HUF76113SK8 Data Sheet October 1999 6.5A, 30V, 0.030 Ohm, N-Channel, Logic Level UltraFET Power MOSFET File Number 4448.2 Features • Logic Level Gate Drive This N-Channel power MOSFET is manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and batteryoperated products. • 6.5A, 30V • Ultra Low On-Resistance, rDS(ON) = 0.030Ω • Temperature Compensating PSPICE™ Model • Temperature Compensating SABER Model • Thermal Impedance SPICE Model • Thermal Impedance SABER Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA76113. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER HUF76113SK8 PACKAGE MS-012AA BRAND 76113SK8 NC(1) DRAIN(8) SOURCE(2) DRAIN(7) SOURCE(3) DRAIN(6) GATE(4) DRAIN(5) NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76113SK8T. Packaging JEDEC MS-012AA BRANDING DASH 5 1 2 3 1 4 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE™ is a trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HUF76113SK8 Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified HUF76113SK8 UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 30 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 30 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±16 V Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 6.5 2.0 2.0 Figure 4 A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EASB Figure 6 Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 20 W mW/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg -55 to 150 oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 footprint at 10 seconds. 3. 177oC/W measured using FR-4 board with 0.0115 in2 footprint at 1000 seconds. TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TA = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 6.5A, VGS = 10V (Figures 9, 10) - 0.025 0.030 Ω ID = 2.0A, VGS = 5V (Figure 9) - 0.031 0.038 Ω ID = 2.0A, VGS = 4.5V (Figure 9) - 0.033 0.041 Ω Pad Area = 0.76 in2 (Note 2) - - 50 oC/W Pad Area = 0.054 in2 (See TB337) - - 143 oC/W Pad Area = 0.0115 in2 (See TB337) - - 177 oC/W VDD = 15V, ID ≅ 2.0A, RL = 7.5Ω, VGS = 4.5V, RGS = 15Ω (Figure 15) - - 100 ns - 16 - ns tr - 50 - ns td(OFF) - 28 - ns tf - 34 - ns tOFF - - 91 ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time 2 HUF76113SK8 TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - - 59 ns - 6.5 - ns tr - 33 - ns td(OFF) - 45 - ns tf - 40 - ns tOFF - - 126 ns - 17.5 21 nC - 10 12 nC - 0.65 0.78 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 15V, ID ≅ 6.5A, RL = 2.31Ω, VGS = 10V, RGS = 16Ω (Figure 16) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) Gate Charge at 5V Qg(5) Threshold Gate Charge Qg(TH) VGS = 0V to 10V VDD = 15V, ID ≅ 2.0A, RL = 7.5Ω VGS = 0V to 5V Ig(REF) = 1.0mA VGS = 0V to 1V (Figures 14) Gate to Source Gate Charge Qgs - 1.10 - nC Gate to Drain “Miller” Charge Qgd - 5.40 - nC - 585 - pF - 327 - pF - 73 - pF MIN TYP MAX UNITS - - 1.25 V 1.10 V CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD TEST CONDITIONS ISD =6.5A ISD = 2.0A Reverse Recovery Time Reverse Recovered Charge trr ISD = 2.0A, dISD/dt = 100A/µs - - 47 ns QRR ISD = 2.0A, dISD/dt = 100A/µs - - 52 nC Typical Performance Curves 8 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE 3 VGS = 10V, RθJA = 50oC/W 6 4 VGS = 4.5V, RθJA = 177oC/W 2 0 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE HUF76113SK8 Typical Performance Curves ZθJA, NORMALIZED THERMAL IMPEDANCE 10 1 (Continued) DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 50oC/W PDM 0.1 t1 t2 0.01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 t, RECTANGULAR PULSE DURATION (s) 101 102 103 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 500 IDM, PEAK CURRENT (A) TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK VGS = 10V 100 CURRENT AS FOLLOWS: VGS = 5V I = I25 150 - TA 125 10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 RθJA = 50oC/W 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 102 103 FIGURE 4. PEAK CURRENT CAPABILITY ID, DRAIN CURRENT (A) TJ = MAX RATED TA = 25oC 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10ms