INTERSIL HUF76113SK8T

HUF76113SK8
Data Sheet
October 1999
6.5A, 30V, 0.030 Ohm, N-Channel, Logic
Level UltraFET Power MOSFET
File Number
4448.2
Features
• Logic Level Gate Drive
This N-Channel power MOSFET is
manufactured using the innovative
UltraFET™ process. This advanced
process technology achieves the
lowest possible on-resistance per silicon area, resulting in
outstanding performance. This device is capable of
withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators, switching
converters, motor drivers, relay drivers, low-voltage bus
switches, and power management in portable and batteryoperated products.
• 6.5A, 30V
• Ultra Low On-Resistance, rDS(ON) = 0.030Ω
• Temperature Compensating PSPICE™ Model
• Temperature Compensating SABER Model
• Thermal Impedance SPICE Model
• Thermal Impedance SABER Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Formerly developmental type TA76113.
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
Symbol
PART NUMBER
HUF76113SK8
PACKAGE
MS-012AA
BRAND
76113SK8
NC(1)
DRAIN(8)
SOURCE(2)
DRAIN(7)
SOURCE(3)
DRAIN(6)
GATE(4)
DRAIN(5)
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUF76113SK8T.
Packaging
JEDEC MS-012AA
BRANDING DASH
5
1
2
3
1
4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
UltraFET™ is a trademark of Intersil Corporation. PSPICE™ is a trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
HUF76113SK8
Absolute Maximum Ratings
TA = 25oC, Unless Otherwise Specified
HUF76113SK8
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
30
V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
30
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±16
V
Drain Current
Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TA= 100oC, VGS = 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
6.5
2.0
2.0
Figure 4
A
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EASB
Figure 6
Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5
20
W
mW/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
-55 to 150
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. TJ = 25oC to 125oC.
2. 50oC/W measured using FR-4 board with 0.76 in2 footprint at 10 seconds.
3. 177oC/W measured using FR-4 board with 0.0115 in2 footprint at 1000 seconds.
TA = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
30
-
-
V
VDS = 25V, VGS = 0V
-
-
1
µA
VDS = 25V, VGS = 0V, TA = 150oC
-
-
250
µA
VGS = ±16V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
BVDSS
IDSS
Gate to Source Leakage Current
IGSS
ID = 250µA, VGS = 0V (Figure 12)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 11)
1
-
3
V
Drain to Source On Resistance
rDS(ON)
ID = 6.5A, VGS = 10V (Figures 9, 10)
-
0.025
0.030
Ω
ID = 2.0A, VGS = 5V (Figure 9)
-
0.031
0.038
Ω
ID = 2.0A, VGS = 4.5V (Figure 9)
-
0.033
0.041
Ω
Pad Area = 0.76 in2 (Note 2)
-
-
50
oC/W
Pad Area = 0.054 in2 (See TB337)
-
-
143
oC/W
Pad Area = 0.0115 in2 (See TB337)
-
-
177
oC/W
VDD = 15V, ID ≅ 2.0A, RL = 7.5Ω,
VGS = 4.5V, RGS = 15Ω
(Figure 15)
-
-
100
ns
-
16
-
ns
tr
-
50
-
ns
td(OFF)
-
28
-
ns
tf
-
34
-
ns
tOFF
-
-
91
ns
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
2
HUF76113SK8
TA = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
-
59
ns
-
6.5
-
ns
tr
-
33
-
ns
td(OFF)
-
45
-
ns
tf
-
40
-
ns
tOFF
-
-
126
ns
-
17.5
21
nC
-
10
12
nC
-
0.65
0.78
nC
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 15V, ID ≅ 6.5A, RL = 2.31Ω,
VGS = 10V, RGS = 16Ω
(Figure 16)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
Gate Charge at 5V
Qg(5)
Threshold Gate Charge
Qg(TH)
VGS = 0V to 10V VDD = 15V, ID ≅ 2.0A,
RL = 7.5Ω
VGS = 0V to 5V
Ig(REF) = 1.0mA
VGS = 0V to 1V
(Figures 14)
Gate to Source Gate Charge
Qgs
-
1.10
-
nC
Gate to Drain “Miller” Charge
Qgd
-
5.40
-
nC
-
585
-
pF
-
327
-
pF
-
73
-
pF
MIN
TYP
MAX
UNITS
-
-
1.25
V
1.10
V
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V, f = 1MHz
(Figure 13)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
TEST CONDITIONS
ISD =6.5A
ISD = 2.0A
Reverse Recovery Time
Reverse Recovered Charge
trr
ISD = 2.0A, dISD/dt = 100A/µs
-
-
47
ns
QRR
ISD = 2.0A, dISD/dt = 100A/µs
-
-
52
nC
Typical Performance Curves
8
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
0.2
0
0
25
50
75
100
125
150
TA , AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT
TEMPERATURE
3
VGS = 10V, RθJA = 50oC/W
6
4
VGS = 4.5V, RθJA = 177oC/W
2
0
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
