INTERSIL HUF76121P3

HUF76121P3, HUF76121S3S
Data Sheet
47A, 30V, 0.021 Ohm, N-Channel, Logic
Level UltraFET Power MOSFETs
These N-Channel power MOSFETs
are manufactured using the
innovative UltraFET™ process.
This advanced process technology
achieves the lowest possible on-resistance per silicon area,
resulting in outstanding performance. This device is capable
of withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable
and battery-operated products.
September 1999
File Number
4392.8
Features
• Logic Level Gate Drive
• 47A, 30V
• Ultra Low On-Resistance, rDS(ON) = 0.021Ω
• Temperature Compensating PSPICE® Model
• Temperature Compensating SABER© Model
• Thermal Impedance SPICE Model
• Thermal Impedance SABER Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Formerly developmental type TA76121.
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
Symbol
PART NUMBER
PACKAGE
BRAND
HUF76121P3
TO-220AB
76121P
HUF76121S3S
TO-263AB
76121S
D
G
NOTE: When ordering, use the entire part number. Add the suffix T to
obtain the TO-263AB variant in tape and reel, e.g., HUF76121S3ST.
S
Packaging
JEDEC TO-220AB
JEDEC TO-263AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
DRAIN
(FLANGE)
GATE
SOURCE
94
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
SABER© is a Copyright of Analogy Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
HUF76121P3, HUF76121S3S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
30
V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
30
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±16
V
Drain Current
Continuous (TC = 25oC, VGS = 10V) (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
47
25
24
Figure 4
A
A
A
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Figures 6, 17,18
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
0.6
W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
-40 to 150
oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications
TA = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
30
-
-
V
VDS = 25V, VGS = 0V
-
-
1
µA
VDS = 25V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±16V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
BVDSS
IDSS
IGSS
ID = 250µA, VGS = 0V (Figure 12)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 11)
1
-
3
V
Drain to Source On Resistance
rDS(ON)
ID = 47A, VGS = 10V (Figures 9, 10)
-
0.015
0.021
Ω
ID = 25A, VGS = 5V (Figure 9)
-
0.019
0.028
Ω
ID = 24A, VGS = 4.5V (Figure 9)
-
0.021
0.031
Ω
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
1.66
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-220 and TO-263
-
-
62
oC/W
tON
VDD = 15V, ID ≅ 24A, RL = 0.63Ω,
VGS = 4.5V, RGS = 10.0Ω
(Figures 15, 21, 22)
-
-
265
ns
-
15
-
ns
tr
-
160
-
ns
td(OFF)
-
14
-
ns
tf
-
31
-
ns
tOFF
-
-
70
ns
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Time
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
95
HUF76121P3, HUF76121S3S
Electrical Specifications
TA = 25oC, Unless Otherwise Specified (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
-
80
ns
-
6
-
ns
tr
-
47
-
ns
td(OFF)
-
47
-
ns
tf
-
42
-
ns
tOFF
-
-
135
ns
-
24
30
nC
-
13
16
nC
-
1.0
1.2
nC
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 15V, ID ≅ 47A, RL = 0.32Ω,
VGS = 10V, RGS = 12.5Ω
(Figures 16, 21, 22)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
Gate Charge at 5V
Qg(5)
Threshold Gate Charge
Qg(TH)
VGS = 0V to 10V VDD = 15V, ID ≅ 25A,
RL = 0.6Ω
VGS = 0V to 5V
Ig(REF) = 1.0mA
(Figures 14, 19, 20)
VGS = 0V to 1V
Gate to Source Gate Charge
Qgs
-
2.50
-
nC
Gate to Drain “Miller” Charge
Qgd
-
7.80
-
nC
-
850
-
pF
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
VDS = 25V, VGS = 0V, f = 1MHz
(Figure 13)
Output Capacitance
COSS
-
465
-
pF
Reverse Transfer Capacitance
CRSS
-
100
-
pF
MIN
TYP
MAX
UNITS
ISD = 25A
-
-
1.25
V
trr
ISD = 25A, dISD/dt = 100A/µs
-
-
65
ns
QRR
ISD = 25A, dISD/dt = 100A/µs
-
-
100
nC
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
Reverse Recovered Charge
TEST CONDITIONS
Typical Performance Curves
