10 F106BIB020FK M285L D2 14

10-F106BIB020FK-M285L
datasheet
flow BOOST 1 symmetric
600 V / 19 mΩ
Features
flow 1 17mm housing
● High efficiency symmetric boost
● Ultra fast switching frequency
● Low Inductance Layout
Target Applications
Schematic
● Solar
● UPS
● Power supply
Types
● 10-F106BIB020FK-M285L
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Input Boost MOSFET
Drain to source breakdown voltage
V DS
650
V
DC drain current
ID
T j=T jmax
T s =80°C
80
A
Power dissipation
P tot
T j=T jmax
T s =80°C
172
W
Gate-source peak voltage
V GSS
25
V
Maximum Junction Temperature
T jmax
150
°C
Peak Repetitive Reverse Voltage
V RRM
600
V
Forward average current
I FAV
T j=T jmax
T s =80°C
80
A
Power dissipation
P tot
T j=T jmax
T s =80°C
107
W
T jmax
150
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Input Boost FWD
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Comparative Tracking Index
copyright Vincotech
V
i sol
t=2s
DC voltage
CTI
>200
1
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
Characteristic Values
Parameter
Symbol
Conditions
V r [V]
V GE [V] or
V CE [V]
or
V GS [V] or
V DS [V]
I C [A]
or
I F [A]
or
I D [A]
Value
10
69
T j[ °C]
Min
Unit
Typ
Max
25
0,01
0,019
125
0,03
Input Boost MOSFET
Static drain to source ON resistance
Gate threshold voltage
Gate to Source Leakage Current
Zero Gate Voltage Drain Current
Integrated Gate resistor
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
r DS(on)
V (GS)th
I GSS
±25
I DSS
rg
0,0005
0
tf
E on
Turn-off energy loss
E off
Total gate charge
QG
Gate to source charge
Q GS
Gate to drain charge
Q GD
Input capacitance
C iss
Output capacitance
C oss
Reverse transfer capacitance
C rss
R th(j-s)
5
125
200
25
2
125
f=1MHz
200
25
0,6
25
158
125
157
25
400
±10
69
V
nA
µA
16
125
R goff=4 Ω
R gon=4 Ω
Ω
Ω
125
tr
t d(off)
4
125
650
0
3
25
t d(on)
Turn-on energy loss
Thermal resistance chip to heatsink
V DS=V GS
25
19
25
130
125
136
25
ns
5
125
15
25
1,126
125
2,152
25
0,060
125
0,150
25
mWs
400
125
VDD=520 V
69
±10
25
120
nC
125
25
140
125
19600
f=1MHz
100
0
25
400
pF
12
phase-change
material
ʎ=3,4W/mK
K/W
0,41
Input Boost FWD
Forward voltage
Reverse leakage current
Peak recovery current
Reverse recovery time
Reverse recovery charge
Reverse recovered energy
VF
120
I rm
600
400
E rec
( di rf/dt )max
Thermal resistance chip to heatsink
R th(j-s)
25
107
125
167
70
2,18
125
µC
5,95
25
0,367
125
1,043
25
8564
125
8366
phase-change
material
ʎ=3,4W/mK
µA
ns
59
25
V
A
35
125
±10
1,83
20
25
R gon=4 Ω
1,43
1,26
125
t rr
Peak rate of fall of recovery current
1,4
125
25
I RRM
Q rr
25
mWs
A/µs
0,66
K/W
22
kΩ
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
25
R 100=1486 Ω
100
Power dissipation constant
-12
+12
%
25
200
mW
25
2
mW/K
B-value
B(25/50)
Tol. ±3%
25
3950
K
B-value
B(25/100)
Tol. ±3%
25
3998
K
Vincotech NTC Reference
copyright Vincotech
B
2
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
INPUT BOOST
Figure 1
Typical output characteristics
I D = f(V DS)
BOOST MOSFET
Figure 2
Typical output characteristics
I D = f(V DS)
120
ID(A)
ID (A)
120
BOOST MOSFET
100
100
80
80
60
60
40
40
20
20
0
0
0,0
At
tp =
Tj =
V GS from
1,0
2,0
3,0
4,0
V DS (V)
5,0
0,0
At
tp =
Tj =
V GS from
250
µs
25
°C
