10-F106BIB020FK-M285L datasheet flow BOOST 1 symmetric 600 V / 19 mΩ Features flow 1 17mm housing ● High efficiency symmetric boost ● Ultra fast switching frequency ● Low Inductance Layout Target Applications Schematic ● Solar ● UPS ● Power supply Types ● 10-F106BIB020FK-M285L Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Input Boost MOSFET Drain to source breakdown voltage V DS 650 V DC drain current ID T j=T jmax T s =80°C 80 A Power dissipation P tot T j=T jmax T s =80°C 172 W Gate-source peak voltage V GSS 25 V Maximum Junction Temperature T jmax 150 °C Peak Repetitive Reverse Voltage V RRM 600 V Forward average current I FAV T j=T jmax T s =80°C 80 A Power dissipation P tot T j=T jmax T s =80°C 107 W T jmax 150 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Input Boost FWD Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Comparative Tracking Index copyright Vincotech V i sol t=2s DC voltage CTI >200 1 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet Characteristic Values Parameter Symbol Conditions V r [V] V GE [V] or V CE [V] or V GS [V] or V DS [V] I C [A] or I F [A] or I D [A] Value 10 69 T j[ °C] Min Unit Typ Max 25 0,01 0,019 125 0,03 Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage Gate to Source Leakage Current Zero Gate Voltage Drain Current Integrated Gate resistor Turn On Delay Time Rise Time Turn off delay time Fall time r DS(on) V (GS)th I GSS ±25 I DSS rg 0,0005 0 tf E on Turn-off energy loss E off Total gate charge QG Gate to source charge Q GS Gate to drain charge Q GD Input capacitance C iss Output capacitance C oss Reverse transfer capacitance C rss R th(j-s) 5 125 200 25 2 125 f=1MHz 200 25 0,6 25 158 125 157 25 400 ±10 69 V nA µA 16 125 R goff=4 Ω R gon=4 Ω Ω Ω 125 tr t d(off) 4 125 650 0 3 25 t d(on) Turn-on energy loss Thermal resistance chip to heatsink V DS=V GS 25 19 25 130 125 136 25 ns 5 125 15 25 1,126 125 2,152 25 0,060 125 0,150 25 mWs 400 125 VDD=520 V 69 ±10 25 120 nC 125 25 140 125 19600 f=1MHz 100 0 25 400 pF 12 phase-change material ʎ=3,4W/mK K/W 0,41 Input Boost FWD Forward voltage Reverse leakage current Peak recovery current Reverse recovery time Reverse recovery charge Reverse recovered energy VF 120 I rm 600 400 E rec ( di rf/dt )max Thermal resistance chip to heatsink R th(j-s) 25 107 125 167 70 2,18 125 µC 5,95 25 0,367 125 1,043 25 8564 125 8366 phase-change material ʎ=3,4W/mK µA ns 59 25 V A 35 125 ±10 1,83 20 25 R gon=4 Ω 1,43 1,26 125 t rr Peak rate of fall of recovery current 1,4 125 25 I RRM Q rr 25 mWs A/µs 0,66 K/W 22 kΩ Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P 25 R 100=1486 Ω 100 Power dissipation constant -12 +12 % 25 200 mW 25 2 mW/K B-value B(25/50) Tol. ±3% 25 3950 K B-value B(25/100) Tol. ±3% 25 3998 K Vincotech NTC Reference copyright Vincotech B 2 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet INPUT BOOST Figure 1 Typical output characteristics I D = f(V DS) BOOST MOSFET Figure 2 Typical output characteristics I D = f(V DS) 120 ID(A) ID (A) 120 BOOST MOSFET 100 100 80 80 60 60 40 40 20 20 0 0 0,0 At tp = Tj = V GS from 1,0 2,0 3,0 4,0 V DS (V) 5,0 0,0 At tp = Tj = V GS from 250 µs 25 °C 0 V to 20 V in steps of 2 V Figure 3 BOOST MOSFET 1,0 2,0 3,0 4,0 250 µs 