10-FZ06BIA083FI-P896E datasheet flowSOL 0 BI 600 V / 30 A Features flow0 housing ● High efficiency ● Ultra fast switching frequency ● Low inductive design ● SiC in boost Target Applications Schematic ● Solar inverters with transformer Types ● 10-FZ06BIA083FI-P896E Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Th=80°C Tc=80°C 36 49 A Tj=25°C 370 A Tj=150°C 360 A 2s Th=80°C Tc=80°C 42 63 W Bypass FWD Repetitive peak reverse voltage V RRM Forward current per FWD I FAV Surge forward current I FSM DC current tp=10ms I2t-value 2 I t Power dissipation per FWD P tot Maximum Junction Temperature T jmax 150 °C Drain to source breakdown voltage V DS 600 V DC drain current ID 30 37 A 230 A 92 139 W Tj=Tjmax Input Boost MOSFET Pulsed drain current I Dpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Power dissipation P tot Gate-source peak voltage V GS ±20 V T jmax 150 °C Maximum Junction Temperature copyright Vincotech 1 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 20 25 A 70 A 41 62 W Input Boost FWD Peak Repetitive Reverse Voltage DC forward current V RRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 175 °C Drain to source breakdown voltage V DS 600 V DC drain current ID Th=80°C Tc=80°C Boost and Buck MOSFET Pulsed drain current I Dpulse Tj=Tjmax Th=80°C Tc=80°C 17 tp limited by Tjmax Tc=25°C 85 A Tj=Tjmax Th=80°C Tc=80°C 74 111 W 20 A Power dissipation P tot Gate-source peak voltage V GS ±20 V T jmax 150 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V min 12,7 mm 8,96 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance Clearance copyright Vincotech 2 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,7 1,01 0,93 0,86 0,75 1,3 Bypass FWD Forward voltage VF Threshold voltage (for power loss calc. only) V to Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink R th(j-s) 15 1200 V Ω 0,012 0,05 Thermal grease thickness≤50um λ = 1 W/mK V 1,68 mA K/W Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage r DS(on) V (GS)th Gate to Source Leakage Current I GSS Zero Gate Voltage Drain Current I DSS Turn On Delay Time t d(on) Rise Time Turn off delay time Fall time 44 VGS=VDS 0,003 20 0 600 0 tr t d(off) tf Turn-on energy loss E on Turn-off energy loss E off Total gate charge QG Gate to source charge Q GS Gate to drain charge Q GD Input capacitance C iss Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance chip to heatsink 10 R th(j-s) Rgoff=4 Ω Rgon=4 Ω Rgon=4 Ω 10 400 10 400 15 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,1 0,04 0,09 3 Ω 3,9 200 25 28 27 5 6 154 167 10 9 0,063 0,072 0,025 0,025 V nA µA ns mWs 150 34 nC 51 6800 f=1MHz 100 0 Tj=25°C pF 320 48 Thermal grease thickness≤50um λ = 1 W/mK 0,76 K/W Input Boost FWD Forward voltage VF Reverse leakage current I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy E rec Peak rate of fall of recovery current ( di rf/dt )max Thermal resistance chip to heatsink R th(j-s) copyright Vincotech 16 10 Rgon=4 Ω 400 10 400 Thermal grease thickness≤50um λ = 1 W/mK 15 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,54 1,71 400 17 15 9 10 0,058 0,064 0,005 0,006 4244 2752 2,34 3 1,8 V µA A ns µC mWs A/µs K/W 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Unit Min Typ Max 3 118 233 4 5 Boost and Buck MOSFET Static drain to source ON resistance Gate threshold voltage r DS(on) 10 V GS(th) 21,6 VDS=VGS 0,0019 Gate to