INTERSIL RFD14N05LSM

RFD14N05L, RFD14N05LSM, RFP14N05L
Data Sheet
April 1999
14A, 50V, 0.100 Ohm, Logic Level,
N-Channel Power MOSFETs
• 14A, 50V
Formerly developmental type TA09870.
Ordering Information
PACKAGE
2246.3
Features
These are N-channel power MOSFETs manufactured using
the MegaFET process. This process, which uses feature
sizes approaching those of LSI integrated circuits, gives
optimum utilization of silicon, resulting in outstanding
performance. They were designed for use in applications
such as switching regulators, switching converters, motor
drivers and relay drivers. This performance is accomplished
through a special gate oxide design which provides full rated
conductance at gate bias in the 3V-5V range, thereby
facilitating true on-off power control directly from logic level
(5V) integrated circuits.
PART NUMBER
File Number
• rDS(ON) = 0.100Ω
• Temperature Compensating PSPICE™ Model
• Can be Driven Directly from CMOS, NMOS, and
TTL Circuits
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• 175oC Operating Temperature
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
BRAND
D
RFD14N05L
TO-251AA
14N05L
RFD14N05LSM
TO-252AA
14N05L
RFP14N05L
TO-220AB
FP14N05L
G
NOTE: When ordering, use the entire part number. Add the suffix 9A to
obtain the TO-252AA variant in the tape and reel, i.e., RFD14N05LSM9A.
S
Packaging
JEDEC TO-251AA
JEDEC TO-252AA
DRAIN (FLANGE)
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
GATE
SOURCE
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
6-135
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE™ is a trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
RFD14N05L, RFD14N05LSM, RFP14N05L
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
RFD14N05L, RFD14N05LSM,
RFP14N05L
50
50
± 10
14
Refer to Peak Current Curve
Refer to UIS Curve
48
0.32
-55 to 175
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
UNITS
V
V
V
A
W
W/oC
oC
oC
oC
300
260
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
ID = 250µA, VGS = 0V, Figure 13
50
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA, Figure12
1
-
2
V
VDS = 40V, VGS = 0V
-
-
1
µA
VDS = 40V, VGS = 0V, TC = 150oC
-
-
50
µA
VGS = ±10V
-
-
±100
nA
ID = 14A, VGS = 5V, Figures 9, 11
-
-
0.100
Ω
VDD = 25V, ID = 7A,
RL = 3.57Ω, VGS = 5V,
RGS = 0.6Ω
-
-
60
ns
-
13
-
ns
-
24
-
ns
td(OFF)
-
42
-
ns
tf
-
16
-
ns
-
-
100
ns
-
-
40
nC
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance (Note 2)
rDS(ON)
Turn-On Time
t(ON)
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
TEST CONDITIONS
t(OFF)
Total Gate Charge
Gate Charge at 5V
Threshold Gate Charge
Qg(TOT)
VGS = 0V to 10V
VDD = 40V, ID = 14A,
RL = 2.86Ω
Figures 20, 21
Qg(5)
VGS = 0V to 5V
-
-
25
nC
Qg(TH)
VGS = 0V to 1V
-
-
1.5
nC
VDS = 25V, VGS = 0V, f = 1MHz
Figure 14
-
670
-
pF
-
185
-
pF
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
-
50
-
pF
Thermal Resistance Junction to Case
RθJC
-
-
3.125
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-251 and TO-252
-
-
100
oC/W
RθJA
TO-220
-
-
80
oC/W
Source to Drain Diode Specifications
PARAMETER
Source to Drain Diode Voltage (Note 2)
Diode Reverse Recovery Time
SYMBOL
VSD
trr
TEST CONDITIONS
MIN
TYP
MAX
UNITS
ISD = 14A
-
-
1.5
V
ISD = 14A, dISD/dt = 100A/µs
-
-
125
ns
NOTES:
2. Pulse Test: Pulse Width ≤ 300ms, Duty Cycle ≤ 2%.
3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current
Capability Curve (Figure 5).