125 °C 0 V to 20 V in steps of 2 V Figure 4 Typical transfer characteristics I D = f(V GS) V DS (V) 5,0 BOOST FWD Typical diode forward current as a function of forward voltage I F = f(V F) 250 ID (A) IF (A) 80 200 60 150 40 100 20 50 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = V DS = 2 250 10 copyright Vincotech 4 6 V GS (V) 0 8 At tp = µs V 3 0,5 250 1 1,5 V F (V) 2 µs 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet INPUT BOOST Figure 5 BOOST MOSFET Figure 6 BOOST MOSFET Typical switching energy losses Typical switching energy losses as a function of drain current E = f(I D) as a function of gate resistor E = f(R G) E (mWs) E (mWs) 3 Eon High T 2,5 5 Eon High T 4 2 3 Eon Low T 1,5 2 Eon Low T 1 1 0,5 Eoff High T Eoff Low T Eoff High T Eoff Low T 0 0 0 0 20 40 60 80 I D (A) 5 10 15 100 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = ±10 V R gon = 4 Ω R goff = 4 Ω RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = ±10 V ID = 70 A Figure 7 Typical reverse recovery energy loss as a function of drain current E rec = f(I c) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 2,5 E (mWs) 1,5 BOOST FWD Erec High T 1,2 2 0,9 1,5 0,6 1 Erec Low T 0,3 0,5 Erec High T Erec Low T 0 R (K/W) 0 20 40 R (K/W) 60 0 80 I D (A) R (K/W) 0 100 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = ±10 V R gon = 4 Ω R goff = 4 Ω copyright Vincotech 5 R (K/W) 10 15 R G ( Ω ) 20 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = ±10 V ID = 70 A 4 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet INPUT BOOST Figure 9 BOOST MOSFET Figure 10 BOOST MOSFET Typical switching times as a Typical switching times as a function of drain current t = f(I D) function of gate resistor t = f(R G) 1 t (µs) t (µs) 1 tdon tdoff tdon tdoff 0,1 0,1 tr tr tf 0,01 0,01 tf 0,001 0,001 0 20 40 60 80 0 100 I D (A) With an inductive load at Tj = 125 °C V DS = 400 V V GS = ±10 V R gon = 4 Ω R goff = 4 Ω 5 10 15 R G (Ω) 20 With an inductive load at Tj = 125 °C V DS = 400 V V GS = ±10 V ID = 70 A Figure 11 Typical reverse recovery time as a function of drain current t rr = f(I D) BOOST FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor t rr = f(R gon) t rr( µs) t rr( µs) 0,1 BOOST FWD 0,15 0,12 0,08 trr High T trr High T 0,06 0,09 0,04 0,06 trr Low T trr Low T 0,03 0,02 0 0 0 At Tj = V DS = V GS = R gon = 20 25/125 400 ±10 4 copyright Vincotech 40 60 80 I D (A) 0 100 At Tj = VR= IF= V GS = °C V V Ω 5 5 25/125 400 70 ±10 10 15 20 R Gon (Ω) °C V A V 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet INPUT BOOST Figure 13 BOOST FWD Figure 14 BOOST FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of drain current Q rr = f(I C) function of MOSFET turn on gate resistor Q rr = f(R gon) Qrr ( µC) Qrr ( µC) 8 Qrr High T 8 6 6 Qrr High T 4 4 Qrr Low T Qrr Low T 2 2 0 0 0 At At Tj = V DS = V GS = R gon = 20 40 60 80 0 I D (A) 100 5 10 25/125 400 ±10 °C V V At Tj = VR= IF= 25/125 400 70 °C V A 4 Ω V GS = ±10 V Figure 15 Typical reverse recovery current as a function of drain current I RRM = f(I D) BOOST FWD 15 Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor I RRM = f(R gon) 200 R Gon ( Ω) 20 BOOST FWD IrrM (A) 300 IrrM (A) IRRM High T 250 150 200 IRRM Low T 150 100 100 