INTERSIL IRF450

IRF450
Data Sheet
March 1999
13A, 500V, 0.400 Ohm, N-Channel
Power MOSFET
• 13A, 500V
Formerly developmental type TA17435.
Ordering Information
IRF450
PACKAGE
TO-204AA
1827.3
Features
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
PART NUMBER
File Number
• rDS(ON) = 0.400Ω
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
BRAND
D
IRF450
NOTE: When ordering, include the entire part number.
G
S
Packaging
JEDEC TO-204AA
DRAIN
(FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRF450
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
IRF450
500
500
13
8.1
52
±20
125
1.2
860
-55 to 150
UNITS
V
V
A
A
A
V
W
W/oC
mJ
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
VGS = 0V, ID = 250µA (Figure 10)
500
-
-
V
Gate to Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA
2.0
-
4.0
V
-
-
±100
nA
Gate to Source Leakage
IGSS
Zero Gate Voltage Drain Current
IDSS
On-State Drain Current (Note 2)
ID(ON)
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 2)
Turn-On Delay Time
rDS(ON)
gfs
td(ON)
Rise Time
tr
Turn-Off Delay Time
td(OFF)
Fall Time
TEST CONDITIONS
VGS = ±20V
VDS = Rated BVDSS, VGS = 0V
-
-
25
µA
VDS = 0.8 x Rated BVDSS, VGS = 0V, TJ = 125oC
-
-
250
µA
VDS > ID(ON) x rDS(ON)MAX, VGS = 10V (Figure 7)
13
-
-
A
-
0.3
0.400
Ω
VGS = 10V, ID = 7.2A (Figures 8, 9)
VDS ≥ 50V, ID = 7.2A (Figure 12)
VDD = 250V, ID ≈ 13A, RG = 6.2Ω, RL = 19Ω
(Figures 17, 18) MOSFET SwitchingTimes are
Essentially Independent of Operating
Temperature
tf
Total Gate Charge
(Gate to Source + Gate to Drain)
Qg(TOT)
Gate to Source Charge
Qgs
VGS = 10V, ID = 13A, VDS = 0.8 x Rated BVDSS ,
Ig(REF) = 1.5mA (Figures 14, 19, 20) Gate Charge
is Essentially Independent of Operating
Temperature
6.0
11
-
S
-
20
27
ns
-
40
66
ns
-
72
100
ns
-
35
60
ns
-
85
130
nC
-
12
-
nC
-
42
-
nC
-
1800
-
pF
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
-
400
-
pF
Reverse Transfer Capacitance
CRSS
-
100
-
pF
-
5.0
-
nH
-
12.5
-
nH
-
-
0.83
oC/W
-
-
30
oC/W
Internal Drain Inductance
LD
Internal Source Inductance
LS
VGS = 0V, VDS = 25V, f = 1.0MHz (Figure 11)
Measured between the
Contact Screw on the
Flange that is Closer to
Source and Gate Pins
and the Center of Die
Measured from the
Source Lead, 6mm
(0.25in) from the Flange
to Source Bonding Pad
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
D
LD
G
LS
S
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to Ambient
RθJA
2
Free Air Operation
IRF450
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
ISD
Pulse Source to Drain Current (Note 3)
ISDM
TEST CONDITIONS
Modified MOSFET
Symbol Showing the
Integral Reverse P-N
Junction Diode
MIN
TYP
MAX
UNITS
-
-
13
A
-
-
52
A
D
G
S
Source to Drain Diode Voltage (Note 2)
VSD
TJ
trr
TJ
QRR
TJ
Reverse Recovery Time
Reverse Recovered Charge
= 25oC, ISD = 13A, VGS = 0V (Figure 13)
= 25oC, ISD = 13A, dISD/dt = 100A/µs
= 25oC, ISD = 13A, dISD/dt = 100A/µs
-
-
1.4
V
280
600
1200
ns
3.2
7.5
14
µC
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 25V, starting TJ = 25oC, L = 9.2mH, RG = 25Ω, peak IAS = 13A. See Figures 14, 15.
