FZ06NPA070FP preliminary datasheet flowNPC 0 600V/75A & 70A PS* Features flow0 12mm housing ● *PS: 70A parallel switch (60A PT and 99mΩ) ● neutral point clamped inverter ● reactive power capability ● SiC buck diode ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● FZ06NPA070FP Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 44 59 A 240 A 71 108 W ±20 V 5 390 μs V 150 °C 600 V Buck IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 27 37 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 105 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 50 75 W 175 °C Maximum Junction Temperature copyright Vincotech Tjmax 1 Revision: 5 FZ06NPA070FP preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 16 21 A tp limited by Tjmax Tc=25°C 93 A Th=80°C 54 97 W Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C VCE 600 V 57 75 A 225 A Maximum Junction Temperature Tj=Tjmax Tc=80°C Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpuls Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 85 129 W ±20 V 6 360 μs V 175 °C 600 V Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current Power dissipation per Diode Maximum Junction Temperature VRRM Tc=25°C IF Tj=Tjmax Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax 2 21 A W 150 °C 1200 V 20 28 A 70 A 34 52 W 150 °C Boost Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature copyright Vincotech VRRM IF IFRM Ptot Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tjmax 2 Th=80°C Tc=80°C Revision: 5 FZ06NPA070FP preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 3 Revision: 5 FZ06NPA070FP preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 4.5 5.2 7 1 2.32 2.09 2.9 Buck IGBT * Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES ±20 0 Integrated Gate resistor Rgint none Ω Input capacitance ** Cies 4+4,7 nF Output capacitance Coss Reverse transfer capacitance Crss Gate charge ** QGate Thermal resistance chip to heatsink per chip RthJH VCE=VGE f=1MHz 0.00025 70 25 0 250 300 V V uA nA 400 Tj=25°C pF 200 ±15 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 225+70 nC 0.99 K/W * see dinamic characteristic at Buck MosFET **additional value stands for built-in capacitor Buck Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 24 Rgon=8 Ω 40 350 di(rec)max /dt Erec RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 Thermal grease thickness≤50um λ = 1 W/mK 1.48 1.58 42 34 9 9 0.121 0.121 13108 10427 0.011 0.012 1.8 V A ns μC A/μs mWs 1.91 K/W Buck MOSFET Static drain to source ON resistance Gate threshold voltage Rds(on) 18 10 V(GS)th VDS=VGS Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time 0.001 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Thermal resistance chip to heatsink per chip RthJH Rgon=8 Ω ** Rgoff=8 Ω ** ±15 40 350 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2.1 109 219 3 200 60 92 101 6 6 208 210 9 5 0.066 0.096 0.100 0.225 60 ±15 350 40 Tj=25°C mΩ 3.6 14 V nA uA ns mWs 80 nC 20 2800 f=1MHz 0 100 Tj=25°C pF 130 Thermal grease thickness≤50um λ = 1 W/mK 1.29 K/W ** see schematic of the Gate-complex at characteristic figures copyright Vincotech 4 Revision: 5 FZ06NPA070FP preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5.8 6.5 1 1.49 1.6 2.1 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0.0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 70 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0.03 650 Rgon=8 Ω Rgoff=8 Ω ±15 350 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 37 35 13 16 459 500 83 106 0.81 1.11 1.35 1.71 ns mWs 4620 f=1MHz 0 25 15 480 Tj=25°C 288 pF