6-136
RFD14N05L, RFD14N05LSM, RFP14N05L
Typical Performance Curves
Unless Otherwise Specified
16
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
12
8
4
0.2
0
125
50
75
100
TC , CASE TEMPERATURE (oC)
25
0
150
0
175
25
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
50
75
100
125
TC, CASE TEMPERATURE (oC)
150
175
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
TEMPERATURE
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
0.5
0.2
0.1
PDM
0.1
0.05
t1
t2
0.02
0.01
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-2
10-1
10-3
t, RECTANGULAR PULSE DURATION (s)
100
101
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TC = 25oC
TJ = MAX. RATED
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
10ms
100ms
DC
0.5
1
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
6-137
100
200
IDM, PEAK CURRENT CAPABILITY (A)
ID, DRAIN CURRENT (A)
100
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
100
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
I
= I25
175 - TC
150
VGS = 5V
TC = 25oC
10
-5
10
10-4
VGS = 10V
10-3
10-2
10-1
t, PULSE WIDTH (s)
100
FIGURE 5. PEAK CURRENT CAPABILITY
101
RFD14N05L, RFD14N05LSM, RFP14N05L
Typical Performance Curves
Unless Otherwise Specified (Continued)
35
VGS = 10V
VGS = 5V
30
ID, DRAIN CURRENT (A)
IAS, AVALANCHE CURRENT (A)
50
STARTING TJ = 25oC
10
STARTING TJ = 150oC
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
0.01
VGS = 4V
25
PULSE DURATION = 80µs, TC = 25oC
DUTY CYCLE = 0.5% MAX.
20
15
VGS = 3V
10
5
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS-VDD) +1]
1
VGS = 4.5V
0.1
1
tAV, TIME IN AVALANCHE (ms)
0
10
VGS = 2.5V
1.5
0
3.0
4.5
6.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
7.5
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 7. SATURATION CHARACTERISTICS
250
35
-55oC
30
ID = 7A
25oC
rDS(ON) , DRAIN TO SOURCE
ON RESISTANCE (mΩ)
IDS(ON), DRAIN TO SOURCE CURRENT (A)
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
175oC
25
20
15
10
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX.
VDD = 15V
5
1.5
3.0
4.5
6.0
VGS, GATE TO SOURCE VOLTAGE (V)
50
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
td(OFF)
100
tr
80
tf
60
40
td(ON)
20
0
20
30
40
10
RGS , GATE TO SOURCE RESISTANCE (Ω)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE
6-138
3.0
3.5
4.0
4.5
VGS , GATE TO SOURCE VOLTAGE (V)
5.0
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
120
0
0
2.5
2.5
VDD = 25V, ID = 14A, RL = 3.57Ω
ID = 3.5A
100
7.5
140
SWITCHING TIME (ns)
150
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX.
FIGURE 8. TRANSFER CHARACTERISTICS
160
ID = 28A
200
0
0
ID = 14A
50
2.0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX.