50
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
0.2
0
40
VGS = 10V
30
VGS = 4.5V
20
10
0
0
25
50
75
100
125
TA , AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
96
150
25
50
75
100
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
HUF76121P3, HUF76121S3S
Typical Performance Curves
(Continued)
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
IDM, PEAK CURRENT (A)
1000
TC = 25oC
VGS = 10V
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
I
= I25
150 - TC
125
VGS = 5V
100
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
40
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
TJ = MAX RATED
TC = 25oC
100
100µs
1ms
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
10ms
500
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
1000
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100
STARTING TJ = 25oC
10
STARTING TJ = 150oC
BVDSS MAX = 30V
1
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
100
1
0.001
0.01
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
100
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
97
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
HUF76121P3, HUF76121S3S
Typical Performance Curves
(Continued)
100
100
VGS = 10V
VGS = 5V
-40oC
80
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
25oC
150oC
60
40
20
VGS = 4.5V
80
VGS = 4V
60
VGS = 3.5V
40
VGS = 3V
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
0
0
0
1
2
3
4
0
5
1
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
ID = 47A
35
ID = 28A
30
25
20
ID = 15A
15
1.6
4
5
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 47A
1.4
1.2
1.0
0.8
10
2
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
-60
10
0
60
120
180
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. SOURCE TO DRAIN ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
1.0
0.8
0.6
-60
0
60
120
180
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
98
NORMALIZED DRAIN TO SOURCE
BREAKOWN VOLTAGE
1.2
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
3
FIGURE 8. SATURATION CHARACTERISTICS
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
40
2
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID = 250µA
1.1
1.0
0.9
-60.0
0.0
60.0
120
180
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
HUF76121P3, HUF76121S3S
1200
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
CISS
C, CAPACITANCE (pF)
(Continued)
900
COSS
600
300
CRSS
10
VGS , GATE TO SOURCE VOLTAGE (V)
Typical Performance Curves
8
6
4
2
VDD = 15V
WAVEFORMS IN
DESCENDING ORDER:
ID = 47A
ID = 28A
ID = 15A
0
0
0
5
10
15
20
25
VDS , DRAIN TO SOURCE VOLTAGE (V)
0
30
5
10
15
Qg, GATE CHARGE (nC)
20
25
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
200
500
VGS = 10V, VDD = 15V, ID = 47A, RL = 0.32Ω
400
SWITCHING TIME (ns)
SWITCHING TIME (ns)
VGS = 4.5V, VDD = 15V, ID = 24A, RL = 0.63Ω
tr
300
200
td(OFF)
tf
td(OFF)
150
tf
100
tr
50
100
td(ON)
td(ON)
0
0
0
10
20
30
40
0
50
RGS, GATE TO SOURCE RESISTANCE (Ω)
10
20
30
40
50
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
99
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
HUF76121P3, HUF76121S3S
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
IgREF)
0
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
0
10%
DUT
90%
RGS
VGS
VGS
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT
100
10%
50%
50%
PULSE WIDTH
FIGURE 22. SWITCHING TIME WAVEFORM
HUF76121P3, HUF76121S3S
PSPICE Electrical Model
.SUBCKT HUF76121 2 1 3 ;
rev March 1998
CA 12 8 1.2e-9
CB 15 14 1.23e-9
CIN 6 8 7.6e-10
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
DBREAK
+
RSLC2
5
51
ESLC
11
-
EBREAK 11 7 17 18 33.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LDRAIN 2 5 1e-9
LGATE 1 9 3.57e-9
LSOURCE 3 7 4.25e-9
+
17
EBREAK 18
50
-
IT 8 17 1
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2.5e-3
RGATE 9 20 4
RLDRAIN 2 5 10
RLGATE 1 9 35.7
RLSOURCE 3 7 42.5
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 10e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
RLDRAIN
RSLC1
