F206NIA200SG-M105F25 Maximum Ratings

F206NIA200SG-M105F25
preliminary datasheet
flowNPC 2
600V/200A
Features
flow2 housing
● Neutral-point-Clamped inverter
● High power flow2 housing
● High Speed IGBT3 in Buck
● Low Inductance Layout
Target Applications
Schematic
● UPS
● Solar inverters
Types
● F206NIA200SG
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
143
188
A
800
A
286
433
W
±20
V
5
400
μs
V
175
°C
600
V
Buck IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
96
129
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
240
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
141
175
W
175
°C
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
151
198
A
600
A
245
372
W
±20
V
Tj≤150°C
6
μs
VGE=15V
360
V
175
°C
1200
V
134
178
A
600
A
195
295
W
175
°C
600
V
134
178
A
600
A
195
295
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Boost IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tc=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
4,1
5,1
5,7
1,88
2,17
2,3
Buck IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0008
50
none
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Rgoff=4 Ω
Rgon=4 Ω
±15
350
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
200
200
43
46
248
270
16
20
2,67
3,48
2,64
3,38
V
V
0,7
μA
960
μA
Ω
ns
mWs
11840
f=1MHz
0
25
Tj=25°C
464
pF
384
15
700
200
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
2000
nC
0,33
K/W
0,22
Buck Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Rgoff=4 Ω
0
350
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
120
Thermal grease
thickness≤50um
λ = 1 W/mK
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
2,59
2,23
99
154
42
111
2,6
7,3
8553
3995
0,47
1,54
V
A
ns
μC
A/μs
mWs
0,67
K/W
0,44
3
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,53
1,72
1,85
Boost IGBT
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,0032
200
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,96
700
Rgoff=4 Ω
Rgon=4 Ω
±15
350
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
1
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
233
238
43
47
309
334
68
90
3,90
4,76
6,02
7,98
ns
mWs
12320
f=1MHz
0
Tj=25°C
25
pF
768
366
15
480
200
Tj=25°C
nC
2100
Thermal grease
thickness≤50um
λ = 1 W/mK
0,39
K/W
0,26
Boost Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
20
Tj=25°C
Tj=125°C
1,67
1,72
Thermal grease
thickness≤50um
λ = 1 W/mK
V
0,49
K/W
0,32
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
600
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
200
Rgoff=4 Ω
350
±15
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
1,66
1,72
3,3
600
131
168
136
285
9,0
16,9
2729
1706
2,18
4,38
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
A/μs
mWs
0,49
K/W
0,32
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
R100=1486 Ω
T=100°C
Power dissipation constant
Ω
22000
T=25°C
-5
5
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
K
B-value
B(25/100) Tol. ±3%
T=25°C
3996
K
Vincotech NTC Reference
Copyright by Vincotech
B
4
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Buck
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
400
IC (A)
400
300
300
200
200
100
100
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
6 V to 16 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
250
μs
125
°C
6 V to 16 V in steps of 1 V
Diode
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
300
IF (A)
IC (A)
120
5
Tj = Tjmax-25°C
Tj = Tjmax-25°C
100
250
80
200
Tj = 25°C
60
150
Tj = 25°C
40
100
20
50
0
0
0
At
tp =
VCE =
1
250
10
2
3
4
5
6
7
V GE
8 (V)
9
0
At
tp =
μs
V
Copyright by Vincotech
5
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
μs
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Buck
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
20
E (mWs)
E (mWs)
20
16
16
12
12
Eon High T
Eon Low T
8
8
Eoff High T
Eoff High T
Eoff Low T
Eon High T
4
4
Eoff Low T
Eon Low T
0
0
0
100
200
300
I C (A)
0
400
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
200
A
Diode
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Diode
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,5
E (mWs)
E (mWs)
2,5
Erec High T
2,0
2,0
1,5
1,5
1,0
1,0
Erec High T
Erec Low T
0,5
0,5
0,0
0,0
Erec Low T
0
100
200
300
I C (A)
0
400
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
200
A
6
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Buck
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdoff
tdon
tdon
tr
tr
0,10
0,10
tf
tf
0,01
0,01
0,00
0,00
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
200
A
Diode
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Diode
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,15
t rr(ms)
0,30
t rr(ms)
trr High T
trr High T