IRRM High T IRRM Low T 50 50 0 0 0 At Tj = V DS = V GS = R gon = 20 25/125 400 ±10 4 copyright Vincotech 40 60 80 I D (A) 0 100 At Tj = VR= IF= V GS = °C V V Ω 6 5 25/125 400 70 ±10 10 15 R Gon (Ω) 20 °C V A V 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet INPUT BOOST Figure 17 BOOST FWD Figure 18 BOOST FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of drain current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of MOSFET turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 18000 30000 direc / dt (A/ µs) direc / dt (A/ µs) dI0/dt dIrec/dt 16000 dI0/dt dIrec/dt 25000 14000 12000 20000 dIrec/dtHigh T dIrec/dtLow T 10000 dIrec/dtHigh T 15000 8000 6000 10000 di0/dtLow T dIrec/dtLow T 4000 di0/dtHigh T 5000 dI0/dtLow T 2000 dI0/dtHigh T 0 0 0 At Tj = V DS = V GS = R gon = 20 40 25/125 400 °C V ±10 4 V Ω 60 80 I D (A)100 0 At Tj = Figure 19 MOSFET transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) BOOST MOSFET VR = IF= 25/125 400 70 °C V A V GS = ±10 V R Gon ( Ω) 20 15 BOOST FWD Zth(j-s) (K/W) Zth(j-s) (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-2 At D = R th(j-s) = 10 Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 100 10-3 10-5 5 10-4 10-3 10-2 10-1 100 10-3 10-5 t p (s) 101 At D = R th(j-s) = tp/T 0,41 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-2 K/W 10-4 10-3 10-2 0,66 t p (s) 101 K/W FWD thermal model values R (K/W) 3,22E-02 7,42E-02 1,52E-01 Tau (s) 5,52E+00 1,05E+00 2,31E-01 R (K/W) 3,46E-02 1,02E-01 3,07E-01 Tau (s) 5,31E+00 9,80E-01 2,08E-01 7,06E-02 4,18E-02 1,94E-02 7,51E-02 1,64E-02 2,60E-03 1,10E-01 6,93E-02 3,32E-02 6,00E-02 1,40E-02 1,76E-03 7 100 tp/T MOSFET thermal model values copyright Vincotech 10-1 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet INPUT BOOST Figure 21 BOOST MOSFET Figure 22 BOOST MOSFET Power dissipation as a Drain current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I D = f(T s) 100 ID (A) Ptot (W) 400 80 300 60 200 40 100 20 0 0 0 At Tj = 50 150 100 150 Ts ( o C) 200 0 At Tj = V GS = ºC Figure 23 BOOST FWD 50 150 10 100 150 200 ºC V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T s) Ts ( o C) BOOST FWD Forward current as a function of heatsink temperature I F = f(T s) 100 IF (A) Ptot (W) 250 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = ºC 8 50 150 100 150 T s ( o C) 200 ºC 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet INPUT BOOST Figure 25 Safe operating area as a function BOOST MOSFET Figure 26 Gate voltage vs Gate charge of drain-source voltage I D = f(V DS) V GS = f(Q g) 104 BOOST MOSFET ID (A) VGS (V) 14 12 1mS 103 10uS 100uS 10mS DC 520V 10 100mS 8 102 6 4 101 2 0 100 At D = Th = V GS = Tj = 101 102 V DS (V) 103 0 At ID = single pulse 80 ±10 T jmax copyright Vincotech 100 69 200 300 400 Qg (nC) 500 A ºC V ºC 9 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 10 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet Switching Definitions Input Boost General conditions Tj = 125 °C = 4Ω R gon R goff = 4Ω Figure 1 Boost MOSFET Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Boost MOSFET Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 350 % 150 % VDS 300 125 tdoff 250 100 ID VGS 90% VDS 90% 200 ID 75 150 50 VDS tEoff VGS 