VDSS(MAX) = 30V 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 IAS, AVALANCHE CURRENT (A) 100 500 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 100 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 4 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76113SK8 Typical Performance Curves (Continued) 30 30 VGS = 10V VGS = 5V 25oC -55oC 25 ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) VDD = 15V PULSE DURATION = 80µs 25 DUTY CYCLE = 0.5% MAX 150oC 20 15 10 VGS = 4.5V 15 VGS = 3V 10 5 0 0 0 1 2 3 4 VGS, GATE TO SOURCE VOLTAGE (V) 5 0 1 2.0 PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX 100 ID = 2A 50 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 6.5A 0 0 6 8 2 4 VGS, GATE TO SOURCE VOLTAGE (V) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 6.5A 1.5 1.0 0.5 -80 10 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.0 1.0 0.9 0.8 0.7 0.6 -80 4 3 FIGURE 8. SATURATION CHARACTERISTICS 150 ID = 0.5A 2 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 3.5V VGS = 4V 20 5 NORMALIZED GATE THRESHOLD VOLTAGE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 5 1.1 1.0 0.9 -80 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE (oC) 160 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76113SK8 Typical Performance Curves (Continued) 10 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD C, CAPACITANCE (pF) 1000 800 CISS 600 400 COSS 200 CRSS VGS , GATE TO SOURCE VOLTAGE (V) 1200 VDD = 15V 8 6 4 2 0 0 0 5 15 10 20 30 25 WAVEFORMS IN DESCENDING ORDER: ID = 6.5A ID = 2.0A ID = 0.5A 5 0 15 10 20 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 150 120 VGS = 10V, VDD = 15V, ID = 6.5A, RL= 2.31Ω tr 120 90 SWITCHING TIME (ns) SWITCHING TIME (ns) VGS = 4.5V, VDD = 15V, ID = 2A, RL= 7.5Ω tf 60 td(OFF) 30 td(ON) td(OFF) 90 tf 60 tr 30 td(ON) 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 6 50 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 16. SWITCHING TIME vs GATE RESISTANCE 50 HUF76113SK8 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORM VDS VDD RL Qg(TOT) VDS VGS = 10 VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 7 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORMS HUF76113SK8 Thermal Resistance vs. Mounting Pad Area ( T JMAX – T A ) P DMAX = ---------------------------------------Z θJA (EQ. 1) In using surface mount devices such as the SO-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of the PD(MAX) is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board 2. The number of copper layers and the thickness of the board 3. The use of external heat sinks 4. The use of thermal vias 5. Air flow and board orientation 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 23 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 8 250 RθJA = 79.3 - 21.8*ln(AREA) 200 RθJA (oC/W) The maximum rated junction temperature, TJ(MAX), and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PD(MAX), in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJ(MAX) is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 177 oC/W - 0.0115in2 143 oC/W - 0.054in2 150 100 50 0.001 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA Displayed on the curve are the three RθJA values listed in the Electrical Specifications table. The three points where chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PD(MAX). Thermal resistances corresponding to other component side copper areas can be obtained from Figure 23 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. R θJA = 79.3 – 21.8 × ln ( Area ) (EQ. 2) HUF76113SK8 PSPICE Electrical Model SUBCKT HUF76113SK8 2 1 3 ; REV 4 June 1998 CA 12 8 9.60-10 CB 15 14 9.95e-10 CIN 6 8 5.01e-10 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DBREAK + RSLC2 5 51 ESLC 11 - EBREAK 11 7 17 18 32.