AMBIENT TEMPERATURE
HUF76113SK8
Typical Performance Curves
ZθJA, NORMALIZED
THERMAL IMPEDANCE
10
1
(Continued)
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
RθJA = 50oC/W
PDM
0.1
t1
t2
0.01
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
SINGLE PULSE
0.001
10-5
10-4
10-3
10-2
10-1
100
t, RECTANGULAR PULSE DURATION (s)
101
102
103
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
IDM, PEAK CURRENT (A)
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
VGS = 10V
100
CURRENT AS FOLLOWS:
VGS = 5V
I
= I25
150 - TA
125
10
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
1
10-5
10-4
RθJA = 50oC/W
10-3
10-2
10-1
t, PULSE WIDTH (s)
100
101
102
103
FIGURE 4. PEAK CURRENT CAPABILITY
ID, DRAIN CURRENT (A)
TJ = MAX RATED
TA = 25oC
100
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
1
10ms
VDSS(MAX) = 30V
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
100
IAS, AVALANCHE CURRENT (A)
100
500
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
10
STARTING TJ = 150oC
1
0.01
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
100
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
4
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
HUF76113SK8
Typical Performance Curves
(Continued)
30
30
VGS = 10V
VGS = 5V
25oC
-55oC
25
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
VDD = 15V
PULSE DURATION = 80µs
25 DUTY CYCLE = 0.5% MAX
150oC
20
15
10
VGS = 4.5V
15
VGS = 3V
10
5
0
0
0
1
2
3
4
VGS, GATE TO SOURCE VOLTAGE (V)
5
0
1
2.0
PULSE DURATION = 250µs
DUTY CYCLE = 0.5% MAX
100
ID = 2A
50
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
ID = 6.5A
0
0
6
8
2
4
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 6.5A
1.5
1.0
0.5
-80
10
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
1.2
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
VGS = VDS, ID = 250µA
1.0
1.0
0.9
0.8
0.7
0.6
-80
4
3
FIGURE 8. SATURATION CHARACTERISTICS
150
ID = 0.5A
2
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
VGS = 3.5V
VGS = 4V
20
5
NORMALIZED GATE
THRESHOLD VOLTAGE
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
160
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
5
1.1
1.0
0.9
-80
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE (oC)
160
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
HUF76113SK8
Typical Performance Curves
(Continued)
10
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
C, CAPACITANCE (pF)
1000
800
CISS
600
400
COSS
200
CRSS
VGS , GATE TO SOURCE VOLTAGE (V)
1200
VDD = 15V
8
6
4
2
0
0
0
5
15
10
20
30
25
WAVEFORMS IN
DESCENDING ORDER:
ID = 6.5A
ID = 2.0A
ID = 0.5A
5
0
15
10
20
Qg, GATE CHARGE (nC)
VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
150
120
VGS = 10V, VDD = 15V, ID = 6.5A, RL= 2.31Ω
tr
120
90
SWITCHING TIME (ns)
SWITCHING TIME (ns)
VGS = 4.5V, VDD = 15V, ID = 2A, RL= 7.5Ω
tf
60
td(OFF)
30
td(ON)
td(OFF)
90
tf
60
tr
30
td(ON)
0
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
6
50
0
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
50
HUF76113SK8
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORM
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
Ig(REF)
0
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT
7
10%
50%
50%
PULSE WIDTH
FIGURE 22. SWITCHING TIME WAVEFORMS
HUF76113SK8
Thermal Resistance vs. Mounting Pad Area
( T JMAX – T A )
P DMAX = ---------------------------------------Z θJA
(EQ. 1)
In using surface mount devices such as the SO-8 package,
the environment in which it is applied will have a significant
influence on the part’s current and maximum power
dissipation ratings. Precise determination of the PD(MAX) is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board
2. The number of copper layers and the thickness of the
board
3. The use of external heat sinks
4. The use of thermal vias
5. Air flow and board orientation
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Intersil provides thermal information to assist the designer’s
preliminary application evaluation. Figure 23 defines the
RθJA for the device as a function of the top copper
(component side) area. This is for a horizontally positioned
FR-4 board with 1oz copper after 1000 seconds of steady
state power with no air flow. This graph provides the
necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Intersil device Spice
thermal model or manually utilizing the normalized maximum
transient thermal impedance curve.