Source Leakage Current I GSS 20 0 Zero Gate Voltage Drain Current I DSS 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time t d(on) tr t d(off) tf Turn-on energy loss E on Turn-off energy loss E off Total gate charge QG Gate to source charge Q GS Gate to drain charge Q GD Input capacitance C iss Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance chip to heatsink R th(j-s) Rgon=16 Ω Rgoff=4 Ω 10 400 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C mΩ 200 25 58 55 22 23 126 134 6 8 1,54 2,27 0,01 0,02 V nA µA ns mWs 163 10 480 46 Tj=25°C 36 nC 87 5060 f=1MHz 0 25 Tj=25°C 1400 pF 16 Thermal grease thickness≤50um λ = 1 W/mK 0,95 K/W Thermistor Rated resistance R Tj=25°C 4,7 kΩ Power dissipation P Tj=25°C 210 mW Tj=25°C 3,5 mW/K Power dissipation constant B-value B(25/50) Tj=25°C 3590 K B-value B(25/100) Tj=25°C 3650 K Vincotech NTC Reference copyright Vincotech D 4 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Boost and Buck Figure 1 Typical output characteristics I C = f(V CE) MOSFET Figure 2 Typical output characteristics I C = f(V CE) 40 IC (A) IC (A) 40 MOSFET 32 32 24 24 16 16 8 8 0 0 0 1 At tp = Tj = V GE from 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 6 V to 16 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) 1 2 3 4 V CE (V) 5 250 µs 125 °C 6 V to 16 V in steps of 1 V MOSFET IC (A) 30 Tj = Tjmax-25°C 25 20 15 10 5 Tj = 25°C 0 0 At tp = V CE = 1 2 250 10 copyright Vincotech 3 4 5 6 7 V GE (V) 8 µs V 5 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Boost and Buck MOSFET Figure 5 Typical switching energy losses as a function of gate resistor E = f(R G) MOSFET 3,00 0,10 E (mWs) E (mWs) Figure 4 Typical switching energy losses as a function of collector current E = f(I C) Eon High T 2,50 0,08 Eoff High T 2,00 Eon Low T 0,06 1,50 0,04 1,00 Eoff Low T 0,02 0,50 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = °C 25/125 V CE = 400 V V GE = 10 V R gon = 16 Ω R goff = 4 Ω 15 30 45 60 R G (W) 75 With an inductive load at Tj = °C 25/125 V CE = 400 V V GE = 10 V IC = 15 A Figure 6 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 7 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,300 FWD E (mWs) E (mWs) 0,300 0,250 0,250 0,200 0,200 Erec High T 0,150 Erec High T 0,150 0,100 0,100 Erec Low T 0,050 0,050 0,000 0,000 Erec Low T 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C V CE = 400 V V GE = 10 V R gon = 16 Ω copyright Vincotech 15 30 45 60 R G (W) 75 With an inductive load at Tj = 25/125 °C V CE = 400 V V GE = 10 V IC = 15 A 6 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Boost and Buck Figure 9 Typical switching times as a function of gate resistor t = f(R G) 1,00 1,00 t (ms) MOSFET t (ms) Figure 8 Typical switching times as a function of collector current t = f(I C) MOSFET tdoff tdoff tdon 0,10 0,10 tr tdon tf tf 0,01 0,01 tr 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C V CE = 400 V V GE = 10 V R gon = 16 Ω R goff = 4 Ω 15 30 45 60 R G (W) 75 With an inductive load at Tj = 125 °C V CE = 400 V V GE = 10 V IC = 15 A Figure 10 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 11 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,250 t rr(ms) t rr(ms) 0,250 FWD 0,200 trr High T 0,200 0,150 0,150 trr High T 0,100 trr Low T 0,100 trr Low T 0,050 0,050 0,000 0,000 0 At Tj = V CE = V GE = R gon = 5 25/125 400 10 