100 tdon VGS 25 50 ID 1% 0 VGS 10% -25 -0,2 tEon -50 -0,1 0 0,1 0,2 4,8 time (µs) V GS (0%) = V GS (100%) = V D (100%) = I D (100%) = -10 10 400 t doff = t E off = 5 V GS (0%) = V GS (100%) = V D (100%) = 70 A I D (100%) = 70 A 0,14 0,15 µs µs t don = t E on = 0,16 0,23 µs µs 350 % 140 300 fitted time(µs) 5,2 V V V ID 250 VDS ID -10 10 400 5,1 Figure 4 Boost MOSFET Turn-on Switching Waveforms & definition of t r 160 % 120 4,9 V V V Figure 3 Boost MOSFET Turn-off Switching Waveforms & definition of t f VDS 3% ID 10% 0 100 200 ID 90% 80 150 ID 60% 60 VDS 100 40 ID 40% 50 20 ID 10% 0 -20 -0,05 ID 90% tr ID 10% 0 tf -50 -0,025 0 0,025 5 0,05 time (µs) 5,05 5,1 V D (100%) = I D (100%) = 400 70 V A V D (100%) = I D (100%) = 400 70 V A tf = 0,02 µs tr = 0,02 µs copyright Vincotech 11 5,15 time(µs) 5,2 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet Switching Definitions BUCK MOSFET Figure 5 Boost MOSFET Turn-off Switching Waveforms & definition of t Eoff Figure 6 Boost MOSFET Turn-on Switching Waveforms & definition of t Eon 150 200 % Eoff % Pon ID 1% 100 150 50 100 Eon VGS 90% Poff 50 0 tEoff VDS 3% VGS 10% 0 -50 tEon -50 -100 -0,225 -0,175 P off (100%) = E off (100%) = t E off = -0,125 -0,075 27,95 0,15 0,15 -0,025 time (µs) 4,8 0,025 kW mJ µs P on (100%) = E on (100%) = t E on = 4,9 5 27,95 2,15 0,23 5,1 time(µs) 5,2 kW mJ µs Figure 8 Input Boost FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 -100 -150 -200 IRRM 90% IRRM 100% -250 5 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 5,05 5,1 400 70 -167 0,06 5,15 time(µs) 5,2 V A A µs 12 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet Switching Definitions BUCK MOSFET Figure 9 Input Boost FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Input Boost FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 200 % 100 % Qrr Id Prec tQrr 150 50 Erec 0 100 tErec -50 50 -100 -150 0 -200 -250 -50 5 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 5,05 5,1 70 5,95 0,12 5,15 time(us) 5,2 5 A µC µs P rec (100%) = E rec (100%) = t E rec = 13 5,05 5,1 27,95 1,04 0,12 5,15 time(us) 5,2 kW mJ µs 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet Ordering Code and Marking - Outline - Pinout - Identification Ordering Code & Marking Version Ordering Code without thermal paste 17mm housing 10-F106BIB020FK-M285L in DataMatrix as M285L in packaging barcode as M285L Outline Pin table Pin X Y Function 1 52,2 7,9 +BOOST 2 52,2 5,2 +BOOST 3 40,15 0 +DC 4 37,45 0 +DC 5 27,45 0 GND 6 24,75 0 GND 7 14,75 0 -DC 8 12,05 0 -DC 9 0 5,2 -BOOST -BOOST 10 0 7,9 11 12,05 28,2 S2 12 12,05 25,2 G2 13 24,45 28,2 NTC1 14 27,45 28,2 NTC2 15 39,85 28,2 G1 16 39,85 25,2 S1 Pinout Identification ID Component Voltage Current Function T1,T2 MOSFET 650 V 19 mΩ Input Boost Switch D1,D2 FWD 600 V 120 A Input Boost Diode NTC NTC copyright Vincotech Comment Thermistor 14 28 Jan. 2016 / Revision 2 10-F106BIB020FK-M285L datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 100 Standard <SPQ Sample Handling instruction Handling instructions for flow 1 packages see vincotech.com website. Package data Package data for flow 1 packages see vincotech.com website. DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 28 Jan. 2016 / Revision 2