Tj=25°C 470 nC 1.11 K/W 9.07 9.43 V 4.36 K/W 137 75 Thermal grease thickness≤50um λ = 1 W/mK Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 20 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 30 Rgon=8 Ω 350 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK R25 R100 Tol. ±13% Tol. ±5% 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1.5 2.44 2.01 3.5 100 80 100 33 109 2.7 6 11226 8793 0.61 1.52 V μA A ns μC A/μs mWs 2.04 K/W Thermistor Rated resistance* Power dissipation B-value Tj=25°C Tj=100°C P B(25/100) Tol. ±3% 19.1 1411 22 1486 24.9 1560 kΩ Ω Tj=25°C 210 mW Tj=25°C 4000 K * see details on Thermistor charts on Figure 2. copyright Vincotech 5 Revision: 5 FZ06NPA070FP preliminary datasheet Buck MOSFET MOSFET 100 100 IC (A) Figure 2 Typical output characteristics IC = f(VCE) IC (A) Figure 1 Typical output characteristics IC = f(VCE) 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 3 V to 19 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 5 250 μs 125 °C 3 V to 19 V in steps of 2 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IF (A) IC (A) 30 Tj = Tjmax-25°C 25 40 Tj = 25°C Tj = Tjmax-25°C 20 30 15 Tj = 25°C 20 10 10 5 0 0 0 At tp = VCE = 1 250 10 copyright Vincotech 2 3 4 5 6 V GE (V) 0 7 At tp = μs V 6 0.5 250 1 1.5 2 2.5 3 V F (V) 3.5 μs Revision: 5 FZ06NPA070FP preliminary datasheet Buck MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) E (mWs) 1.000 0.900 Eoff High T 0.800 0.500 0.400 0.350 0.600 0.300 0.500 0.250 Eoff High T 0.200 Eoff Low T Eon High T 0.300 Eon High T 0.450 0.700 0.400 MOSFET Figure 6 Typical switching energy losses as a function of IGBT gate resistor E = f(RG) Eoff Low T 0.150 Eon Low T 0.100 0.200 0.100 0.050 Eon Low T 0.000 0.000 0 10 20 30 40 50 60 70 I C (A) 80 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff= 8 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 40 A FRED Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FRED Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0.025 E (mWs) E (mWs) 0.040 0.035 0.020 0.030 Erec High T 0.025 0.015 0.020 Erec Low T 0.010 0.015 Erec High T 0.010 0.005 Erec Low T 0.005 0.000 0.000 0 10 20 30 40 50 60 70I C (A) 0 80 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω copyright Vincotech 5 10 15 20 25 30R G (W) 35 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 40 A 7 Revision: 5 FZ06NPA070FP preliminary datasheet Buck MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1.00 t (ms) t (ms) 1.00 tdoff tdon tdoff 0.10 0.10 tdon tr tr 0.01 0.01 tf tf 0.00 0.00 0 10 20 30 40 50 60 70 I C (A) 80 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 5 10 15 20 25 R G (W) 30 35 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 40 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.012 t rr(ms) t rr(ms) 0.016 0.014 trr High T 0.010 trr High T 0.012 trr Low T 0.008 trr Low T 0.010 0.006 0.008 0.006 0.004 0.004 0.002 0.002 0.000 0.000 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 8 copyright Vincotech 20 30 40 50 60 70I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω 8 5 25/125 350 40 ±15 10 15 20 25 30 R gon (W) 35 °C V A V Revision: 5 FZ06NPA070FP preliminary datasheet Buck FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0.14 Qrr (mC) Qrr (mC) 0.18 Qrr Low T 0.16 0.12 Qrr High T 0.14 Qrr High T 0.10 0.12 Qrr Low T 0.08 0.1 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0.00 At 0 At Tj = VCE = VGE = Rgon = 0 10 20 25/125 350 ±15 8 30 40 50 60 70 I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 5 25/125 350 40 ±15 10 15 20 25 