F206NIA200SG-M105F25 preliminary datasheet flowNPC 2 600V/200A Features flow2 housing ● Neutral-point-Clamped inverter ● High power flow2 housing ● High Speed IGBT3 in Buck ● Low Inductance Layout Target Applications Schematic ● UPS ● Solar inverters Types ● F206NIA200SG Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 143 188 A 800 A 286 433 W ±20 V 5 400 μs V 175 °C 600 V Buck IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 96 129 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 240 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 141 175 W 175 °C Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 151 198 A 600 A 245 372 W ±20 V Tj≤150°C 6 μs VGE=15V 360 V 175 °C 1200 V 134 178 A 600 A 195 295 W 175 °C 600 V 134 178 A 600 A 195 295 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Boost IGBT Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tc=80°C Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tc=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 4,1 5,1 5,7 1,88 2,17 2,3 Buck IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0008 50 none tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Rgoff=4 Ω Rgon=4 Ω ±15 350 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 200 200 43 46 248 270 16 20 2,67 3,48 2,64 3,38 V V 0,7 μA 960 μA Ω ns mWs 11840 f=1MHz 0 25 Tj=25°C 464 pF 384 15 700 200 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 2000 nC 0,33 K/W 0,22 Buck Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Rgoff=4 Ω 0 350 di(rec)max /dt Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 120 Thermal grease thickness≤50um λ = 1 W/mK 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,59 2,23 99 154 42 111 2,6 7,3 8553 3995 0,47 1,54 V A ns μC A/μs mWs 0,67 K/W 0,44 3 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,53 1,72 1,85 Boost IGBT VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0,0032 200 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,96 700 Rgoff=4 Ω Rgon=4 Ω ±15 350 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 1 td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 233 238 43 47 309 334 68 90 3,90 4,76 6,02 7,98 ns mWs 12320 f=1MHz 0 Tj=25°C 25 pF 768 366 15 480 200 Tj=25°C nC 2100 Thermal grease thickness≤50um λ = 1 W/mK 0,39 K/W 0,26 Boost Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 20 Tj=25°C Tj=125°C 1,67 1,72 Thermal grease thickness≤50um λ = 1 W/mK V 0,49 K/W 0,32 Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir 600 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 200 Rgoff=4 Ω 350 ±15 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 1,66 1,72 3,3 600 131 168 136 285 9,0 16,9 2729 1706 2,18 4,38 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC A/μs mWs 0,49 K/W 0,32 Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P R100=1486 Ω T=100°C Power dissipation constant Ω 22000 T=25°C -5 5 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% T=25°C 3950 K B-value B(25/100) Tol. ±3% T=25°C 3996 K Vincotech NTC Reference Copyright by Vincotech B 4 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Buck IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 400 IC (A) 400 300 300 200 200 100 100 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 6 V to 16 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 250 μs 125 °C 6 V to 16 V in steps of 1 V Diode Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 300 IF (A) IC (A) 120 5 Tj = Tjmax-25°C Tj = Tjmax-25°C 100 250 80 200 Tj = 25°C 60 150 Tj = 25°C 40 100 20 50 0 0 0 At tp = VCE = 1 250 10 2 3 4 5 6 7 V GE 8 (V) 9 0 At tp = μs V Copyright by Vincotech 5 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 μs Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Buck IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 20 E (mWs) E (mWs) 20 16 16 12 12 Eon High T Eon Low T 8 8 Eoff High T Eoff High T Eoff Low T Eon High T 4 4 Eoff Low T Eon Low T 0 0 0 100 200 300 I C (A) 0 400 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 200 A Diode Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Diode Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,5 E (mWs) E (mWs) 2,5 Erec High T 2,0 2,0 1,5 1,5 1,0 1,0 Erec High T Erec Low T 0,5 0,5 0,0 0,0 Erec Low T 0 100 200 300 I C (A) 0 400 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 R G (W) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 200 A 6 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Buck IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdoff tdon tdon tr tr 0,10 0,10 tf tf 0,01 0,01 0,00 0,00 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 200 A Diode Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Diode Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,15 t rr(ms) 0,30 