INTERSIL IRFF230

IRFF230
Data Sheet
March 1999
5.5A, 200V, 0.400 Ohm, N-Channel
Power MOSFET
• 5.5A, 200V
Formerly developmental type TA17412.
Ordering Information
IRFF230
PACKAGE
TO-205AF
1892.3
Features
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
PART NUMBER
File Number
• rDS(ON) = 0.400Ω
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
BRAND
D
IRFF230
NOTE: When ordering, include the entire part number.
G
S
Packaging
JEDEC TO-205AF
SOURCE
DRAIN
(CASE)
GATE
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRFF230
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
IRFF230
200
200
5.5
22
±20
25
0.2
85
-55 to 150
UNITS
V
V
A
A
V
W
W/oC
mJ
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
VGS = 0V, ID = 250µA (Figure 10)
200
-
-
V
Gate to Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA
2.0
-
4.0
V
-
-
25
µA
Zero-Gate Voltage Drain Current
On-State Drain Current (Note 2)
IDSS
ID(ON)
Gate to Source Leakage Forward
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 2)
Turn-On Delay Time
Rise Time
IGSS
rDS(ON)
-
250
µA
5.5
-
-
A
VGS = ±20V
-
-
±100
nA
VGS = 10V, ID = 3.0A (Figures 8, 9)
-
0.25
0.4
Ω
2.5
4.5
-
S
VDD ≅ 0.5 x Rated BVDSS, ID ≈ 5.5A, RG = 9.1Ω,
VGS = 10V, RL = 28.7Ω For VDSS = 160V,
RL = 21.4Ω For VDSS = 120V (Figures 17, 18)
MOSFET Switching Times are Essentially
Independent of Operating Temperature
-
-
30
ns
-
-
50
ns
-
-
50
ns
Qg(TOT)
Gate to Source Charge
-
VDS > ID(ON) x rDS(ON)MAX , VGS = 10V (Figure 7)
VDS >ID(ON) x rDS(ON)MAX, ID = 3.0A (Figure 12)
tf
Total Gate Charge
(Gate to Source + Gate to Drain)
VDS = 0.8 x Rated BVDSS, VGS = 0V, TJ = 125oC
gfs
td(OFF)
Fall Time
VDS = Rated BVDSS, VGS = 0V
td(ON)
tr
Turn-Off Delay Time
TEST CONDITIONS
Qgs
-
-
40
ns
VGS = 10V, ID = 5.5A, VDS = 0.8 x Rated BVDSS ,
IG(REF) = 1.5mA (Figures 14, 19, 20) Gate Charge is
Essentially Independent of Operating Temperature
-
19
30
nC
-
10
-
nC
-
9.0
-
nC
VGS = 0V, VDS = 25V, f = 1.0MHz (Figure 11)
-
600
-
pF
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
-
250
-
pF
Reverse-Transfer Capacitance
CRSS
-
80
-
pF
-
5.0
-
nH
-
15
-
nH
Internal Drain Inductance
LD
Internal Source Inductance
LS
Measured from the Drain Modified MOSFET
Lead, 5mm (0.2in) from Symbol Showing the
Header to Center of Die Internal Device
Inductances
Measured from the
Source Lead, 5mm
(0.2in) from Header to
Source Bonding Pad
D
LD
G
LS
S
Junction to Case
RθJC
-
-
5.0
oC/W
Junction to ambient
RθJA
-
-
175
oC/W
2
IRFF230
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
ISD
Pulse Source to Drain Current
(Note 3)
ISDM
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
-
5.5
A
-
-
22
A
TJ = 25oC, ISD = 5.5A, VGS = 0V (Figure 13)
-
-
2.0
V
TJ = 150oC, ISD = 5.5A, dISD/dt = 100A/µs
TJ = 150oC, ISD = 5.5A, dISD/dt = 100A/µs
-
450
-
ns
-
3.0
-
µC
Intrinsic Turn-On Time is Negligible, Turn-On
Speed is Substantially Controlled by LS + LD
-
-
-
-
Modified MOSFET
Symbol Showing the
Integral Reverse P-N
Junction Rectifier
D
G
S
Source to Drain Diode Voltage (Note 2)
VSD
Reverse Recovery Time
trr
Reverse Recovered Charge
QRR
Forward Turn-On Time
tON
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 20V, start TJ = 25oC, L = 8.9mH, RG = 50Ω, peak IAS = 5.5A (Figures 15, 16).