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω 7 15 25/125 400 15 10 30 45 60 R gon (W) 75 °C V A V 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Boost and Buck Figure 12 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 13 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Q rr = f(R gon) Qrr (mC) Qrr (mC) 6,00 Qrr High T FWD 6 5,00 5 4,00 4 Qrr High T Qrr Low T 3,00 3 2,00 2 1,00 1 0,00 0 At At Tj = V CE = V GE = R gon = Qrr Low T 0 5 25/125 400 10 16 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω Figure 14 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 15 25/125 400 15 10 30 45 60 R g on ( Ω) °C V A V Figure 15 Typical reverse recovery current as a function of MOSFET turn on gate resistor I RRM = f(R gon) 90 75 FWD IrrM (A) IrrM (A) 120 75 100 IRRM High T 60 80 IRRM Low T 45 60 30 40 IRRM High T 15 20 IRRM Low T 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 400 10 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω 8 15 25/125 400 15 10 30 45 60 R gon (W) 75 °C V A V 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Boost and Buck Figure 16 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 40000 direc / dt (A/ms) direc / dt (A/ms) 16000 FWD dIrec/dtHigh T 14000 dIrec/dtHigh T 35000 12000 30000 dIrec/dtLow T 10000 25000 8000 20000 6000 15000 4000 10000 2000 5000 di0/dtHigh T dIo/dtLow T dIrec/dtLow T dI0/dtLow T dI0/dtHigh T 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 400 10 16 10 15 20 25 I C (A) 0 30 At Tj = VR= IF= V GE = °C V V Ω Figure 18 MOSFET transient thermal impedance as a function of pulse width Z thJH = f(t p) 15 25/125 400 15 10 30 45 60 R gon (W) 75 °C V A V MOSFET ZthJH (K/W) 100 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 0,95 K/W IGBT thermal model values R (K/W) 0,03 0,15 0,55 0,14 0,04 0,03 Tau (s) 6,6E+00 9,3E-01 1,6E-01 2,5E-02 2,6E-03 3,4E-04 copyright Vincotech 9 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Boost and Buck Figure 19 Power dissipation as a function of heatsink temperature P tot = f(T h) MOSFET Figure 20 Collector current as a function of heatsink temperature I C = f(T h) 30 Ptot (W) IC (A) 200 MOSFET 25 160 20 120 15 80 10 40 5 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 50 At Tj = V GE = °C Figure 21 Safe operating area as a function of collector-emitter voltage I C = f(V CE) MOSFET 150 T h ( o C) 200 °C V Figure 22 Gate voltage vs Gate charge MOSFET V GE = f(Q g) IC (A) VGE (V) 103 1 102 10mS 10 120V 9 8 100uS 100mS 150 15 100 480V 7 1mS 6 101 5 DC 4 100 3 2 10-1 1 0 0 100 At D = Th = V GE = Tj = 101 102 V CE (V) 40 60 80 100 120 140 160 Q g (nC) At ID = single pulse 80 ºC 15 V T jmax ºC copyright Vincotech 20 103 10 47 A 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Boost and Buck Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 40 IC (A) IC (A) 40 IGBT 32 32 24 24 16 16 8 8 0 0 0 At tp = Tj = V GE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = V GE from 250 µs 25 °C 6 V to 16 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 V CE (V) 4 5 250 µs 125 °C 5 V to 15 V in steps of 1 V Figure 4 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 100 Tj = Tjmax-25°C Tj = 25°C ZthJH (K/W) IC (A) 30 25 20 10-1 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 5 0 10-2 0 2 4 At tp = V CE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 10-5 At D = R thJH = 11 10-4 10-3 