Typical Performance Curves
Unless Otherwise Specified
15
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
12
9
6
3
0
0
50
100
150
25
50
TC , CASE TEMPERATURE (oC)
75
125
100
150
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
10
ZθJC, TRANSIENT
THERMAL IMPEDANCE (oC/W)
POWER DISSIPATION MULTIPLIER
1.2
1
0.5
0.1
0.001
0.2
PDM
0.1
0.05
0.02
0.01
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC + TC
SINGLE PULSE
0.0001
10-5
10-4
10-2
10-3
0.1
t1, RECTANGULAR PULSE DURATION (s)
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
1
10
IRF450
Typical Performance Curves
Unless Otherwise Specified
(Continued)
20
102
10µs
100µs
10
1ms
10ms
1
TC = 25oC
TJ = MAX RATED
SINGLE PULSE
0.1
1
16
VGS = 5.5V
12
8
VGS = 5.0V
4
VGS = 4.5V
DC
VGS = 4.0V
0
102
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
103
0
50
250
VDS ≥ 50V
5 80µs
PULSE TEST
VGS = 6.0V
16
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
200
102
VGS = 10V
VGS = 5.5V
12
8
VGS = 5.0V
4
2
10
5
2
1
5
5
VGS = 4.0V
0
3
6
9
12
VDS , DRAIN TO SOURCE VOLTAGE (V)
TJ = 25oC
TJ = 150oC
2
0.1
VGS = 4.5V
15
2
10-2
0
FIGURE 6. SATURATION CHARACTERISTICS
2
4
6
8
VGS , GATE TO SOURCE VOLTAGE (V)
10
FIGURE 7. TRANSFER CHARACTERISTICS
3.0
2.0
80µs PULSE TEST
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
DRAIN TO SOURCE ON RESISTANCE
150
FIGURE 5. OUTPUT CHARACTERISTICS
80µs PULSE TEST
0
100
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
20
80µs PULSE TEST
VGS = 6.0V
OPERATION IN THIS
REGION IS LIMITED
BY rDS(ON)
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
103
1.6
VGS = 10V
1.2
0.8
VGS = 20V
0.4
0
0
12
24
36
ID , DRAIN CURRENT (A)
48
60
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4
ID = 13A
VGS = 10V
2.4
1.8
1.2
0.6
0
-60
-40
-20
0
20
40
60
80
100 120 140 160
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
IRF450
Typical Performance Curves
(Continued)
10000
ID = 250µA
1.15
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
8000
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.25
Unless Otherwise Specified
1.05
0.95
0.85
6000
CISS
4000
COSS
2000
CRSS
0.75
-60
-40
-20
0
20
40
60
80
0
100 120 140 160
0
2
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
ISD, SOURCE TO DRAIN CURRENT (A)
TJ = 25oC
16
12
TJ = 150oC
8
4
0
0
4
102
102
VDS ≥ 50V
80µs PULSE TEST
8
12
ID , DRAIN CURRENT (A)
16
5
2
10
5
TJ = 150oC
TJ = 25oC
2
1
5
2
0.1
0
20
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
0.5
1.0
1.5
2.0
VSD , SOURCE TO DRAIN VOLTAGE (V)
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
VGS, GATE TO SOURCE VOLTAGE (V)
gfs, TRANSCONDUCTANCE (S)
20
5
10
2
5
VDS , DRAIN TO SOURCE VOLTAGE (V)
ID = 13A
FOR TEST CIRCUIT, SEE FIGURE 18
16
VDS = 100V
VDS = 250V
12
VDS = 400V
8
4
0
0
25
50
75
100
Qg(TOT) , TOTAL GATE CHARGE (nC)
125
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
2.5
IRF450
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
IAS
+
RG
REQUIRED PEAK IAS
-
VGS
VDS
VDD
VDD
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
RG
-
VDD
10%
10%
0
DUT
90%
VGS
VGS
0
FIGURE 17. SWITCHING TIME TEST CIRCUIT
0.2µF
50%
PULSE WIDTH
10%
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
12V
BATTERY
50%
VDD
Qg(TOT)
SAME TYPE
AS DUT
50kΩ
Qgd
0.3µF
VGS
Qgs
D
VDS
DUT
G
0
Ig(REF)
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
6
IG(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
IRF450
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
7
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029