0 V to 20 V in steps of 2 V
Figure 3
BOOST MOSFET
1,0
2,0
3,0
4,0
250
µs
125
°C
0 V to 20 V in steps of 2 V
Figure 4
Typical transfer characteristics
I D = f(V GS)
V DS (V) 5,0
BOOST FWD
Typical diode forward current as
a function of forward voltage
I F = f(V F)
250
ID (A)
IF (A)
80
200
60
150
40
100
20
50
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
V DS =
2
250
10
copyright Vincotech
4
6
V GS (V)
0
8
At
tp =
µs
V
3
0,5
250
1
1,5
V F (V)
2
µs
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
INPUT BOOST
Figure 5
BOOST MOSFET
Figure 6
BOOST MOSFET
Typical switching energy losses
Typical switching energy losses
as a function of drain current
E = f(I D)
as a function of gate resistor
E = f(R G)
E (mWs)
E (mWs)
3
Eon High T
2,5
5
Eon High T
4
2
3
Eon Low T
1,5
2
Eon Low T
1
1
0,5
Eoff High T
Eoff Low T
Eoff High T
Eoff Low T
0
0
0
0
20
40
60
80
I D (A)
5
10
15
100
With an inductive load at
Tj =
25/125 °C
V DS =
400
V
V GS =
±10
V
R gon =
4
Ω
R goff =
4
Ω
RG (Ω )
20
With an inductive load at
Tj =
25/125 °C
V DS =
400
V
V GS =
±10
V
ID =
70
A
Figure 7
Typical reverse recovery energy loss
as a function of drain current
E rec = f(I c)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
2,5
E (mWs)
1,5
BOOST FWD
Erec High T
1,2
2
0,9
1,5
0,6
1
Erec Low T
0,3
0,5
Erec High T
Erec Low T
0
R (K/W)
0
20
40
R (K/W)
60
0
80
I D (A)
R (K/W)
0
100
With an inductive load at
Tj =
25/125 °C
V DS =
400
V
V GS =
±10
V
R gon =
4
Ω
R goff =
4
Ω
copyright Vincotech
5
R (K/W)
10
15
R G ( Ω ) 20
With an inductive load at
Tj =
25/125 °C
V DS =
400
V
V GS =
±10
V
ID =
70
A
4
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
INPUT BOOST
Figure 9
BOOST MOSFET
Figure 10
BOOST MOSFET
Typical switching times as a
Typical switching times as a
function of drain current
t = f(I D)
function of gate resistor
t = f(R G)
1
t (µs)
t (µs)
1
tdon
tdoff
tdon
tdoff
0,1
0,1
tr
tr
tf
0,01
0,01
tf
0,001
0,001
0
20
40
60
80
0
100
I D (A)
With an inductive load at
Tj =
125
°C
V DS =
400
V
V GS =
±10
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
R G (Ω)
20
With an inductive load at
Tj =
125
°C
V DS =
400
V
V GS =
±10
V
ID =
70
A
Figure 11
Typical reverse recovery time as a
function of drain current
t rr = f(I D)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
t rr = f(R gon)
t rr( µs)
t rr( µs)
0,1
BOOST FWD
0,15
0,12
0,08
trr High T
trr High T
0,06
0,09
0,04
0,06
trr Low T
trr Low T
0,03
0,02
0
0
0
At
Tj =
V DS =
V GS =
R gon =
20
25/125
400
±10
4
copyright Vincotech
40
60
80
I D (A)
0
100
At
Tj =
VR=
IF=
V GS =
°C
V
V
Ω
5
5
25/125
400
70
±10
10
15
20
R Gon (Ω)
°C
V
A
V
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
INPUT BOOST
Figure 13
BOOST FWD
Figure 14
BOOST FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of drain current
Q rr = f(I C)
function of MOSFET turn on gate resistor
Q rr = f(R gon)
Qrr ( µC)
Qrr ( µC)
8
Qrr High T
8
6
6
Qrr High T
4
4
Qrr Low T
Qrr Low T
2
2
0
0
0
At
At
Tj =
V DS =
V GS =
R gon =
20
40
60
80
0
I D (A) 100
5
10
25/125
400
±10
°C
V
V
At
Tj =
VR=
IF=
25/125
400
70
°C
V
A
4
Ω
V GS =
±10
V
Figure 15
Typical reverse recovery current as a
function of drain current
I RRM = f(I D)
BOOST FWD
15
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