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 45 30 R g on ( Ω) 35 IrrM (A) IrrM (A) 60 40 35 IRRM Low T 50 IRRM Low T 30 40 IRRM High T 25 IRRM High T 30 20 15 20 10 10 5 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 8 copyright Vincotech 20 30 40 50 60 I C (A) 70 80 0 At Tj = VR = IF = VGE = °C V V Ω 9 5 25/125 350 40 ±15 10 15 20 25 30 R gon (W) 35 °C V A V Revision: 5 FZ06NPA070FP preliminary datasheet Buck FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon) 20000 direc / dt (A/ms) 16000 direc / dt (A/ms) FRED 18000 14000 dIrec/dtLow T 16000 12000 dIo/dtLow T 14000 dIrec/dtHigh T 12000 dIrec/dtLow T 10000 8000 10000 di0/dtHigh T 8000 6000 6000 4000 dIrec/dtHigh T 4000 dI0/dtLow T 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 8 20 30 40 50 70 I C (A) 60 80 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 5 25/125 350 40 ±15 10 15 20 25 30 R gon (W) 35 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 10 dI0/dtHigh T 100 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 -5 10 At D= RthJH = -4 10 10 -3 -2 10 -1 10 0 10 t p (s) 10-5 1 10 1 At D= RthJH = tp / T 0.99 K/W 10-4 10-3 1.91 R (C/W) 0.06 0.18 0.56 0.14 0.05 R (C/W) 0.10 0.32 0.91 0.38 0.21 10 100 t p (s) 1011 K/W FRED thermal model values copyright Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 9.7E+00 9.9E-01 1.6E-01 2.4E-02 1.6E-03 10-2 Tau (s) 3.8E+00 5.7E-01 1.0E-01 1.4E-02 2.0E-03 Revision: 5 FZ06NPA070FP preliminary datasheet Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 90 IC (A) Ptot (W) 200 80 70 150 60 50 100 40 30 50 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) At Tj = VGE = °C FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) 200 °C V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 45 100 IF (A) Ptot (W) 0 200 90 40 80 35 70 30 60 25 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 11 50 175 100 150 T h ( o C) 200 °C Revision: 5 FZ06NPA070FP preliminary datasheet Buck IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 16 15 VGE (V) IC (A) VGE (V) 3 10 14 2 10 100uS 12 120V 200V 10 DC 480V 10 1mS 10mS 100m 400V 101 8 6 100 5 4 2 10-1 0 0 10 20 30 40 50 60 70 80 0 10 101 At D= 102 V CE (V) 103 Tj = 100 0 50 100 150 200 250 300 At IG(REF)=1mA, RL=15Ω single pulse 80 ºC ±15 V Tjmax ºC Th = VGE = 90 Q g (nC) Q g (nC) 0 MOSFET Figure 27 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) MOSFET Figure 28 Gate voltage vs Gate charge VGE = f(Qg) 101 ZthJH (K/W) VGE (V) 10 9 8 120V 0 10 7 480V 6 5 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 4 3 2 1 10-2 -5 10 At D= RthJH = -4 10 -3 10 -2 10 10 -1 10 0 t p (s) 1 10 1 0 0 tp / T 1.29 K/W At IC = 10 18 20 30 40 50 Q g (nC) 60 A MOSFET thermal model values R (C/W) 0.09 0.27 0.53 0.27 0.08 0.05 Tau (s) 9.2E+00 1.3E+00 2.1E-01 4.0E-02 4.8E-03 4.7E-04 copyright Vincotech 12 Revision: 5 FZ06NPA070FP preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 100 IC (A) IC (A) 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0.0 At tp = Tj = VGE from 1.0 V CE (V) 2.0 3.0 0.0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1.0 V CE (V) 2.0 250 μs 125 °C 6 V to 16 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 45 3.0 IF (A) IC (A) 100 40 90 80 35 70 30 60 25 50 20 Tj = Tjmax-25°C Tj = Tjmax-25°C 40 Tj = 25°C 15 30 10 20 5 Tj = 25°C 10 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 12 V GE (V) 14 0 At tp = μs V 13 0.5 250 1 1.5 2 2.5 3 3.5 4 V F (V) 4.5 5 μs Revision: 5 FZ06NPA070FP preliminary datasheet Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 3.5 E (mWs) E (mWs) 3 Eoff High T 2.5 3 Eoff Low T