8
250
RθJA = 79.3 - 21.8*ln(AREA)
200
RθJA (oC/W)
The maximum rated junction temperature, TJ(MAX), and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PD(MAX),
in an application. Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJ(MAX) is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
177 oC/W - 0.0115in2
143 oC/W - 0.054in2
150
100
50
0.001
0.01
0.1
1.0
AREA, TOP COPPER AREA (in2)
FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA
Displayed on the curve are the three RθJA values listed in
the Electrical Specifications table. The three points where
chosen to depict the compromise between the copper board
area, the thermal resistance and ultimately the power
dissipation, PD(MAX). Thermal resistances corresponding to
other component side copper areas can be obtained from
Figure 23 or by calculation using Equation 2. The area, in
square inches is the top copper area including the gate and
source pads.
R θJA = 79.3 – 21.8 × ln ( Area )
(EQ. 2)
HUF76113SK8
PSPICE Electrical Model
SUBCKT HUF76113SK8 2 1 3 ;
REV 4 June 1998
CA 12 8 9.60-10
CB 15 14 9.95e-10
CIN 6 8 5.01e-10
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
DBREAK
+
RSLC2
5
51
ESLC
11
-
EBREAK 11 7 17 18 32.3
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LDRAIN 2 5 1.00e-9
LGATE 1 9 1.00e-9
LSOURCE 3 7 2.27e-10
+
17
EBREAK 18
50
-
IT 8 17 1
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2.01e-3
RGATE 9 20 2.94
RLDRAIN 2 5 10
RLGATE 1 9 10
RLSOURCE 3 7 2.27
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 17.50e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
RLDRAIN
RSLC1
51
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
-
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),2.5))}
.MODEL DBODYMOD D (IS = 9.35e-13 RS = 1.39e-2 TRS1 = 1.12e-6 TRS2 = 1.05e-6 CJO = 9.85e-10 TT = 2.82e-8 M = 0.42 )
.MODEL DBREAKMOD D (RS = 1.91e-1 TRS1 = 3.51e-3 TRS2 = 1.21e-6 )
.MODEL DPLCAPMOD D (CJO = 5.51e-10 IS = 1e-30 N = 10 M = 0.60 )
.MODEL MMEDMOD NMOS (VTO = 1.76 KP = 3.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.94)
.MODEL MSTROMOD NMOS (VTO = 2.08 KP = 37 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.48 KP = 0.095 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 29.4 RS=0.1)
.MODEL RBREAKMOD RES (TC1 = 1.02e-3 TC2 = 1.10e-7)
.MODEL RDRAINMOD RES (TC1 = 4.05e-2 TC2 = 1.12e-4)
.MODEL RSLCMOD RES (TC1 = 9.92e-3 TC2 = -2.06e-5)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -1.87e-3 TC2 = -5.42e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.12e-3 TC2 = 1.12e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -7.00 VOFF= -1.55)
VON = -1.55 VOFF= -7.00)
VON = 0.00 VOFF= 1.05)
VON = 1.05 VOFF= 0.00)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
9
HUF76113SK8
SABER Electrical Model
nom temp=25 deg c HUF76113SK8 Ultrafet
REV 4 June 98
