INTERSIL IRF250

IRF250
Data Sheet
March 1999
30A, 200V, 0.085 Ohm, N-Channel
Power MOSFET
• 30A, 200V
Ordering Information
IRF250
TO-204AE
• rDS(ON) = 0.085Ω
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Formerly developmental type TA09295.
PACKAGE
1825.3
Features
This N-Channel enhancement mode silicon gate power field
effect transistor is designed, tested and guaranteed to
withstand a specified level of energy in the breakdown
avalanche mode of operation. These MOSFETs are
designed for applications such as switching regulators,
switching converters, motor drivers, relay drivers, and drivers
for high power bipolar switching transistors requiring high
speed and low gate drive power. They can be operated
directly from integrated circuits.
PART NUMBER
File Number
Symbol
BRAND
IRF250
D
NOTE: When ordering, include the entire part number.
G
S
Packaging
JEDEC TO-204AE
TOP VIEW
DRAIN
(FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRF250
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
IRF250
200
200
30
19
120
±20
150
1.2
910
-55 to 150
UNITS
V
V
A
A
A
V
W
W/oC
mJ
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
VGS = 0V, ID = 250µA (Figure 10)
200
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS , ID = 250µA
2.0
-
4.0
V
-
-
25
µA
-
-
250
µA
30
-
-
A
Zero Gate Voltage Drain Current
IDSS
TEST CONDITIONS
VDS = Rated BVDSS , VGS = 0V
VDS = 0.8 x Rated BVDSS , VGS = 0V, TJ = 125oC
On State Drain Current (Note 2)
ID(ON)
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 2)
Turn-On Delay Time
rDS(ON)
gfs
tD(ON)
Rise Time
tr
Turn-Off Delay Time
VDS > ID(ON) x rDS(ON)MAX , VGS = 10V
VGS = ±20V
-
-
±100
nA
VGS = 10V, ID = 16A (Figures 8, 9)
-
0.07
0.085
Ω
VDS ≥ 50V, ID = 16V (Figure 12)
VDD = 100V, ID ≈ 30A, RG = 6.2Ω, RL = 3.2Ω
(Figures 17, 18) MOSFET Switching Times are
Essentially Independent of Operating Temperature
tD(OFF)
Fall Time
tf
Total Gate Charge
(Gate to Source + Gate to Drain)
Qg(TOT)
Gate to Source Charge
Qgs
VGS = 10V, ID = 30A, VDS = 0.8 x Rated BVDSS ,
Ig(REF) = 1.5mA (Figures 14, 19, 20) Gate Charge is
Essentially Independent of Operating Temperature
13
19
-
S
-
20
30
ns
-
120
180
ns
-
70
100
ns
-
80
120
ns
-
79
120
nC
-
13
-
nC
-
42
-
nC
-
2000
-
pF
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
-
800
-
pF
Reverse-Transfer Capacitance
CRSS
-
300
-
pF
-
5.0
-
nH
-
12.5
-
nH
-
-
0.83
oC/W
-
-
30
oC/W
Internal Drain Inductance
LD
Internal Source Inductance
LS
VGS = 0V, VDS = 25V, f = 1.0MHz (Figure 11)
Measured between the
Contact Screw on Header
that is Closer to Source
and Gate Pins and
Center of Die
Measured from the
Source Lead, 6mm
(0.25in) from Header to
Source Bonding Pad
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
D
LD
G
LS
S
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to Ambient
RθJA
2
Free Air Operation
IRF250
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
ISD
Pulse Source to Drain Current (Note 3)
TEST CONDITIONS
Modified MOSFET
Symbol Showing the
Integral Reverse P-N
Junction Diode
ISDM
D
MIN
TYP
MAX
UNITS
-
-
30
A
-
-
120
A
-
-
2.0
V
140
350
630
ns
1.8
4.7
8.1
µC
G
S
Source to Drain Diode Voltage (Note 2)
TJ = 25oC, ISD = 30A, VGS = 0V (Figure 13)
VSD
Reverse Recovery Time
TJ = 25oC, ISD = 30A, dISD/dt = 100A/µs
TJ = 25oC, ISD = 30A, dISD/dt = 100A/µs
trr
Reverse Recovered Charge
QRR
NOTES:
2. Pulse Test: Pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 50V, starting TJ = 25oC, L = 1.5mH, RG = 25Ω, peak IAS = 30A. See Figures 15 and 16.