Eoff Low T 2.5 2 Eon High T Eon Low T 2 Eoff High T Eon Low T 1.5 1.5 1 1 0.5 Eon High T 0.5 0 0 0 10 20 30 40 50 60 70 I (A) C 80 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω Rgoff = 8 Ω 5 10 15 20 25 30 R G ( Ω ) 35 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 40 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2.5 E (mWs) E (mWs) 2 Erec High T 1.8 2 1.6 Erec High T 1.4 1.5 1.2 1 1 0.8 Erec Low T Erec Low T 0.6 0.5 0.4 0.2 0 0 0 10 20 30 40 50 60 70 I C (A) 80 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω copyright Vincotech 5 10 15 20 25 30 R G ( Ω ) 35 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 40 A 14 Revision: 5 FZ06NPA070FP preliminary datasheet Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 10 t ( μs) 10 tdoff 1 1 tdoff tf 0.1 tf 0.1 tdon tdon tr 0.01 0.01 tr 0.001 0.001 0 10 20 30 40 50 60 70 I C (A) 80 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω Rgoff = 8 Ω 5 10 15 20 25 30 R G ( Ω ) 35 With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V IC = 40 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.180 t rr(ms) t rr(ms) 0.120 trr High T 0.160 trr High T 0.100 0.140 0.080 0.120 0.100 0.060 0.080 trr Low T 0.060 0.040 trr Low T 0.040 0.020 0.020 0.000 0.000 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 copyright Vincotech 20 30 40 50 60 70I C (A) 0 80 At Tj = VR = IF = VGE = °C V V Ω 15 5 25/125 350 40 15 10 15 20 25 30 R gon (W) 35 °C V A V Revision: 5 FZ06NPA070FP preliminary datasheet Boost FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10.00 Qrr (mC) Qrr (mC) 7 Qrr High T 9.00 Qrr High T 6 8.00 5 7.00 6.00 4 5.00 Qrr Low T 3 4.00 Qrr Low T 3.00 2 2.00 1 1.00 0.00 0 At At Tj = VCE = VGE = Rgon = 0 10 20 25/125 350 15 8 30 40 50 60 70 I C (A) 80 0 5 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 10 25/125 350 40 15 15 20 25 30 R g on ( Ω) 35 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 160 IrrM (A) IrrM (A) 140 IRRM High T IRRM High T 140 120 IRRM Low T 120 IRRM Low T 100 100 80 80 60 60 40 40 20 20 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 copyright Vincotech 20 30 40 50 60 I C (A) 70 0 80 At Tj = VR = IF = VGE = °C V V Ω 16 5 25/125 350 40 15 10 15 20 25 30 R gon (W) 35 °C V A V Revision: 5 FZ06NPA070FP preliminary datasheet Boost Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current FRED dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon) 16000 direc / dt (A/ms) 14000 direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dIrec/dtLow T 14000 12000 dIrec/dtHigh T 12000 10000 dIrec/dtLow T 10000 8000 dIrec/dtHigh T 8000 6000 6000 dIo/dtLow T 4000 4000 di0/dtHigh T 2000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 20 30 40 50 70 I C (A) 60 0 80 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 5 25/125 350 40 15 10 15 20 25 30 R gon (W) 35 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 dI0/dtLow T dI0/dtHigh T 2000 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 1.11 10-3 10-2 10-1 100 t p (s) 101 1 10-5 At D= RthJH = K/W 10-4 tp / T 2.04 10-3 FRED thermal model values R (C/W) 0.06 0.22 0.59 0.17 0.03 0.04 R (C/W) 0.04 0.21 1.12 0.42 0.17 0.08 copyright Vincotech 17 10-1 100 t p (s) 101 1 K/W IGBT thermal model values Tau (s) 9.9E+00 1.2E+00 1.4E-01 2.2E-02 2.7E-03 2.7E-04 10-2 Tau (s) 9.8E+00 1.0E+00 1.5E-01 3.7E-02 4.4E-03 6.1E-04 Revision: 5 FZ06NPA070FP preliminary datasheet Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 90 IC (A) Ptot (W) 160 140 80 70 120 60 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = VGE = ºC FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 ºC V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) 80 Ptot (W) 50 70 35 60 30 50 25 40 20 30 15 20 10 10 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 150 100 150 Th ( o C) 200 ºC Revision: 5 FZ06NPA070FP preliminary datasheet Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) Boost Inverse Diode ZthJC (K/W) IF (A) 30 25 20 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = 25°C 10 Tj = Tjmax-25°C 5 0 0 At tp = 2 4 6 8 10 12 14 VF (V) t p (s) 16 At D= RthJH = μs 250 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) tp / T 4.36 K/W Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 12 10 80 8 60 6 40 4 20 2 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 150 100 150 Th ( o C) 200 ºC Revision: 5 FZ06NPA070FP preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R/Ω Thermistor Figure 2 Typical NTC resistance values R(T ) = R25 ⋅ e 20000 [Ω] 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 20 Revision: 5 FZ06NPA070FP preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj Rgon IGBT Rgoff IGBT 8Ω 8Ω = = Rgon MOSFET Rgoff MOSFET Output inverter IGBT Figure 1 = = 0Ω 47 Ω Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 160 200 140 180 160 120 tdoff VCE 140 VCE 90% 120 % 100 100 VGE 90% 80 %60 VGE 80 tEoff 40 20 VGE tdon 60 IC10% 40 IC 0 20 IC 1% VCE3% VGE10% -20 -40 -0.1 IC VCE 0 tEon -20 0 0.1 0.2 0.3 0.4 3.9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 700 40 0.21 0.22 4 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 4.1 time(us) -15 15 700 40 0.10 0.12 4.2 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 4.3 Turn-on Switching Waveforms & definition of tr 160 180 140 160 120 100 IC 140 VCE 120 IC 90% 80 VCE 100 fitted IC90% IC 60% %60 % 80 40 IC 40% 60 tr 20 40 IC10% I 0 20 -20 -40 0.15 VC (100%) = IC (100%) = tf = copyright Vincotech 0.2 0.25 time (us) 700 40 0.01 IC10% 0 tf 0.3 -20 0.35 4 VC (100%) = IC (100%) = tr = V A μs 21 4.05 time(us) 700 40 0.01 4.1 4.15 4.2 V A μs Revision: 5 FZ06NPA070FP preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 Eoff % 100 % 80 140 Poff Eon 60 40 100 20 0 tEoff VGE90% Pon 60 -20 -40 VGE10% 20 -60 VCE3% tEon IC 1% -80 -20 -100 -0.1 0 Poff (100%) = Eoff (100%) = tEoff = 0.1 0.2 time (us) 28.08 0.23 0.22 0.3 3.9 0.4 3.95 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter IGBT Figure 7 4 4.05 time(us) 28.08 0.10 0.12 4.1 4.2 kW mJ μs Output inverter FRED Figure 8 Turn-off Switching Waveforms & definition of trr 4.15 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 120 Id 150 80 Qrr trr Id 100 40 Vd 0 50 tQrr % % -40 fitted IRRM100% -80 0 IRRM90% -50 -120 -160 -100 4 4.05 4.1 4.15 4.2 4.25 4 4.05 4.1 4.15 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 700 40 -34 0.01 Id (100%) = Qrr (100%) = tQrr = V A A μs 22 40 0.12 0.47 4.2 time(us) 4.25 A μC μs Revision: 5 FZ06NPA070FP preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FRED Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 260 210 160 Erec % 110 tErec 60 Prec 10 -40 4 4.05 Prec (100%) = Erec (100%) = tErec = 4.1 28.08 0.01 0.47 4.15 time(us) 4.2 4.25 kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit Figure 12 BOOST stage switching measurement circuit Cg is included in the module copyright Vincotech 23 Revision: 5 FZ06NPA070FP preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06NPA070FP-P969F in DataMatrix as P969F in packaging barcode as P969F Outline Pinout copyright Vincotech 24 Revision: 5 FZ06NPA070FP preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 25 Revision: 5