t rr(ms) trr High T trr High T 0,25 0,12 0,20 0,09 0,15 0,06 trr Low T 0,10 0,03 0,05 trr Low T 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/125 350 200 ±15 8 12 16 R gon (W) 20 °C V A V Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Buck Diode Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Diode Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 12 Qrr (mC) Qrr (mC) 10 Qrr High T 10 8 8 Qrr High T 6 6 4 4 Qrr Low T 2 2 Qrr Low T 0 0 0 At At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 400 0 4 At Tj = VR = IF = VGE = °C V V Ω Diode Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 350 200 ±15 12 R g on ( Ω) 16 20 °C V A V Diode Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 250 IrrM (A) IrrM (A) 200 IRRM High T 160 200 120 150 IRRM Low T 80 100 40 50 0 0 IRRM High T IRRM Low T 0 100 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 200 300 I C (A) 0 400 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 4 25/125 350 200 ±15 8 12 16 R gon (W) 20 °C V A V Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Buck Diode Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 15000 direc / dt (A/ms) 10000 direc / dt (A/ms) Diode Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T 8000 12000 6000 9000 di0/dtHigh T dIo/dtLow T 4000 6000 dIrec/dtHigh T 2000 3000 dIrec/dtLow T dIrec/dtHigh T dI0/dtHigh T dI0/dtLow T 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 200 ±15 8 12 R gon (W) 16 20 °C V A V Diode Figure 20 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10 4 10-1 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 -5 10 10 At D= RthJH = -4 10 -3 -2 10 10 -1 0 10 t p (s) 10-5 1 10 1 At D= RthJH = tp / T 0,33 K/W 10-4 10-3 0,67 R (C/W) 0,05 0,08 0,07 0,10 0,02 0,02 R (C/W) 0,05 0,11 0,23 0,18 0,06 0,04 9 100 t p (s) 1011 K/W Diode thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 5,4E+00 1,2E+00 1,9E-01 3,1E-02 4,2E-03 3,4E-04 10-2 Tau (s) 6,2E+00 1,1E+00 1,1E-01 2,4E-02 2,3E-03 2,6E-04 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 600 500 200 400 150 300 100 200 50 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = VGE = °C Diode Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V Diode Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 200 IF (A) Ptot (W) 300 250 160 200 120 150 80 100 40 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Buck IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 16 IC (A) VGE (V) 103 120V 100uS 2 10 12 100m 1mS DC 10mS 480V 1 10 8 100 4 -1 10 0 0 At D= Th = VGE = Tj = 200 400 600 800 1000 1200 1400 Q g (nC) 0 10 1 10 10 2 V CE (V) 103 At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 11 200 A Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 350 IC (A) 350 300 300 250 250 200 200 150 150 100 100 50 50 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 5 250 μs 125 °C 7 V to 17 V in steps of 1 V Diode Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 V CE (V) IF (A) IC (A) 400 Tj = Tjmax-25°C Tj = 25°C 350 80 300 250 60 Tj = Tjmax-25°C 200 40 150 Tj = 25°C 100 20 50 0 0 0 At tp = VCE = 2 250 10 4 6 8 V GE (V) 10 0 At tp = μs V Copyright by Vincotech 12 0,5 250 1 1,5 2 V F (V) 2,5 μs Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 20 E (mWs) E (mWs) 20 16 Eoff High T Eon Low T 16 Eoff High T 12 12 Eoff Low T Eon High T Eoff Low T Eon High T 8 8 Eon Low T 4 4 0 0 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 200 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 8 E (mWs) E (mWs) 8 Erec High T 6 6 4 4 Erec High T Erec Low T 2 2 Erec Low T 0 0 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 200 A 13 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 1 t ( μs) 1 tdon tdoff tdoff tdon 0,1 0,1 tr tf tf tr 0,01 0,01 0,001 0,001 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 200 A Diode Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Diode Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 t rr(ms) t rr(ms) 0,5 0,4 trr High T 0,4 trr High T 0,3 0,3 0,2 0,2 trr Low T trr Low T 0,1 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 14 4 25/125 350 200 ±15 8 12 16 R gon (W) 20 °C V A V Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Boost Diode Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Diode Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 25 20 Qrr (mC) Qrr (mC) Qrr High T 20 Qrr High T 16 15 12 Qrr Low T Qrr Low T 10 8 5 4 0 0 At 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω Diode Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 350 200 ±15 8 12 16 R g on ( Ω) 20 °C V A V Diode Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 250 IrrM (A) IrrM (A) 250 IRRM High T 200 200 IRRM Low T 150 150 100 100 IRRM High T IRRM Low T 50 50 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 