IRF330 Data Sheet March 1999 5.5A, 400V, 1.000 Ohm, N-Channel Power MOSFET 1570.4 Features • 5.5A, 400V This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. Formerly developmental type TA17414. Ordering Information PART NUMBER File Number • rDS(ON) = 1.000Ω • Single Pulse Avalanche Energy Rated • SOA is Power Dissipation Limited • Nanosecond Switching Speeds • Linear Transfer Characteristics • High Input Impedance • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol PACKAGE BRAND D IRF330 TO-204AA IRF330 NOTE: When ordering, use the entire part number. G S Packaging JEDEC TO-204AA DRAIN (FLANGE) SOURCE (PIN 2) GATE (PIN 1) 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 IRF330 Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ , TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg IRF330 400 400 5.5 3.5 22 ±20 75 0.6 300 -55 to 150 UNITS V V A A A V W W/oC mJ oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 125oC. TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 10) 400 - - V Gate Threshold Voltage VGS(TH) VGS = VDS , ID = 250µA 2.0 - 4.0 V VDS = Rated BVDSS , VGS = 0V - - 25 µA VDS = 0.8 x Rated BVDSS , VGS = 0V, TJ = 125oC - - 250 µA 5.5 - Zero Gate Voltage Drain Current IDSS On-State Drain Current (Note 2) ID(ON) Gate to Source Leakage Current IGSS Drain to Source On Resistance (Note 2) Forward Transconductance (Note 2) Turn-On Delay Time rDS(ON) gfs td(ON) Rise Time tr Turn-Off Delay Time td(OFF) Fall Time VDS > ID(ON) x rDS(ON)MAX , VGS = 10V VGS = ±20V ID = 3.0A, VGS = 10V (Figures 8, 9) VDS ≥ 10V, ID = 3.3A (Figure 12) VDD = 200V, ID ≈ 5.5A, RG = 12Ω, RL = 36Ω, VGS = 10V (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature tf Total Gate Charge (Gate to Source + Gate to Drain) Qg(TOT) Gate to Source Charge Qgs Gate to Drain “Miller” Charge Qgd Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Internal Drain Inductance LD Internal Source Inductance LS VGS = 10V, ID = 5.5A, VDS = 0.8 x Rated BVDSS , IG(REF) = 1.5mA (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) Measured between the Contact Screw on the Flange that is Closer to Source and Gate Pins and the Center of Die Measured from the Source Lead, 6mm (0.25in) from the Flange and the Source Bonding Pad Modified MOSFET Symbol Showing the Internal Devices Inductances - A ±100 nA - 0.8 1.0 Ω 2.9 4.0 - S - 11 17 ns - 20 29 ns - 35 56 ns - 15 24 ns - 21 35 nC - 4 - nC - 17 - nC - 700 - pF - 150 - pF - 40 - pF - 5.0 - nH - 12.5 - nH - - 1.67 oC/W - - 30 oC/W D LD G LS S Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA 2 Free Air Operation IRF330 Source to Drain Diode Specifications PARAMETER SYMBOL Continuous Source to Drain Current ISD Pulse Source to Drain Current (Note 3) TEST CONDITIONS Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Diode ISDM MIN TYP MAX UNITS - - 5.5 A - - 22 A - - 1.6 V 140 400 660 ns 0.93 2.4 4.3 µC D G S Source to Drain Diode Voltage (Note 2) TJ = 25oC, ISD = 5.5A, VGS = 0V (Figure 13) VSD Reverse Recovery Time TJ = 25oC, ISD = 5.5A, dISD/dt = 100A/µs TJ = 25oC, ISD = 5.5A, dISD/dt = 100A/µs trr Reverse Recovery Charge QRR NOTES: 2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%. 3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3). 