0,25
0,12
0,20
0,09
0,15
0,06
trr Low T
0,10
0,03
0,05
trr Low T
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/125
350
200
±15
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Buck
Diode
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Diode
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
12
Qrr (mC)
Qrr (mC)
10
Qrr High T
10
8
8
Qrr High T
6
6
4
4
Qrr Low T
2
2
Qrr Low T
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
400
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Diode
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
350
200
±15
12
R g on ( Ω)
16
20
°C
V
A
V
Diode
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
250
IrrM (A)
IrrM (A)
200
IRRM High T
160
200
120
150
IRRM Low T
80
100
40
50
0
0
IRRM High T
IRRM Low T
0
100
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
200
300
I C (A)
0
400
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
4
25/125
350
200
±15
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Buck
Diode
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
15000
direc / dt (A/ms)
10000
direc / dt (A/ms)
Diode
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtLow T
8000
12000
6000
9000
di0/dtHigh T
dIo/dtLow T
4000
6000
dIrec/dtHigh T
2000
3000
dIrec/dtLow T
dIrec/dtHigh T
dI0/dtHigh T
dI0/dtLow T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
200
±15
8
12
R gon (W)
16
20
°C
V
A
V
Diode
Figure 20
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10
4
10-1
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
-5
10
10
At
D=
RthJH =
-4
10
-3
-2
10
10
-1
0
10
t p (s)
10-5
1
10 1
At
D=
RthJH =
tp / T
0,33
K/W
10-4
10-3
0,67
R (C/W)
0,05
0,08
0,07
0,10
0,02
0,02
R (C/W)
0,05
0,11
0,23
0,18
0,06
0,04
9
100
t p (s)
1011
K/W
Diode thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
5,4E+00
1,2E+00
1,9E-01
3,1E-02
4,2E-03
3,4E-04
10-2
Tau (s)
6,2E+00
1,1E+00
1,1E-01
2,4E-02
2,3E-03
2,6E-04
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
250
IC (A)
Ptot (W)
600
500
200
400
150
300
100
200
50
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
Diode
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
Diode
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
200
IF (A)
Ptot (W)
300
250
160
200
120
150
80
100
40
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Buck
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
16
IC (A)
VGE (V)
103
120V
100uS
2
10
12
100m
1mS
DC
10mS
480V
1
10
8
100
4
-1
10
0
0
At
D=
Th =
VGE =
Tj =
200
400
600
800
1000
1200
1400
Q g (nC)
0
10
1
10
10
2
V CE (V)
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
11
200
A
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
350
IC (A)
350
300
300
250
250
200
200
150
150
100
100
50
50
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
Diode
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
V CE (V)
IF (A)
IC (A)
400
Tj = Tjmax-25°C
Tj = 25°C
350
80
300
250
60
Tj = Tjmax-25°C
200
40
150
Tj = 25°C
100
20
50
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
V GE (V)
10
0
At
tp =
μs
V
Copyright by Vincotech
12
0,5
250
1
1,5
2
V F (V)
2,5
μs
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
20
E (mWs)
E (mWs)
20
16
Eoff High T
Eon Low T
16
Eoff High T
12
12
Eoff Low T
Eon High T
Eoff Low T
Eon High T
8
8
Eon Low T
4
4
0
0
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
200
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
8
E (mWs)
E (mWs)
8
Erec High T
6
6
4
4
Erec High T
Erec Low T
2
2
Erec Low T
0
0
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
200
A
13
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdon
tdoff
tdoff
tdon
0,1
0,1
tr
tf
tf
tr
0,01
0,01
0,001
0,001
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
200
A
Diode
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Diode
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
t rr(ms)
t rr(ms)
0,5
0,4
trr High T
0,4
trr High T
0,3
0,3
0,2
0,2
trr Low T
trr Low T
0,1
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
14
4
25/125
350
200
±15
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Boost
Diode
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Diode
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
25
20
Qrr (mC)
Qrr (mC)
Qrr High T
20
Qrr High T
16
15
12
Qrr Low T
Qrr Low T
10
8
5
4
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Diode
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
350
200
±15
8
12
16
R g on ( Ω)
20
°C
V
A
V
Diode
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
250
IrrM (A)
IrrM (A)
250
IRRM High T
200
200
IRRM Low T
150
150
100
100
IRRM High T
IRRM Low T
50
50
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
400
°C
V
V
Ω
Copyright by Vincotech