Typical Performance Curves
Unless Otherwise Specified
6.0
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
0
50
100
4.8
3.6
2.4
1.2
0
25
150
50
TC, CASE TEMPERATURE (oC)
75
100
125
150
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
1.0
0.5
ZθJC , NORMALIZED
THERMAL IMPEDANCE
POWER DISSIPATION MULTIPLIER
1.2
0.2
PDM
0.1
0.1
t1
0.05
t2
0.02
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
0.01
SINGLE PULSE
10-2
10-5
10-4
10-3
10-2
10-1
T1 , RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
1
10
IRFF230
Typical Performance Curves
(Continued)
20
OPERATION IN THIS
AREA IS LIMITED
BY rDS(ON)
10
10µs
100µs
1ms
1.0
10ms
TC = 25oC
TJ = MAX RATED
SINGLE PULSE
VGS = 6V
8
VGS = 5V
4
VGS = 4V
0
103
0
10
6
VGS = 6V
ID, ON-STATE DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
80µs PULSE TEST
8
VGS = 5V
4
2
VGS = 4V
80
60
100
VDS > ID(ON) x rDS(ON) MAX
80µs PULSE TEST
8
6
TJ = 125oC
TJ = 25oC
TJ = -55oC
4
2
0
0
0
1
2
3
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
0
5
FIGURE 6. SATURATION CHARACTERISTICS
2.2
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
2µs PULSE TEST
VGS = 10V
0.6
0.4
VGS = 20V
0.2
0
0
10
20
30
ID, DRAIN CURRENT (A)
1
2
4
5
3
VGS , GATE TO SOURCE VOLTAGE (V)
6
40
ID = 3A
VGS = 10V
1.8
1.4
1.0
0.6
0.2
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
NOTE: Heating effect of 2µs pulse is minimal.
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4
7
FIGURE 7. TRANSFER CHARACTERISTICS
0.8
ON RESISTANCE (Ω)
40
FIGURE 5. OUTPUT CHARACTERISTICS
10
VGS = 10V
VGS = 9V
VGS = 8V
VGS = 7V
20
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
rDS(ON) , DRAIN TO SOURCE
VGS = 7V
12
DC
10
102
VDS , DRAIN TO SOURCE VOLTAGE (V)
1
80µs PULSE TEST
16
100ms
0.1
VGS = 8V
VGS = 10V
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
100
Unless Otherwise Specified
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
160
IRFF230
Typical Performance Curves
Unless Otherwise Specified
(Continued)
2000
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
ID = 250µA
1.15
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.25
1.05
0.95
1600
1200
0.85
0.75
0
-40
40
80
800
CISS
400
COSS
CRSS
0
160
120
0
10
20
30
40
VDS, DRAIN TO SOURCE VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
10
102
ISD, SOURCE TO DRAIN CURRENT (A)
8
TJ = -55oC
TJ = 25oC
TJ = 125oC
4
2
TJ = 25oC
TJ = 150oC
10
TJ = 150oC
TJ = 25oC
1.0
0
0
2
6
4
ID, DRAIN CURRENT (A)
8
0
10
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
20
VGS, GATE TO SOURCE VOLTAGE (V)
gfs, TRANSCONDUCTANCE (S)
80µs PULSE TEST
6
50
1
2
3
VSD, SOURCE TO DRAIN VOLTAGE (V)
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
ID = 5.5A
15
VDS = 40V
VDS = 100V
VDS = 60V
10
5
0
0
8
16
24
32
40
Qg(TOT), TOTAL GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
4
IRFF230
Test Circuits and Waveforms
VDS
BVDSS
tP
VDS
L
IL
VARY tP TO OBTAIN
VDD
+
RG
REQUIRED PEAK IAS
-
VDD
DUT
tP
0V
0
IL
tAV
0.01Ω
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
RG
-
VDD
10%
10%
0
DUT
90%
VGS
VGS
0
FIGURE 17. SWITCHING TIME TEST CIRCUIT
0.2µF
50%
PULSE WIDTH
10%
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
12V
BATTERY
50%
VDD
Qg(TOT)
SAME TYPE
AS DUT
50kΩ
Qgd
0.3µF
VGS
Qgs
D
VDS
DUT
G
0
IG(REF)
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUIT
6
IG(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
IRFF230
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
7
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029