4. VDD = 50V, starting TJ = 25oC, L = 17.75mH, RG = 25Ω, peak IAS = 6.5A. See Figures 15, 16. Typical Performance Curves Unless Otherwise Specified 10 ID , DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 0.2 0 8 6 4 2 0 0 50 100 150 0 50 100 75 150 125 TC , CASE TEMPERATURE (oC) TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 1.0 THERMAL IMPEDANCE ZθJC, NORMALIZED TRANSIENT POWER DISSIPATION MULTIPLIER 1.2 0.5 0.5 0.2 0.2 0.1 0.05 0.02 0.01 10-5 0.1 0.05 0.02 0.01 PDM t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 t1, RECTANGULAR WAVE PULSE DURATION (s) FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE 3 1.0 10 IRF330 Typical Performance Curves (Continued) 8 OPERATION IN THIS AREA IS LIMITED BY rDS(ON) 10 10µs 100µs 1ms 1 10ms TC = 25oC TJ = MAX RATED SINGLE PULSE 100ms DC VGS = 5.5V 6 5 5V 4 3 4.5V 2 1 0.1 4V 0 1 10 100 VDS , DRAIN TO SOURCE VOLTAGE (V) 0 500 VGS = -10V 300 80ms PULSE TEST VDS ≥ 50V 3 VGS = 4.5V 2 1 250 5 VGS = 5V 4 200 FIGURE 5. OUTPUT CHARACTERISTICS VGS = 6V 80µs PULSE TEST 150 VDS , DRAIN TO SOURCE VOLTAGE (V) 4 ID, DRAIN CURRENT (A) 5 100 50 FIGURE 4. FORWARD BIAS SAFE OPERATING AREA ID, DRAIN CURRENT (A) 80µs PULSE TEST 10V 7 ID , DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 100 Unless Otherwise Specified 125oC 3 25oC -55oC 2 1 VGS = 4V 0 0 2 4 6 8 VDS, DRAIN TO SOURCE VOLTAGE (V) 0 10 FIGURE 6. SATURATION CHARACTERISTICS 5 2 3 4 VGS, GATE TO SOURCE VOLTAGE (V) 6 7 FIGURE 7. TRANSFER CHARACTERISTICS 3 2.2 NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON) , DRAIN TO SOURCE ON RESISTANCE (Ω) 1 VGS = 10V 2 VGS = 20V 1 0 ID = 2.0A VGS = 10V 1.8 1.4 1.0 0.6 0.2 0 5 10 15 20 ID , DRAIN CURRENT (A) 25 30 NOTE: Heating effect of 2µs pulse is minimal. FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 4 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE IRF330 Typical Performance Curves Unless Otherwise Specified (Continued) 2000 VGS = 0V ID = 250µA 1.15 1.05 0.95 1600 1200 0.85 CISS 800 COSS 400 CRSS 0.75 -40 0 0 40 80 0 160 120 10 TJ , JUNCTION TEMPERATURE (oC) ISD , SOURCE TO DRAIN CURRENT (A) 80µs PULSE TEST 8 TJ = -55oC TJ = 25oC 4 TJ = 125oC 2 2 4 6 ID, DRAIN CURRENT (A) 10 8 100 10 TJ = 150oC TJ = 25oC 1 2 3 VSD , SOURCE TO DRAIN VOLTAGE (V) FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE VGS , GATE TO SOURCE VOLTAGE (V) 20 ID = 5.5A VDS = 320V VDS = 200V VDS = 80V 16 12 8 4 0 8 16 24 32 40 Qg(TOT), TOTAL GATE CHARGE (nC) FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE 5 50 TJ = 150oC FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT 0 40 TJ = 25oC 80µs PULSE TEST 0.1 0 0 0 30 FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 10 6 20 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE gfs, TRANSCONDUCTANCE (S) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD f = 1MHz C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.25 4 IRF330 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN + RG REQUIRED PEAK IAS - VGS VDS IAS VDD VDD DUT tP 0V IAS 0 0.01Ω tAV FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + RG - VDD 10% 10% 0 DUT 90% VGS VGS 0 FIGURE 17. SWITCHING TIME TEST CIRCUIT 0.2µF 50% PULSE WIDTH 10% FIGURE 18. RESISTIVE SWITCHING WAVEFORMS VDS (ISOLATED SUPPLY) CURRENT REGULATOR 12V BATTERY 50% VDD Qg(TOT) SAME TYPE AS DUT 50kΩ Qgd 0.3µF VGS Qgs D VDS DUT G IG(REF) 0 S 0 IG CURRENT SAMPLING RESISTOR VDS ID CURRENT SAMPLING RESISTOR FIGURE 19. GATE CHARGE TEST CIRCUITS 6 IG(REF) 0 FIGURE 20. GATE CHARGE WAVEFORMS IRF330 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 7 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029