 0.808 – 82 7.222 116 0.119 32 0.783 – 88 150 0.802 – 86 7.075 114 0.125 31 0.783 – 90 160 0.788 – 89 6.810 112 0.127 30 0.780 – 92 170 0.774 – 92 6.540 110 0.128 28 0.774 – 94 180 0.763 – 94 6.220 108 0.130 26 0.762 – 98 190 0.751 – 97 5.903 106 0.132 24 0.760 – 100 200 0.740 – 100 5.784 104 0.134 23 0.758 – 103 225 0.719 – 104 5.334 100 0.136 20 0.757 – 107 250 0.704 – 108 4.904 97 0.139 19 0.758 – 110 275 0.687 – 113 4.551 92 0.141 16 0.757 – 114 300 0.673 – 117 4.219 89 0.141 14 0.750 – 117 325 0.668 – 120 3.978 86 0.142 12 0.757 – 120 350 0.669 – 123 3.737 83 0.142 10 0.766 – 121 375 0.662 – 125 3.519 80 0.143 9.0 0.768 – 123 400 0.654 – 127 3.325 77 0.142 8.0 0.772 – 124 425 0.650 – 129 3.170 75 0.140 7.0 0.772 – 125 450 0.638 – 131 3.048 72 0.141 6.0 0.783 – 125 475 0.614 – 132 2.898 71 0.136 6.0 0.786 – 126 500 0.641 – 133 2.833 68 0.136 5.0 0.795 – 127 525 0.638 – 135 2.709 66 0.135 5.0 0.801 – 127 550 0.633 – 137 2.574 64 0.133 4.0 0.802 – 128 575 0.628 – 138 2.481 62 0.131 5.0 0.805 – 128 600 0.625 – 140 2.408 60 0.129 5.0 0.814 The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measured on the MRF134 device alone with no external components. – 128 (continued) Table 1. Common Source Scattering Parameters VDS = 28 V, ID = 100 mA MRF134 6 MOTOROLA RF DEVICE DATA S11 S21 f (MHz) |S11| 625 0.619 – 142 650 0.617 675 ± φ φ |S12| 2.334 58 – 144 2.259 0.618 – 146 700 0.619 725 0.618 750 ± S22 φ |S22| 0.128 5.0 0.818 – 129 56 0.125 6.0 0.824 – 130 2.192 55 0.123 7.0 0.834 – 130 – 147 2.124 53 0.122 8.0 0.851 – 131 – 150 2.061 51 0.120 9.0 0.859 – 132 0.614 – 152 1.983 49 0.118 11 0.857 – 133 775 0.609 – 154 1.908 48 0.119 13 0.865 – 133 800 0.562 – 155 1.877 49 0.118 15 0.872 – 133 825 0.587 – 156 1.869 46 0.119 16 0.869 – 134 850 0.593 – 158 1.794 44 0.118 18 0.875 – 135 875 0.597 – 160 1.749 43 0.119 18 0.881 – 135 900 0.598 – 162 1.700 41 0.118 18 0.889 – 136 925 0.592 – 164 1.641 40 0.115 18 0.888 – 138 950 0.588 – 166 1.590 39 0.112 20 0.877 – 138 975 0.586 – 168 1.572 39 0.108 23 0.864 – 137 1000 0.590 – 171 1.551 37 0.107 28 0.863 – 137 |S21| ± S12 ± φ The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measurd on the MRF134 device alone with no external components. Table 1. Common Source Scattering Parameters (continued) VDS = 28 V, ID = 100 mA MOTOROLA RF DEVICE DATA MRF134 7 + j50 + 90° + j25 + 60° +120° + j100 + j150 S12 +150° + j10 + j250 100 150 50 + j500 10 0 25 50 100 150 .20 250 500 180° f = 1000 MHz .18 .16 .14 .12 .10 .08 .06 .04 .02 + 30° 200 300 500 0° f = 1000 MHz – j500 – j10 500 400 300 – j250 200 150 100 50 – j150 – 30° –150° – j100 – j25 – 60° –120° – 90° – j50 Figure 16. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 100 mA Figure 17. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 100 mA + j50 + 90° + 60° +120° + j25 + j100 100 150 +150° f = 50 MHz S21 .10 180° + j150 200 + 30° + j10 300 400 500 + j500 1000 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 + j250 0° 0 10 25 50 100 150 250 500 – j500 – j250 – j10 – 30° –150° f = 1000 MHz 500 – 60° –120° – 90° Figure 18. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 100 mA MRF134 8 – j25 S22 50 300 200 150 100 80 – j150 – j100 – j50 Figure 19. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 100 mA MOTOROLA RF DEVICE DATA DESIGN CONSIDERATIONS The MRF134 is a RF power N–Channel enhancement mode field–effect transistor (FET) designed especially for VHF power amplifier and oscillator applications. Motorola RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V–groove vertical power FETs. Motorola Application Note AN–211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF134 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF134 was characterized at IDQ = 50 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system. MOTOROLA RF DEVICE DATA GAIN CONTROL Power output of the MRF134 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 8.) AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF134. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s–parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs. RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF134, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The MRF134 was characterized with a 68–ohm input shunt loading resistor. Two port parameter stability analysis with the MRF134 s–parameters provides a useful–tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A for a discussion of two port network theory and stability. Input resistive loading is not feasible in low noise applications. The MRF134 noise figure data was generated in a circuit with drain loading and a low loss input network. MRF134 9 PACKAGE DIMENSIONS A U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. M Q M 1 DIM A B C D E H J K M Q R S U 4 R 2 S B 3 D K STYLE 2: PIN 1. 2. 3. 4. J C H E INCHES MIN MAX 0.960 0.990 0.370 0.390 0.229 0.281 0.215 0.235 0.085 0.105 0.150 0.108 0.004 0.006 0.395 0.405 40 _ 50 _ 0.113 0.130 0.245 0.255 0.790 0.810 0.720 0.730 MILLIMETERS MIN MAX 24.39 25.14 9.40 9.90 5.82 7.13 5.47 5.96 2.16 2.66 3.81 4.57 0.11 0.15 10.04 10.28 40 _ 50 _ 2.88 3.30 6.23 6.47 20.07 20.57 18.29 18.54 SOURCE GATE SOURCE DRAIN SEATING PLANE CASE 211–07 ISSUE N Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. MRF134 10 ◊ *MRF134/D* MRF134/D MOTOROLA RF DEVICE DATA