400 °C V V Ω Copyright by Vincotech 15 0 4 At Tj = VR = IF = VGE = 25/125 350 200 ±15 8 12 16 R gon (W) 20 °C V A V Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Boost Diode Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 10000 10000 direc / dt (A/ms) direc / dt (A/ms) Diode Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 8000 dIo/dtLow T 6000 6000 di0/dtHigh T 4000 4000 dIrec/dtLow T dI0/dtLow T dI0/dtHigh T 2000 2000 dIrec/dtHigh T dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 I C (A) 300 0 400 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 350 200 ±15 8 12 R gon (W) 16 °C V A V Diode Figure 20 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 100 ZthJH (K/W) 100 20 10-1 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,39 10-3 10-2 10-1 100 t p (s) 101 1 10-5 At D= RthJH = K/W 10-4 tp / T 0,49 10-3 Diode thermal model values R (C/W) 0,02 0,10 0,07 0,11 0,05 0,02 R (C/W) 0,04 0,09 0,08 0,18 0,06 0,03 Copyright by Vincotech 16 10-1 100 t p (s) 101 1 K/W IGBT thermal model values Tau (s) 1,2E+01 2,6E+00 4,8E-01 5,9E-02 1,3E-02 4,9E-04 10-2 Tau (s) 9,5E+00 1,8E+00 2,9E-01 3,6E-02 8,5E-03 4,7E-04 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) 250 Ptot (W) IC (A) 500 400 200 300 150 200 100 100 50 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC Diode Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 ºC V Diode Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 250 400 IF (A) Ptot (W) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 350 200 300 250 150 200 100 150 100 50 50 0 0 0 At Tj = 50 175 100 150 Th ( o C) 0 200 At Tj = ºC Copyright by Vincotech 17 50 175 100 150 Th ( o C) 200 ºC Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 400 0 ZthJC (K/W) IF (A) 10 Tj = 25°C 300 Tj = Tjmax-25°C 200 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 100 0 -2 10 0 At tp = 0,5 1 1,5 VF (V) 2,5 10-5 At D= RthJH = μs 250 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 0,49 K/W 10-2 10-1 100 t p (s) 1011 Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 250 350 IF (A) Ptot (W) 2 300 200 250 150 200 150 100 100 50 50 0 0 0 At Tj = 50 175 100 150 Th ( o C) 0 200 At Tj = ºC Copyright by Vincotech 18 50 175 100 150 Th ( o C) 200 ºC Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 19 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 190 190 IC 160 VCE 160 130 130 VCE tdoff 100 % 100 VCE 90% VGE 90% % 70 tdon IC 70 VGE 40 tEoff 40 10 -20 tEon IC 1% -20 -0,2 VCE3% IC10% VGE10% 10 VGE -50 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 time (us) -15 15 350 200 0,27 0,28 0,3 0,4 0,5 3,9 4 4,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 -15 15 350 200 0,20 0,38 4,2 time(us) 4,3 4,5 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 4,4 Turn-on Switching Waveforms & definition of tr 200 190 180 Ic 160 VCE 160 fitted 140 130 120 VCE 100 % 80 IC 100 IC 90% IC90% % 70 IC 60% 60 tr IC 40% 40 40 20 IC10% -20 0,15 VC (100%) = IC (100%) = tf = tf 0,175 0,2 -20 0,225 0,25 time (us) 350 200 0,02 Copyright by Vincotech IC10% 10 0 0,275 0,3 0,325 4,1 VC (100%) = IC (100%) = tr = V A μs 20 4,15 4,2 time(us) 4,25 350 200 0,05 4,3 4,35 4,4 V A μs Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 120 % Eoff Poff Eon % 100 100 80 80 60 60 40 40 20 20 0 0 Pon VGE10% VGE90% tEoff VCE3% tEon IC 1% -20 -20 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 69,97 3,38 0,28 time (us) 0,2 0,3 3,9 0,4 4 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 4,1 4,2 time(us) 69,97 3,48 0,38 kW mJ μs 4,3 4,4 4,5 Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 120 20 Id 15 80 trr 10 40 VGE (V) 5 % 0 0 IRRM10% Vd -5 -40 -10 IRRM90% IRRM100% -80 -15 fitted -20 -500 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -120 0 500 -15 15 350 200 2037,49 Copyright by Vincotech 1000 Qg (nC) 1500 2000 4,2 2500 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 4,24 4,28 350 200 -154 0,11 4,32 time(us) 4,36 4,4 4,44 V A A μs Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec Qrr Id 100 100 80 tQrr 50 tErec 60 % % 40 0 20 Prec -50 0 -100 4 Id (100%) = Qrr (100%) = tQrr = 4,15 4,3 200 7,28 0,23 time(us) 4,45 4,6 -20 4,12 4,75 4,2 Prec (100%) = Erec (100%) = tErec = A μC μs 4,28 4,36 time(us) 69,97 1,54 0,23 kW mJ μs 4,44 4,52 4,6 Measurement circuits Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech Figure 12 BOOST stage switching measurement circuit 22 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard in flow2 housing Ordering Code in DataMatrix as 30-F206NIA200SG-M105F25 M105F25 in packaging barcode as M105F25 Outline Pinout Copyright by Vincotech 23 Revision: 3 F206NIA200SG-M105F25 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 24 Revision: 3