15
0
4
At
Tj =
VR =
IF =
VGE =
25/125
350
200
±15
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Boost
Diode
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
10000
10000
direc / dt (A/ms)
direc / dt (A/ms)
Diode
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
8000
dIo/dtLow T
6000
6000
di0/dtHigh T
4000
4000
dIrec/dtLow T
dI0/dtLow T
dI0/dtHigh T
2000
2000
dIrec/dtHigh T
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
I C (A)
300
0
400
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
350
200
±15
8
12
R gon (W)
16
°C
V
A
V
Diode
Figure 20
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
100
ZthJH (K/W)
100
20
10-1
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,39
10-3
10-2
10-1
100
t p (s)
101 1
10-5
At
D=
RthJH =
K/W
10-4
tp / T
0,49
10-3
Diode thermal model values
R (C/W)
0,02
0,10
0,07
0,11
0,05
0,02
R (C/W)
0,04
0,09
0,08
0,18
0,06
0,03
Copyright by Vincotech
16
10-1
100
t p (s)
101 1
K/W
IGBT thermal model values
Tau (s)
1,2E+01
2,6E+00
4,8E-01
5,9E-02
1,3E-02
4,9E-04
10-2
Tau (s)
9,5E+00
1,8E+00
2,9E-01
3,6E-02
8,5E-03
4,7E-04
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
250
Ptot (W)
IC (A)
500
400
200
300
150
200
100
100
50
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
Diode
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
ºC
V
Diode
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
250
400
IF (A)
Ptot (W)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
350
200
300
250
150
200
100
150
100
50
50
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
17
50
175
100
150
Th ( o C)
200
ºC
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
400
0
ZthJC (K/W)
IF (A)
10
Tj = 25°C
300
Tj = Tjmax-25°C
200
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100
0
-2
10
0
At
tp =
0,5
1
1,5
VF (V)
2,5
10-5
At
D=
RthJH =
μs
250
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
0,49
K/W
10-2
10-1
100
t p (s)
1011
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
250
350
IF (A)
Ptot (W)
2
300
200
250
150
200
150
100
100
50
50
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
18
50
175
100
150
Th ( o C)
200
ºC
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
19
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
190
190
IC
160
VCE
160
130
130
VCE
tdoff
100
%
100
VCE 90%
VGE 90%
%
70
tdon
IC
70
VGE
40
tEoff
40
10
-20
tEon
IC 1%
-20
-0,2
VCE3%
IC10%
VGE10%
10
VGE
-50
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
time (us)
-15
15
350
200
0,27
0,28
0,3
0,4
0,5
3,9
4
4,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
-15
15
350
200
0,20
0,38
4,2
time(us)
4,3
4,5
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4,4
Turn-on Switching Waveforms & definition of tr
200
190
180
Ic
160
VCE
160
fitted
140
130
120
VCE
100
%
80
IC
100
IC 90%
IC90%
%
70
IC 60%
60
tr
IC 40%
40
40
20
IC10%
-20
0,15
VC (100%) =
IC (100%) =
tf =
tf
0,175
0,2
-20
0,225
0,25
time (us)
350
200
0,02
Copyright by Vincotech
IC10%
10
0
0,275
0,3
0,325
4,1
VC (100%) =
IC (100%) =
tr =
V
A
μs
20
4,15
4,2 time(us) 4,25
350
200
0,05
4,3
4,35
4,4
V
A
μs
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
120
%
Eoff
Poff
Eon
%
100
100
80
80
60
60
40
40
20
20
0
0
Pon
VGE10%
VGE90%
tEoff
VCE3%
tEon
IC 1%
-20
-20
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
69,97
3,38
0,28
time (us)
0,2
0,3
3,9
0,4
4
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter IGBT
Figure 7
Gate voltage vs Gate charge (measured)
4,1
4,2
time(us)
69,97
3,48
0,38
kW
mJ
μs
4,3
4,4
4,5
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
120
20
Id
15
80
trr
10
40
VGE (V)
5
%
0
0
IRRM10%
Vd
-5
-40
-10
IRRM90%
IRRM100%
-80
-15
fitted
-20
-500
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-120
0
500
-15
15
350
200
2037,49
Copyright by Vincotech
1000
Qg (nC)
1500
2000
4,2
2500
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
4,24
4,28
350
200
-154
0,11
4,32
time(us)
4,36
4,4
4,44
V
A
A
μs
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
Qrr
Id
100
100
80
tQrr
50
tErec
60
%
%
40
0
20
Prec
-50
0
-100
4
Id (100%) =
Qrr (100%) =
tQrr =
4,15
4,3
200
7,28
0,23
time(us)
4,45
4,6
-20
4,12
4,75
4,2
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
4,28
4,36
time(us)
69,97
1,54
0,23
kW
mJ
μs
4,44
4,52
4,6
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
Figure 12
BOOST stage switching measurement circuit
22
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard in flow2 housing
Ordering Code
in DataMatrix as
30-F206NIA200SG-M105F25
M105F25
in packaging barcode as
M105F25
Outline
Pinout
Copyright by Vincotech
23
Revision: 3
F206NIA200SG-M105F25
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
24
Revision: 3