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LDRAIN 2 5 1.00e-9 LGATE 1 9 1.00e-9 LSOURCE 3 7 2.27e-10 + 17 EBREAK 18 50 - IT 8 17 1 LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.01e-3 RGATE 9 20 2.94 RLDRAIN 2 5 10 RLGATE 1 9 10 RLSOURCE 3 7 2.27 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 17.50e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),2.5))} .MODEL DBODYMOD D (IS = 9.35e-13 RS = 1.39e-2 TRS1 = 1.12e-6 TRS2 = 1.05e-6 CJO = 9.85e-10 TT = 2.82e-8 M = 0.42 ) .MODEL DBREAKMOD D (RS = 1.91e-1 TRS1 = 3.51e-3 TRS2 = 1.21e-6 ) .MODEL DPLCAPMOD D (CJO = 5.51e-10 IS = 1e-30 N = 10 M = 0.60 ) .MODEL MMEDMOD NMOS (VTO = 1.76 KP = 3.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.94) .MODEL MSTROMOD NMOS (VTO = 2.08 KP = 37 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.48 KP = 0.095 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 29.4 RS=0.1) .MODEL RBREAKMOD RES (TC1 = 1.02e-3 TC2 = 1.10e-7) .MODEL RDRAINMOD RES (TC1 = 4.05e-2 TC2 = 1.12e-4) .MODEL RSLCMOD RES (TC1 = 9.92e-3 TC2 = -2.06e-5) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -1.87e-3 TC2 = -5.42e-6) .MODEL RVTEMPMOD RES (TC1 = -1.12e-3 TC2 = 1.12e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -7.00 VOFF= -1.55) VON = -1.55 VOFF= -7.00) VON = 0.00 VOFF= 1.05) VON = 1.05 VOFF= 0.00) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 9 HUF76113SK8 SABER Electrical Model nom temp=25 deg c HUF76113SK8 Ultrafet REV 4 June 98 template huf76113sk8 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is=9.35e-13, cjo= 9.85e-10,tt=2.82e-8, m=0.42) d..model dbreakmod = () d..model dplcapmod = (cjo=5.51e-10,is=1e-30,n=10,m=0.60) m..model mmedmod = (type=_n,vto=1.76,kp=3.55,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.08,kp=37,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.48,kp=0.095,is=1e-30, tox=1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-7.00,voff=-1.55) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.55,voff=-7.00) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=0,voff=1.05) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=1.05,voff=0) LDRAIN DPLCAP DRAIN 2 5 10 RSLC1 51 RLDRAIN RDBREAK RSLC2 72 ISCL c.ca n12 n8 = 9.60e-10 c.cb n15 n14 = 9.95e-10 c.cin n6 n8 = 5.01e-10 EVTHRES + 19 8 + LGATE GATE 1 i.it n8 n17 = 1 RDRAIN 6 8 ESG d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod EVTEMP RGATE + 18 22 9 20 21 MSTRO - 8 LSOURCE 7 RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 2.5 )) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 32.3 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 10 DBODY EBREAK + 17 18 RSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=1.02e-3,tc2=1.10e-7 res.rdbody n71 n5 =1.39e-2, tc1=1.12e-6, tc2=1.05e-6 res.rdbreak n72 n5 =1.91e-1, tc1=3.51e-3, tc2=1.21e-6 res.rdrain n50 n16 = 2.01e-3, tc1=4.05e-2,tc2=1.12e-4 res.rgate n9 n20 = 2.94 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 10 res.rlsource n3 n7 = 2.27 res.rslc1 n5 n51 = 1e-6, tc1=-9.92e-3,tc2=-2.06e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 17.5e-3, tc1=0,tc2=0 res.rvtemp n18 n19 = 1, tc1=-1.12e-3,tc2=1.12e-6 res.rvthres n22 n8 = 1, tc1=-1.87e-3,tc2=-5.42e-6 MWEAK MMED CIN 71 11 16 6 RLGATE l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 1e-9 l.lsource n3 n7 = 2.27e-10 DBREAK 50 - RDBODY VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF76113SK8 SPICE Thermal Model (0.76 in2 footprint) th JUNCTION REV 3 June 1998 HUF76113SK8 RTHERM1 CTHERM1 th 6 3.75e-4 CTHERM2 6 5 3.05e-3 CTHERM3 5 4 3.70e-2 CTHERM4 4 3 2.52e-2 CTHERM5 3 2 8.50e-2 CTHERM6 2 tl 7.95e-1 CTHERM1 6 RTHERM2 RTHERM1 th 6 3.95e-2 RTHERM2 6 5 2.50e-1 RTHERM3 5 4 4.00e-1 RTHERM4 4 3 6.35 RTHERM5 3 2 2.02e1 RTHERM6 2 tl 4.80e1 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model (0.76 in2 footprint) 4 SABER thermal model HUF76113SK8 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 3.75e-4 ctherm.ctherm2 6 5 = 3.05e-3 ctherm.ctherm3 5 4 = 3.70e-2 ctherm.ctherm4 4 3 = 2.52e-2 ctherm.ctherm5 3 2 = 8.50e-2 ctherm.ctherm6 2 tl = 7.95e-1 RTHERM4 CTHERM4 3 RTHERM5 rtherm.rtherm1 th 6 = 3.95e-2 rtherm.rtherm2 6 5 = 2.50e-1 rtherm.rtherm3 5 4 = 4.00e-1 rtherm.rtherm4 4 3 = 6.35 rtherm.rtherm5 3 2 = 2.02e1 rtherm.rtherm6 2 tl = 4.80e1 } CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com 11