I RRM = f(R gon)
200
R Gon ( Ω)
20
BOOST FWD
IrrM (A)
300
IrrM (A)
IRRM High T
250
150
200
IRRM Low T
150
100
100
IRRM High T
IRRM Low T
50
50
0
0
0
At
Tj =
V DS =
V GS =
R gon =
20
25/125
400
±10
4
copyright Vincotech
40
60
80
I D (A)
0
100
At
Tj =
VR=
IF=
V GS =
°C
V
V
Ω
6
5
25/125
400
70
±10
10
15
R Gon (Ω)
20
°C
V
A
V
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
INPUT BOOST
Figure 17
BOOST FWD
Figure 18
BOOST FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
18000
30000
direc / dt (A/ µs)
direc / dt (A/ µs)
dI0/dt
dIrec/dt
16000
dI0/dt
dIrec/dt
25000
14000
12000
20000
dIrec/dtHigh T
dIrec/dtLow T
10000
dIrec/dtHigh T
15000
8000
6000
10000
di0/dtLow T
dIrec/dtLow T
4000
di0/dtHigh T
5000
dI0/dtLow T
2000
dI0/dtHigh T
0
0
0
At
Tj =
V DS =
V GS =
R gon =
20
40
25/125
400
°C
V
±10
4
V
Ω
60
80
I D (A)100
0
At
Tj =
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
BOOST MOSFET
VR =
IF=
25/125
400
70
°C
V
A
V GS =
±10
V
R Gon ( Ω) 20
15
BOOST FWD
Zth(j-s) (K/W)
Zth(j-s) (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-2
At
D =
R th(j-s) =
10
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
100
10-3
10-5
5
10-4
10-3
10-2
10-1
100
10-3
10-5
t p (s) 101
At
D =
R th(j-s) =
tp/T
0,41
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-2
K/W
10-4
10-3
10-2
0,66
t p (s)
101
K/W
FWD thermal model values
R (K/W)
3,22E-02
7,42E-02
1,52E-01
Tau (s)
5,52E+00
1,05E+00
2,31E-01
R (K/W)
3,46E-02
1,02E-01
3,07E-01
Tau (s)
5,31E+00
9,80E-01
2,08E-01
7,06E-02
4,18E-02
1,94E-02
7,51E-02
1,64E-02
2,60E-03
1,10E-01
6,93E-02
3,32E-02
6,00E-02
1,40E-02
1,76E-03
7
100
tp/T
MOSFET thermal model values
copyright Vincotech
10-1
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
INPUT BOOST
Figure 21
BOOST MOSFET
Figure 22
BOOST MOSFET
Power dissipation as a
Drain current as a
function of heatsink temperature
P tot = f(T s)
function of heatsink temperature
I D = f(T s)
100
ID (A)
Ptot (W)
400
80
300
60
200
40
100
20
0
0
0
At
Tj =
50
150
100
150
Ts ( o C)
200
0
At
Tj =
V GS =
ºC
Figure 23
BOOST FWD
50
150
10
100
150
200
ºC
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Ts ( o C)
BOOST FWD
Forward current as a
function of heatsink temperature
I F = f(T s)
100
IF (A)
Ptot (W)
250
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
ºC
8
50
150
100
150
T s ( o C)
200
ºC
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
INPUT BOOST
Figure 25
Safe operating area as a function
BOOST MOSFET
Figure 26
Gate voltage vs Gate charge
of drain-source voltage
I D = f(V DS)
V GS = f(Q g)
104
BOOST MOSFET
ID (A)
VGS (V)
14
12
1mS
103
10uS
100uS
10mS
DC
520V
10
100mS
8
102
6
4
101
2
0
100
At
D =
Th =
V GS =
Tj =
101
102
V DS (V)
103
0
At
ID =
single pulse
80
±10
T jmax
copyright Vincotech
100
69
200
300
400
Qg (nC) 500
A
ºC
V
ºC
9
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
10
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
Switching Definitions Input Boost
General conditions
Tj
= 125 °C
= 4Ω
R gon
R goff
= 4Ω
Figure 1
Boost MOSFET
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Boost MOSFET
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
350
%
150
%
VDS
300
125
tdoff
250
100
ID
VGS 90%
VDS 90%
200
ID
75
150
50
VDS