51
S2A
14
13
13
8
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
-
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*181),4))}
.MODEL DBODYMOD D (IS = 4e-13 RS = 6.3e-3 TRS1 = 1e-3 TRS2 = 3e-6 CJO = 1.33e-9 TT = 2.8e-8 M = 0.4 XTI = 4.3 N = 0.95 IKF = 5)
.MODEL DBREAKMOD D (RS = 1.05e-1 TRS1 = 0 TRS2 = 2.5e-5)
.MODEL DPLCAPMOD D (CJO = 7.8e-10 IS = 1e-30 N = 10 M = 0.63)
.MODEL MMEDMOD NMOS (VTO = 1.8 KP = 3.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 4)
.MODEL MSTROMOD NMOS (VTO = 2.08 KP = 65 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.54 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 40 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 9.7e-4 TC2 = 7e-7)
.MODEL RDRAINMOD RES (TC1 = 1.6e-2 TC2 = 4e-5)
.MODEL RSLCMOD RES (TC1 = 5e-3 TC2 = 8e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -1.7e-3 TC2 = -4e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.2e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -5 VOFF= -3)
VON = -3 VOFF= -5)
VON = -0.5 VOFF= 2)
VON = 2 VOFF= -0.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
101
HUF76121P3, HUF76121S3S
SABER Electrical Model
REV March 1998
template huf76121 n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 4e-13, xti = 4.3, cjo = 1.33e-9, tt = 2.8e-8, n = 0.95, m = 0.4)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 7.8e-10, is = 1e-30, n = 10, m = 0.63)
m..model mmedmod = (type=_n, vto = 1.8, kp = 3.5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.08, kp = 65, is = 1e-30, tox = 1)
DPLCAP
m..model mweakmod = (type=_n, vto = 1.54, kp = 0.1, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -3)
10
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -5)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 2)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2, voff = -0.5)
LDRAIN
DRAIN
2
5
RLDRAIN
RSLC1
51
RDBREAK
RSLC2
c.ca n12 n8 = 1.2e-9
c.cb n15 n14 = 1.23e-9
c.cin n6 n8 = 7.6e-10
72
ISCL
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
GATE
1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 3.57e-9
l.lsource n3 n7 = 4.25e-9
EVTHRES
+ 19 8
+
LGATE
i.it n8 n17 = 1
RDRAIN
6
8
ESG
EVTEMP
RGATE +
18 22
9
20
21
MWEAK
DBODY
EBREAK
+
17
18
MMED
MSTRO
CIN
-
8
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
LSOURCE
SOURCE
3
7
RSOURCE
RLSOURCE
S1A
12
S2A
14
13
13
8
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/181))** 4))
}
}
-
IT
14
+
+
spe.ebreak n11 n7 n17 n18 = 33.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
102
71
11
16
6
RLGATE
res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = 7e-7
res.rdbody n71 n5 = 6.3e-3, tc1 = 1e-3, tc2 = 3e-6
res.rdbreak n72 n5 = 1.05e-1, tc1 = 0, tc2 = 2.5e-5
res.rdrain n50 n16 = 2.5e-3, tc1 = 1.6e-2, tc2 = 4e-5
res.rgate n9 n20 = 4
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 35.7
res.rlsource n3 n7 = 42.5
res.rslc1 n5 n51 = 1e-6, tc1 = 5e-3, tc2 = 8e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 10e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -1.2e-3, tc2 = 1e-6
res.rvthres n22 n8 = 1, tc1 = -1.7e-3, tc2 = -4e-6
DBREAK
50
-
RDBODY
VBAT
5
8
EDS
-
+
8
22
RVTHRES
HUF76121P3, HUF76121S3S
SPICE Thermal Model
th
JUNCTION
REV March 1998
HUF76121
CTHERM1 th 6 1.1e-3
CTHERM2 6 5 2.9e-3
CTHERM3 5 4 3.2e-3
CTHERM4 4 3 1.5e-2
CTHERM5 3 2 3.9e-1
CTHERM6 2 tl 2.2
RTHERM1
RTHERM1 th 6 1.0e-4
RTHERM2 6 5 2.0e-3
RTHERM3 5 4 3.4e-1
RTHERM4 4 3 4.6e-1
RTHERM5 3 2 1.8e-1
RTHERM6 2 tl 7.0e-2
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
Saber thermal model HUF76121
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 1.1e-3
ctherm.ctherm2 6 5 = 2.9e-3
ctherm.ctherm3 5 4 = 3.2e-3
ctherm.ctherm4 4 3 = 1.5e-2
ctherm.ctherm5 3 2 = 3.9e-1
ctherm.ctherm6 2 tl = 2.2
4
RTHERM4
CTHERM4
3
RTHERM5
rtherm.rtherm1 th 6 = 1.0e-4
rtherm.rtherm2 6 5 = 2.0e-3
rtherm.rtherm3 5 4 = 3.4e-1
rtherm.rtherm4 4 3 = 4.6e-1
rtherm.rtherm5 3 2 = 1.8e-1
rtherm.rtherm6 2 tl = 7.0e-2
}
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
103