10-2 10-1 100 t p (s) 101 10 tp/T 0,95 K/W 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Input Boost Figure 1 Typical output characteristics I D = f(V DS) BOOST MOSFET Figure 2 Typical output characteristics I D = f(V DS) IC (A) 100 IC(A) 100 80 80 60 60 40 40 20 20 0 BOOST FWD 0 0 At tp = Tj = V GS from 1 2 3 V CE (V) 4 5 0 At tp = Tj = V GS from 250 µs 25 °C 4 V to 14 V in steps of 1 V Figure 2 Typical transfer characteristics I D = f(V DS) BOOST MOSFET 1 2 3 4 V CE (V) 5 250 µs 126 °C 4 V to 14 V in steps of 1 V Figure 3 Typical FWD forward current as a function of forward voltage I F = f(V F) BOOST FWD 50 IF (A) ID (A) 50 Tj = 25°C 40 40 30 30 Tj = Tjmax-25°C Tj = Tjmax-25°C 20 20 Tj = 25°C 10 10 0 0 0 At tp = V DS = 1 250 10 copyright Vincotech 2 3 4 5 V GS (V) 0 6 At tp = µs V 12 0,8 250 1,6 2,4 3,2 V F (V) 4 µs 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Input Boost Figure 4 Typical switching energy losses as a function of collector current E = f(I D) BOOST MOSFET Figure 5 Typical switching energy losses as a function of gate resistor E = f(R G) 0,2 BOOST MOSFET E (mWs) E (mWs) 0,2 0,16 Eon High T 0,16 Eon Low T Eon High T 0,12 0,12 Eon Low T Eoff High T 0,08 0,08 Eoff Low T Eoff High T 0,04 0,04 Eoff Low T 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = 10 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = 10 V ID = 15 A Figure 6 Typical reverse recovery energy loss as a function of collector (drain) current E rec = f(I c) BOOST MOSFET Figure 7 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,018 E (mWs) E (mWs) 0,025 BOOST MOSFET 0,015 0,02 Erec High T 0,012 Erec Low T 0,015 0,009 0,01 0,006 Erec High T 0,005 0,003 Erec Low T 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = 10 V R gon = 4 Ω R goff = 4 Ω copyright Vincotech 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = 10 V ID = 15 A 13 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Input Boost Figure 8 Typical switching times as a function of collector current t = f(I D) BOOST MOSFET Figure 9 Typical switching times as a function of gate resistor t = f(R G) t ( µs) 1 t ( µs) 1 BOOST MOSFET tdoff tdoff tf 0,1 0,1 tdon tdon tf tr 0,01 0,01 tr 0,001 0,001 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = 125 °C V DS = 400 V V GS = 10 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C V DS = 400 V V GS = 10 V IC = 15 A Figure 10 Typical reverse recovery time as a function of collector current t rr = f(I c) BOOST FWD Figure 11 Typical reverse recovery time as a function of MOSFET turn on gate resistor t rr = f(R gon) BOOST FWD 0,03 t rr( µs) t rr( µs) 0,02 0,025 trr High T 0,016 trr Low T 0,02 0,012 trr High T 0,015 0,008 trr Low T 0,01 0,004 0,005 0 0 0 R (K/W) At Tj = V CE = V GE = R gon = 5 25/125 400 10 4 copyright Vincotech 10 15 20 25 I C (A) 30 0 R (K/W) At Tj = VR= IF= V GS = °C V V Ω 14 4 25/125 400 15 10 8 12 16 R Gon ( Ω ) 20 °C V A V 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Input Boost Figure 12 Typical reverse recovery charge as a function of collector current Q rr = f(I C) BOOST FWD Figure 13 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Q rr = f(R gon) 0,1 BOOST FWD Qrr ( µC) Qrr ( µC) 0,1 Qrr High T 0,08 0,08 Qrr High T Qrr Low T 0,06 Qrr Low T 0,06 0,04 0,04 0,02 0 0,02 0 At At Tj = V CE = V GE = R gon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = °C V V Ω VR= IF= V GS = Figure 14 Typical reverse recovery current as a function of collector current I RRM = f(I C) BOOST FWD 4 25/125 400 15 10 8 12 16 20 °C V A V Figure 15 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) BOOST FWD IrrM (A) 30 IrrM (A) 25 R Gon ( Ω) IRRM Low T 25 IRRM Low T 20 20 IRRM High T 15 15 IRRM High T 10 10 5 5 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 400 10 4 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GS = °C V V Ω 15 4 25/125 400 15 10 8 12 16 R Gon ( Ω ) 20 °C V A V 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Input Boost Figure 16 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 6000 BOOST FWD direc / dt (A/ µs) direc / dt (A/ µs) 12000 dI0/dt dIrec/dt 5000 dI0/dt dIrec/dt dIrec/dtLow T 10000 di0/dtHigh T dIrec/dtLow T 4000 8000 dI0/dtLow T di0/dtLow T dIrec/dtHigh T 3000 6000 2000 4000 1000 2000 dI0/dtHigh T dIrec/dtHigh T 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = °C V V Ω VR= IF= V GS = Figure 18 BOOST MOSFET IGBT/MOSFET transient thermal impedance as a function of pulse width Z thJH = f(t p) 25/125 400 15 10 8 12 R Gon ( Ω) 16 20 °C V A V Figure 19 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) BOOST FWD 101 ZthJH (K/W) ZthJH (K/W) 101 100 10 4 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 101 10 10-5 At D = R thJH = tp/T 0,76 K/W 10-4 10-3 2,34 R (K/W) 0,03247 0,1223 0,4264 0,1173 0,03103 0,03298 R (K/W) 0,1024 0,495 0,9886 0,4865 0,2673 16 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 9,971 1,22 0,1797 0,04698 0,005891 0,000404 10-2 Tau (s) 2,885 0,3437 0,07039 0,01004 0,001614 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Input Boost Figure 20 Power dissipation as a function of heatsink temperature P tot = f(T h) BOOST MOSFET Figure 21 Collector/Drain current as a function of heatsink temperature I C = f(T h) 200 BOOST MOSFET Ptot (W) IC (A) 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = V GS = ºC Figure 22 Power dissipation as a function of heatsink temperature P tot = f(T h) BOOST FWD 50 150 10 100 150 200 ºC V Figure 23 Forward current as a function of heatsink temperature I F = f(T h) BOOST FWD 30 Ptot (W) IF (A) 80 Th ( o C) 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 17 50 175 100 150 T h ( o C) 200 ºC 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Input Boost Figure 24 Safe operating area as a function of drain-source voltage I D = f(V DS) BOOST MOSFET Figure 25 BOOST MOSFET Gate voltage vs Gate charge V GS = f(Q g) 103 ID (A) UGS (V) 10 8 10uS 102 120V 480V 1mS 6 100uS 100mS 10mS 101 DC 4 100 2 10 -1 100 At D = Th = V GS = Tj = 101 10 2 0 V DS (V) 0 At ID = single pulse 80 ºC V 10 T jmax ºC copyright Vincotech 18 30 44 60 90 120 150 Qg (nC) A 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Bypass FWD Figure 1 Typical FWD forward current as a function of forward voltage I F= f(V F) Bypass FWD Figure 2 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 50 Bypass FWD ZthJC (K/W) IF (A) 101 40 100 30 20 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = 25°C 10 0 0 At tp = 0,3 0,6 250 0,9 1,2 VF (V) 10-2 1,5 10-5 At D = R thJH = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Bypass FWD 10-4 10-3 10-2 10-1 100 10110 tp/T 1,677 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Bypass FWD 70 Ptot (W) IF (A) 100 t p (s) 60 80 50 60 40 