template huf76113sk8 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is=9.35e-13, cjo= 9.85e-10,tt=2.82e-8, m=0.42)
d..model dbreakmod = ()
d..model dplcapmod = (cjo=5.51e-10,is=1e-30,n=10,m=0.60)
m..model mmedmod = (type=_n,vto=1.76,kp=3.55,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.08,kp=37,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.48,kp=0.095,is=1e-30, tox=1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-7.00,voff=-1.55)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.55,voff=-7.00)
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=0,voff=1.05)
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=1.05,voff=0)
LDRAIN
DPLCAP
DRAIN
2
5
10
RSLC1
51
RLDRAIN
RDBREAK
RSLC2
72
ISCL
c.ca n12 n8 = 9.60e-10
c.cb n15 n14 = 9.95e-10
c.cin n6 n8 = 5.01e-10
EVTHRES
+ 19 8
+
LGATE
GATE
1
i.it n8 n17 = 1
RDRAIN
6
8
ESG
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
EVTEMP
RGATE + 18 22
9
20
21
MSTRO
-
8
LSOURCE
7
RLSOURCE
S1A
12
S2A
13
8
S1B
CA
RBREAK
15
14
13
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 2.5 ))
}
}
-
IT
14
+
+
spe.ebreak n11 n7 n17 n18 = 32.3
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
10
DBODY
EBREAK
+
17
18
RSOURCE
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=1.02e-3,tc2=1.10e-7
res.rdbody n71 n5 =1.39e-2, tc1=1.12e-6, tc2=1.05e-6
res.rdbreak n72 n5 =1.91e-1, tc1=3.51e-3, tc2=1.21e-6
res.rdrain n50 n16 = 2.01e-3, tc1=4.05e-2,tc2=1.12e-4
res.rgate n9 n20 = 2.94
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 10
res.rlsource n3 n7 = 2.27
res.rslc1 n5 n51 = 1e-6, tc1=-9.92e-3,tc2=-2.06e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 17.5e-3, tc1=0,tc2=0
res.rvtemp n18 n19 = 1, tc1=-1.12e-3,tc2=1.12e-6
res.rvthres n22 n8 = 1, tc1=-1.87e-3,tc2=-5.42e-6
MWEAK
MMED
CIN
71
11
16
6
RLGATE
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 1e-9
l.lsource n3 n7 = 2.27e-10
DBREAK
50
-
RDBODY
VBAT
5
8
EDS
-
+
8
22
RVTHRES
SOURCE
3
HUF76113SK8
SPICE Thermal Model (0.76 in2 footprint)
th
JUNCTION
REV 3 June 1998
HUF76113SK8
RTHERM1
CTHERM1 th 6 3.75e-4
CTHERM2 6 5 3.05e-3
CTHERM3 5 4 3.70e-2
CTHERM4 4 3 2.52e-2
CTHERM5 3 2 8.50e-2
CTHERM6 2 tl 7.95e-1
CTHERM1
6
RTHERM2
RTHERM1 th 6 3.95e-2
RTHERM2 6 5 2.50e-1
RTHERM3 5 4 4.00e-1
RTHERM4 4 3 6.35
RTHERM5 3 2 2.02e1
RTHERM6 2 tl 4.80e1
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model (0.76 in2 footprint)
4
SABER thermal model HUF76113SK8
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 3.75e-4
ctherm.ctherm2 6 5 = 3.05e-3
ctherm.ctherm3 5 4 = 3.70e-2
ctherm.ctherm4 4 3 = 2.52e-2
ctherm.ctherm5 3 2 = 8.50e-2
ctherm.ctherm6 2 tl = 7.95e-1
RTHERM4
CTHERM4
3
RTHERM5
rtherm.rtherm1 th 6 = 3.95e-2
rtherm.rtherm2 6 5 = 2.50e-1
rtherm.rtherm3 5 4 = 4.00e-1
rtherm.rtherm4 4 3 = 6.35
rtherm.rtherm5 3 2 = 2.02e1
rtherm.rtherm6 2 tl = 4.80e1
}
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
11