HUF76609D3, HUF76609D3S Data Sheet October 1999 File Number 4688.2 10A, 100V, 0.165 Ohm, N-Channel, Logic Level UltraFET Power MOSFET Packaging Features JEDEC TO-251AA DRAIN (FLANGE) JEDEC TO-252AA DRAIN (FLANGE) SOURCE DRAIN GATE GATE SOURCE HUF76609D3S HUF76609D3 • Ultra Low On-Resistance - rDS(ON) = 0.160Ω, VGS = 10V - rDS(ON) = 0.165Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE® and SABER© Electrical Models - Spice and SABER© Thermal Impedance Models - www.Intersil.com • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol • Switching Time vs RGS Curves D Ordering Information PART NUMBER G S Absolute Maximum Ratings PACKAGE BRAND HUF76609D3 TO-251AA 76609D HUF76609D3S TO-252AA 76609D NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76609D3ST. TC = 25oC, Unless Otherwise Specified HUF76609D3, HUF76609D3S UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 100 V 100 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±16 V Drain Current Continuous (TC= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 10 10 7 7 Figure 4 A A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 0.327 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg -55 to 175 oC 300 260 oC oC NOTE: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER© is2003 a Copyright of Analogy Inc.http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 Powered by ICminer.com Electronic-Library Service CopyRight HUF76609D3, HUF76609D3S TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 100 - - V ID = 250µA, VGS = 0V, TC = -40oC (Figure 12) 90 - - V VDS = 95V, VGS = 0V - - 1 µA VDS = 90V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 10A, VGS = 10V (Figures 9, 10) - 0.130 0.160 Ω ID = 7A, VGS = 5V (Figure 9) - 0.135 0.165 Ω ID = 7A, VGS = 4.5V (Figure 9) - 0.140 0.168 Ω TO-251 and TO-252 - - 3.06 oC/W - - 100 oC/W - - 77 ns - 10 - ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time tON Turn-On Delay Time td(ON) tr - 41 - ns td(OFF) - 30 - ns tf - 28 - ns tOFF - - 87 ns - - 36 ns - 6 - ns - 18 - ns td(OFF) - 55 - ns tf - 39 - ns tOFF - - 141 ns Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 50V, ID = 7A VGS = 4.5V, RGS = 20Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 50V, ID = 10A VGS = 10V, RGS = 24Ω (Figures 16, 21, 22) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 50V, ID = 7A, Ig(REF) = 1.0mA (Figures 14, 19, 20) - 13 16 nC - 7.3 8.8 nC - 0.5 0.6 nC Gate to Source Gate Charge Qgs - 1.4 - nC Gate to Drain “Miller” Charge Qgd - 3.4 - nC - 425 - pF - 75 - pF - 22 - pF MIN TYP MAX UNITS ISD = 7A - - 1.25 V ISD = 4A - - 1.0 V trr ISD = 7A, dISD/dt = 100A/µs - - 92 ns QRR ISD = 7A, dISD/dt = 100A/µs - - 273 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 Powered by ICminer.com Electronic-Library Service CopyRight 2003 TEST CONDITIONS HUF76609D3, HUF76609D3S Typical Performance Curves POWER DISSIPATION MULTIPLIER 1.2 12 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 9 VGS = 10V VGS = 4.5V 6 3 0.2 0 0 0 25 50 75 100 150 125 175 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 200 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 I = I25 175 - TC 150 VGS = 5V 10 5 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 Powered by ICminer.com Electronic-Library Service CopyRight 2003 10-1 100 101 HUF76609D3, HUF76609D3S Typical Performance Curves (Continued) 100 10 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 100 100µs 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC 0.1 1 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 100 300 0.001 0.01 VDS, DRAIN TO SOURCE VOLTAGE (V) 0.1 1 10 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 20 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 15 10 TJ = 175oC 5 TJ = 25oC TJ = -55oC 0 1.5 2.0 VGS = 10V VGS = 5V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 20 2.5 3.0 10 VGS = 3V 5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 0 3.5 0 4.0 1 VGS, GATE TO SOURCE VOLTAGE (V) 2 3 4 5 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 200 3.0 180 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC ID = 10A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 3.5V VGS = 4V 15 160 ID = 7A ID = 4A 140 120 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.5 VGS = 10V, ID = 10A 2.0 1.5 1.0 0.5 100 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 4 Powered by ICminer.com Electronic-Library Service CopyRight 2003 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 HUF76609D3, HUF76609D3S Typical Performance Curves (Continued) 1.2 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 1.1 1.0 0.9 0.4 -80 -40 0 40 80 120 160 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) C, CAPACITANCE (pF) 80 CISS = CGS + CGD COSS ≅ CDS + CGD 100 CRSS = CGD 10 VGS = 0V, f = 1MHz 160 200 10 VDD = 50V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 10A ID = 7A ID = 4A 2 0 5 1 120 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) 2000 0.1 40 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 1000 0 10 0 100 3 6 9 12 15 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 120 80 VGS = 4.5V, VDD = 50V, ID = 7A VGS = 10V, VDD = 50V, ID = 10A td(OFF) SWITCHING TIME (ns) SWITCHING TIME (ns) tr 60 td(OFF) tf 40 20 90 60 tf tr 30 td(ON) td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 5 Powered by ICminer.com Electronic-Library Service CopyRight 2003 50 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 16. SWITCHING TIME vs GATE RESISTANCE 50 HUF76609D3, HUF76609D3S Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 6 Powered by ICminer.com Electronic-Library Service CopyRight 2003 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76609D3, HUF76609D3S PSPICE Electrical Model .SUBCKT HUF76609D3 2 1 3 ; rev 23 August 1999 CA 12 8 7.5e-10 CB 15 14 7.6e-10 CIN 6 8 4.03e-10 LDRAIN DPLCAP DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DRAIN 2 5 10 RLDRAIN RSLC1 51 + RSLC2 5 51 EBREAK 11 7 17 18 116.