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 19 50 150 100 150 T h ( o C) 200 ºC 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 25000 Thermistor R (Ω) R(T ) = R25 ⋅ e [Ω] 20000 15000 10000 5000 0 25 50 copyright Vincotech 75 100 T (°C) 125 20 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Switching Definitions BUCK MOSFET General Tj R gon R goff conditions = 124 °C = 16 Ω = 4Ω Figure 1 BUCK MOSFET Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 BUCK MOSFET Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 140 510 120 430 IC tdoff VCE 100 350 VGE 90% VCE 90% 80 270 % IC %60 190 40 tEoff IC 1% VCE 110 20 tdon VGE 30 0 -20 -0,1 VGE10% IC10% tEon -50 -0,05 0 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,05 0,1 time (us) 0 10 400 15 0,13 0,15 0,15 0,2 0,25 2,9 V V V A µs µs 2,95 3 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 BUCK MOSFET Turn-off Switching Waveforms & definition of t f 3,05 0 10 400 15 0,06 0,19 VCE5% 3,1 3,15 time(us) 3,2 3,25 3,3 V V V A µs µs Figure 4 BUCK MOSFET Turn-on Switching Waveforms & definition of t r 120 510 fitted Ic 430 100 IC IC 90% 350 80 IC 60% 60 270 % % IC 40% 40 190 110 20 VCE IC90% 30 0 -20 0,07 tf 0,075 VCE IC10% 0,08 V C (100%) = I C (100%) = tf = copyright Vincotech 0,085 400 15 0,01 tr IC10% -50 0,09 time (us) 0,095 0,1 0,105 2,9 0,11 2,95 3 3,05 3,1 3,15 3,2 3,25 3,3 time(us) V A µs V C (100%) = I C (100%) = tr = 21 400 15 0,02 V A µs 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Switching Definitions BUCK MOSFET Figure 5 BUCK MOSFET Turn-off Switching Waveforms & definition of t Eoff Figure 6 BUCK MOSFET Turn-on Switching Waveforms & definition of t Eon 150 550 Eoff % % 120 450 90 350 60 250 Pon 150 30 Eon Poff 50 0 tEoff VGE90% -30 -0,1 -0,05 P off (100%) = E off (100%) = t E off = 0 0,05 time (us) 6,13 0,02 0,15 0,1 VCE3% VGE10% IC 1% tEon 0,15 -50 2,95 0,2 kW mJ µs 3 P on (100%) = E on (100%) = t E on = Figure 7 Output inverter FWD Gate voltage vs Gate charge (measured) 3,05 6,13 2,27 0,19 3,1 time(us) 3,15 3,2 3,25 kW mJ µs Figure 8 BUCK MOSFET Turn-off Switching Waveforms & definition of t rr 15 350 fitted 10 150 VGE (V) 250 50 5 % -50 Id trr Vd IRRM10% -150 0 -250 IRRM90% -350 IRRM100% -5 -450 -20 0 20 V GE off = V GE on = V C (100%) = I C (100%) = Qg = copyright Vincotech 40 60 0 10 400 15 159,93 80 Qg (nC) 100 120 140 160 180 3 V V V A nC 3,05 V d (100%) = I d (100%) = I RRM (100%) = t rr = 22 3,1 400 15 -63 0,11 3,15 time(us) 3,2 3,25 3,3 V A A µs 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Switching Definitions BUCK MOSFET Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 200 200 Qrr 150 150 Id 100 Erec 100 tQrr % 50 % 50 0 tErec -50 0 Prec -100 3 3,06 3,12 I d (100%) = Q rr (100%) = t Q rr = 3,18 3,24 time(us) 3,3 3,36 3,42 -50 3,48 3 15 A 4,31 µC ###### µs 3,2 P rec (100%) = E rec (100%) = t E rec = 3,4 3,6 3,8 time(us) 4 4,2 6,13 kW 0,17 mJ ###### µs Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright Vincotech 23 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing with thermal paste 12mm housing Ordering Code 10-FZ06BIA083FI-P896E 10-FZ06BIA083FI-P896E-/3/ in DataMatrix as in packaging barcode as P896E P896E P896E P896E-/3/ Outline Pinout copyright Vincotech 24 07 Apr. 2015 / Revision 6 10-FZ06BIA083FI-P896E datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 25 07 Apr. 2015 / Revision 6