tEoff
VGS
100
tdon
VGS
25
50
ID 1%
0
VGS 10%
-25
-0,2
tEon
-50
-0,1
0
0,1
0,2
4,8
time (µs)
V GS (0%) =
V GS (100%) =
V D (100%) =
I D (100%) =
-10
10
400
t doff =
t E off =
5
V GS (0%) =
V GS (100%) =
V D (100%) =
70
A
I D (100%) =
70
A
0,14
0,15
µs
µs
t don =
t E on =
0,16
0,23
µs
µs
350
%
140
300
fitted
time(µs)
5,2
V
V
V
ID
250
VDS
ID
-10
10
400
5,1
Figure 4
Boost MOSFET
Turn-on Switching Waveforms & definition of t r
160
%
120
4,9
V
V
V
Figure 3
Boost MOSFET
Turn-off Switching Waveforms & definition of t f
VDS 3%
ID 10%
0
100
200
ID 90%
80
150
ID 60%
60
VDS
100
40
ID 40%
50
20
ID 10%
0
-20
-0,05
ID 90%
tr
ID 10%
0
tf
-50
-0,025
0
0,025
5
0,05
time (µs)
5,05
5,1
V D (100%) =
I D (100%) =
400
70
V
A
V D (100%) =
I D (100%) =
400
70
V
A
tf =
0,02
µs
tr =
0,02
µs
copyright Vincotech
11
5,15
time(µs)
5,2
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
Switching Definitions BUCK MOSFET
Figure 5
Boost MOSFET
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Boost MOSFET
Turn-on Switching Waveforms & definition of t Eon
150
200
%
Eoff
%
Pon
ID 1%
100
150
50
100
Eon
VGS 90%
Poff
50
0
tEoff
VDS 3%
VGS 10%
0
-50
tEon
-50
-100
-0,225
-0,175
P off (100%) =
E off (100%) =
t E off =
-0,125
-0,075
27,95
0,15
0,15
-0,025
time (µs)
4,8
0,025
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
4,9
5
27,95
2,15
0,23
5,1
time(µs)
5,2
kW
mJ
µs
Figure 8
Input Boost FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
-100
-150
-200
IRRM 90%
IRRM 100%
-250
5
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
5,05
5,1
400
70
-167
0,06
5,15
time(µs)
5,2
V
A
A
µs
12
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
Switching Definitions BUCK MOSFET
Figure 9
Input Boost FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Input Boost FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
200
%
100
%
Qrr
Id
Prec
tQrr
150
50
Erec
0
100
tErec
-50
50
-100
-150
0
-200
-250
-50
5
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
5,05
5,1
70
5,95
0,12
5,15
time(us)
5,2
5
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
13
5,05
5,1
27,95
1,04
0,12
5,15
time(us)
5,2
kW
mJ
µs
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
Ordering Code and Marking - Outline - Pinout - Identification
Ordering Code & Marking
Version
Ordering Code
without thermal paste 17mm housing
10-F106BIB020FK-M285L
in DataMatrix as
M285L
in packaging barcode as
M285L
Outline
Pin table
Pin
X
Y
Function
1
52,2
7,9
+BOOST
2
52,2
5,2
+BOOST
3
40,15
0
+DC
4
37,45
0
+DC
5
27,45
0
GND
6
24,75
0
GND
7
14,75
0
-DC
8
12,05
0
-DC
9
0
5,2
-BOOST
-BOOST
10
0
7,9
11
12,05
28,2
S2
12
12,05
25,2
G2
13
24,45
28,2
NTC1
14
27,45
28,2
NTC2
15
39,85
28,2
G1
16
39,85
25,2
S1
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T2
MOSFET
650 V
19 mΩ
Input Boost Switch
D1,D2
FWD
600 V
120 A
Input Boost Diode
NTC
NTC
copyright Vincotech
Comment
Thermistor
14
28 Jan. 2016 / Revision 2
10-F106BIB020FK-M285L
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
100
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 1 packages see vincotech.com website.
Package data
Package data for flow 1 packages see vincotech.com website.
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
28 Jan. 2016 / Revision 2