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 DBREAK ESLC 11 - RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE IT 8 17 1 EVTEMP RGATE + 18 22 9 20 GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 3.7e-9 LSOURCE 3 7 3.4e-9 + 17 EBREAK 18 50 21 - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RSOURCE RLSOURCE S2A S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9.4e-2 RGATE 9 20 3.3 RLDRAIN 2 5 10 RLGATE 1 9 37 RLSOURCE 3 7 34 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.3e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBODY 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*17.3),3.5))} .MODEL DBODYMOD D (IS = 1.2e-12 RS = 1.2e-2 TRS1 = 1.2e-3 TRS2 = 1.03e-6 CJO = 6.7e-10 TT = 6.9e-8 M = 0.77) .MODEL DBREAKMOD D (RS = 9.9e-1 TRS1 = 1e-3 TRS2 = -2e-5) .MODEL DPLCAPMOD D (CJO = 4.3e-10 IS = 1e-30 M = 0.9 N = 10) .MODEL MMEDMOD NMOS (VTO = 1.88 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.3) .MODEL MSTROMOD NMOS (VTO = 2.13 KP = 12.4 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.59 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 8.1e-3 TC2 = 2.4e-5) .MODEL RSLCMOD RES (TC1 = 3e-3 TC2 = 2e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.5e-3 TC2 = -4.3e-6) .MODEL RVTEMPMOD RES (TC1 = -1.6e-3 TC2 = 1.5e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.5 VOFF= -2.5) VON = -2.5 VOFF= -4.5) VON = -0.3 VOFF= 0.2) VON = 0.2 VOFF= -0.3) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 Powered by ICminer.com Electronic-Library Service CopyRight 2003 HUF76609D3, HUF76609D3S SABER Electrical Model REV 23 August 1999 template huf76609d3 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 1.2e-12, n = 1.05, cjo = 6.7e-10, tt = 6.9e-8, m = 0.77) d..model dbreakmod = () d..model dplcapmod = (cjo = 4.3e-10, is = 1e-30, n = 10, m = 0.9 ) m..model mmedmod = (type=_n, vto = 1.88, kp = 5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.13, kp = 12.4, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.59, kp = 0.12, is = 1e-30, tox = 1) DPLCAP sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -2.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.5, voff = -4.5) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3) LDRAIN DRAIN 2 5 RSLC1 51 RLDRAIN RDBREAK RSLC2 c.ca n12 n8 = 7.5e-10 c.cb n15 n14 = 7.6e-10 c.cin n6 n8 = 4.03e-10 72 ISCL EVTHRES + 19 8 + LGATE i.it n8 n17 = 1 GATE 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 3.7e-9 l.lsource n3 n7 = 3.4e-9 RDRAIN 6 8 ESG EVTEMP RGATE + 18 22 9 20 21 - 8 LSOURCE 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/17.3))** 3.5)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 116.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 Powered by ICminer.com Electronic-Library Service CopyRight 2003 DBODY EBREAK + 17 18 MSTRO m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 8 MWEAK MMED CIN 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5e-7 res.rdbody n71 n5 = 1.2e-2, tc1 = 1.2e-3, tc2 = 1.03e-6 res.rdbreak n72 n5 = 9.9e-1, tc1 = 1e-3, tc2 = -2e-5 res.rdrain n50 n16 = 9.4e-2, tc1 = 8.1e-3, tc2 = 2.4e-5 res.rgate n9 n20 = 3.3 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 37 res.rlsource n3 n7 = 34 res.rslc1 n5 n51 = 1e-6, tc1 = 3e-3, tc2 = 2e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.3e-2, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.6e-3, tc2 = 1.5e-6 res.rvthres n22 n8 = 1, tc1 = -1.5e-3, tc2 = -4.3e-6 DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod RDBODY VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF76609D3, HUF76609D3S SPICE Thermal Model th JUNCTION REV 23 August 1999 T76609d3 CTHERM1 th 6 9.50e-4 CTHERM2 6 5 2.40e-3 CTHERM3 5 4 3.90e-3 CTHERM4 4 3 4.10e-3 CTHERM5 3 2 5.60e-3 CTHERM6 2 tl 4.00e-2 RTHERM1 CTHERM1 6 RTHERM1 th 6 2.00e-2 RTHERM2 6 5 1.10e-1 RTHERM3 5 4 2.75e-1 RTHERM4 4 3 5.53e-1 RTHERM5 3 2 7.25e-1 RTHERM6 2 tl 7.56e-1 RTHERM2 CTHERM2 5 SABER Thermal Model RTHERM3 CTHERM3 SABER thermal model t76609d3 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 9.50e-4 ctherm.ctherm2 6 5 = 2.40e-3 ctherm.ctherm3 5 4 = 3.90e-3 ctherm.ctherm4 4 3 = 4.10e-3 ctherm.ctherm5 3 2 = 5.60e-3 ctherm.ctherm6 2 tl = 4.00e-2 4 RTHERM4 CTHERM4 3 rtherm.rtherm1 th 6 = 2.00e-2 rtherm.rtherm2 6 5 = 1.10e-1 rtherm.rtherm3 5 4 = 2.75e-1 rtherm.rtherm4 4 3 = 5.53e-1 rtherm.rtherm5 3 2 = 7.25e-1 rtherm.rtherm6 2 tl = 7.56e-1 } RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 9 Powered by ICminer.com Electronic-Library Service CopyRight 2003 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029