VGS = 10V, ID = 14A
1.5
1.0
0.5
0
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
200
RFD14N05L, RFD14N05LSM, RFP14N05L
2.0
VGS = VDS, ID = 250µA
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
2.0
Unless Otherwise Specified (Continued)
1.5
1.0
0.5
0
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
C, CAPACITANCE (pF)
CISS
600
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
COSS
200
CRSS
-40
0
40
80
120
160
TJ , JUNCTION TEMPERATURE (oC)
25
200
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
50
40
5
VDD = BVDSS
VDD = BVDSS
30
4
3
20
2
0.75 BVDSS
0.50 BVDSS
0.25 BVDSS
RL = 3.57Ω
IG(REF) = 0.4mA
VGS = 5V
10
1
0
0
5
10
15
20
VDS , DRAIN TO SOURCE VOLTAGE (V)
0.5
0
-80
VDS , DRAIN TO SOURCE VOLTAGE (V)
800
0
1.0
200
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
400
1.5
0
I G ( REF )
20 ------------------------I G ( ACT )
t, TIME (µs)
I G ( REF )
80 ------------------------I G ( ACT )
NOTE: Refer to Intersil Application Notes AN7254 and AN7260,
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
6-139
FIGURE 15. TRANSCONDUCTANCE vs DRAIN CURRENT
VGS , GATE TO SOURCE VOLTAGE (V)
Typical Performance Curves
RFD14N05L, RFD14N05LSM, RFP14N05L
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
VDS
td(OFF)
tf
tr
VDS
90%
90%
RL
VGS
+
-
DUT
10%
10%
0
VDD
90%
RGS
VGS
VGS
0
50%
10%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
DUT
IG(REF)
VGS = 5V
VGS
-
VGS = 1V
0
Qg(TH)
IG(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT
6-140
FIGURE 21. GATE CHARGE WAVEFORMS
RFD14N05L, RFD14N05LSM, RFP14N05L
PSPICE Electrical Model
.SUBCKT RFP14N05L 2 1 3 ;
rev 9/15/94
CA 12 8 1.464e-9
CB 15 14 1.64e-9
CIN 6 8 6.17e-10
DPLCAP
RSCL1
RSCL2
ESG
+
9
6
8
ESCL
11
RDRAIN
16
VTO
+
21
EVTO
20 +
18
LGATE RGATE
MOS2
CIN
RSOURCE
7
LSOURCE
3
SOURCE
S2A
S1A
12
DBODY
MOS1
8
8
MOS1 16 6 8 8 MOSMOD M = 0.99
MOS2 16 21 8 8 MOSMOD M = 0.01
+
EBREAK 17
18
6
RIN
RBREAK 17 18 RBKMOD 1
RDRAIN 50 16 RDSMOD 33.1e-3
RGATE 9 20 5.85
RIN 6 8 1e9
RSCL1 5 51 RSCLMOD 1e-6
RSCL2 5 50 1e3
RSOURCE 8 7 RDSMOD 14.3e-3
RVTO 18 19 RVTOMOD 1
DBREAK
50
GATE
1
LDRAIN 2 5 1e-9
LGATE 1 9 5.68e-9
LSOURCE 3 7 5.35e-9
+ 51
5
51
EBREAK 11 7 17 18 65.35
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTO 20 6 18 8 1
IT 8 17 1
S1B
RBREAK
15
14
13
13
8
17
18
S2B
RVTO
13
CA
CB
+
EGS
6
8
+ 14
EDS 5
8
IT
19
VBAT
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.485
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/46,7))}
.MODEL DBDMOD D (IS = 2.23e-13 RS = 1.15e-2 TRS1 = 1.64e-3 TRS2 = 7.89e-6 CJO = 6.83e-10 TT = 3.68e-8)
.MODEL DBKMOD D (RS = 3.8e-1 TRS1 = 1.89e-3 TRS2 = 1.13e-5)
.MODEL DPLCAPMOD D (CJO = 25.7e-11 IS = 1e-30 N = 10)
.MODEL MOSMOD NMOS (VTO = 1.935 KP = 18.89 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL RBKMOD RES (TC1 = 7.18e-4 TC2 = 1.53e-6)
.MODEL RDSMOD RES (TC1 = 4.45e-3 TC2 = 2.9e-5)
.MODEL RSCLMOD RES (TC1 = 2.8e-3 TC2 = 6.0e-6)
.MODEL RVTOMOD RES (TC1 = -1.7e-3 TC2 = -2.0e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.55 VOFF= -1.55)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.55 VOFF= -3.55)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.55 VOFF= 2.45)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.45 VOFF= -2.55)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global
Temperature Options; authored by William J. Hepp and C. Frank Wheatley.
6-141
DRAIN
2
LDRAIN
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
S1A
S1B
S2A
S2B
5
10
RFD14N05L, RFD14N05LSM, RFP14N05L
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
6-142
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029