Typical Performance Curves
Unless Otherwise Specified
40
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
32
24
16
8
0
0
50
100
25
150
50
TC , CASE TEMPERATURE (oC)
75
100
150
125
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
1
ZθJC, THERMAL IMPEDANCE
POWER DISSIPATION MULTIPLIER
1.2
0.5
0.2
0.1
0.1
0.05
0.02
0.01
10-2
10-3
10-5
PDM
SINGLE PULSE
t1
t2t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC + TC
10-4
10-3
10-2
0.1
t1, RECTANGULAR PULSE DURATION (S)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
1
10
IRF250
Typical Performance Curves
(Continued)
50
103
VGS = 10V
OPERATION IN THIS
REGION IS LIMITED
BY rDS(ON)
102
ID , DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
Unless Otherwise Specified
10ms
100ms
10
1ms
10ms
1
DC
TC = 25oC
TJ = MAX RATED
SINGLE PULSE
0.1
1.0
10
102
VDS , DRAIN TO SOURCE VOLTAGE (V)
40
30
VGS = 6V
20
10
VGS = 5V
VGS = 4V
0
103
0
20
40
60
80
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
ID, DRAIN CURRENT (A)
IDS(ON), DRAIN TO SOURCE CURRENT (A)
VGS = 10V
VGS = 8V
40
VGS = 7V
30
VGS = 6V
20
10
VGS = 5V
VGS = 4V
0
0
1
2
3
4
VDS , DRAIN TO SOURCE VOLTAGE (V)
5
100
VDS ≥ 50V
80µs PULSE TEST
10
0.1
0
2
4
6
8
VSD , GATE TO SOURCE VOLTAGE (V)
10
FIGURE 7. TRANSFER CHARACTERISTICS
3.0
0.5
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE VOLTAGE
80µs PULSE TEST
0.4
ON RESISTANCE (Ω)
TJ = 25oC
TJ = 150oC
1
FIGURE 6. SATURATION CHARACTERISTICS
rDS(ON), DRAIN TO SOURCE
100
FIGURE 5. OUTPUT CHARACTERISTICS
50
80µs PULSE TEST
80µs PULSE TEST
VGS = 7V
0.3
VGS = 10V
0.2
VGS = 20V
0.1
0
0
25
50
75
ID , DRAIN CURRENT (A)
100
125
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4
ID = 30A
VGS = 10V
2.4
1.8
1.2
0.6
0
-60
-40
-20
0
20
40
60
80
100 120 140 120
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
IRF250
Typical Performance Curves
Unless Otherwise Specified
(Continued)
7500
1.25
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
1.15
6000
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
1.05
0.95
0.85
0.75
-60
-40
0
2
5
10
2
5
102
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
ISD , SOURCE TO DRAIN CURRENT (A)
15
TJ = 150oC
10
5
10
1
VDS , DRAIN TO SOURCE VOLTAGE (V)
TJ = 25oC
20
30
ID , DRAIN CURRENT (A)
40
5
2
102
5
TJ = 150oC
2
TJ = 25oC
10
5
2
1
50
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
0
0.5
1.0
1.5
2.0
VSD , SOURCE TO DRAIN VOLTAGE (V)
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
VGS , GATE TO SOURCE VOLTAGE (V)
gfs , TRANSCONDUCTANCE (S)
CRSS
103
VDS ≥ 50V
80µs PULSE TEST
0
COSS
-20
0
20 40 60 80 100 120 140 120
TJ, JUNCTION TEMPERATURE (oC)
20
0
CISS
3000
1500
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
25
4500
ID = 30A
16
VDS = 40V
VDS = 100V
12
VDS = 160V
8
4
0
0
25
50
75
100
125
Qg(TOT) , TOTAL GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
2.5
IRF250
Test Circuits and Waveforms
VDS
BVDSS
tP
L
VDS
IAS
VARY tP TO OBTAIN
VDD
+
RG
REQUIRED PEAK IAS
-
VGS
VDD
DUT
tP
0V
0
IAS
0.01Ω
tAV
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
td(OFF)
tf
tr
VDS
RL
90%
+
RG
-
10%
10%
0
VDD
90%
90%
DUT
VGS
0
50%
50%
PULSE WIDTH
10%
VGS
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
FIGURE 17. SWITCHING TIME TEST CIRCUIT
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
VDD
Qg(TOT)
12V
BATTERY
0.2µF
SAME TYPE
AS DUT
50kΩ
Qgd
Qgs
0.3µF
D
Ig(REF)
VDS
DUT
G
0
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
6
VGS
Ig(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
IRF250
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
7
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029