FZ06NPA070FP Maximum Ratings

FZ06NPA070FP
preliminary datasheet
flowNPC 0
600V/75A & 70A PS*
Features
flow0 12mm housing
● *PS: 70A parallel switch (60A PT and 99mΩ)
● neutral point clamped inverter
● reactive power capability
● SiC buck diode
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● FZ06NPA070FP
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
44
59
A
240
A
71
108
W
±20
V
5
390
μs
V
150
°C
600
V
Buck IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
27
37
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
105
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
50
75
W
175
°C
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Revision: 5
FZ06NPA070FP
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
16
21
A
tp limited by Tjmax
Tc=25°C
93
A
Th=80°C
54
97
W
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
VCE
600
V
57
75
A
225
A
Maximum Junction Temperature
Tj=Tjmax
Tc=80°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
85
129
W
±20
V
6
360
μs
V
175
°C
600
V
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
Tc=25°C
IF
Tj=Tjmax
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
2
21
A
W
150
°C
1200
V
20
28
A
70
A
34
52
W
150
°C
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
copyright Vincotech
VRRM
IF
IFRM
Ptot
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tjmax
2
Th=80°C
Tc=80°C
Revision: 5
FZ06NPA070FP
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
3
Revision: 5
FZ06NPA070FP
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
4.5
5.2
7
1
2.32
2.09
2.9
Buck IGBT *
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
±20
0
Integrated Gate resistor
Rgint
none
Ω
Input capacitance **
Cies
4+4,7
nF
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge **
QGate
Thermal resistance chip to heatsink per chip
RthJH
VCE=VGE
f=1MHz
0.00025
70
25
0
250
300
V
V
uA
nA
400
Tj=25°C
pF
200
±15
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
225+70
nC
0.99
K/W
* see dinamic characteristic at Buck MosFET
**additional value stands for built-in capacitor
Buck Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
24
Rgon=8 Ω
40
350
di(rec)max
/dt
Erec
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
1.48
1.58
42
34
9
9
0.121
0.121
13108
10427
0.011
0.012
1.8
V
A
ns
μC
A/μs
mWs
1.91
K/W
Buck MOSFET
Static drain to source ON resistance
Gate threshold voltage
Rds(on)
18
10
V(GS)th
VDS=VGS
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0.001
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Thermal resistance chip to heatsink per chip
RthJH
Rgon=8 Ω **
Rgoff=8 Ω **
±15
40
350
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2.1
109
219
3
200
60
92
101
6
6
208
210
9
5
0.066
0.096
0.100
0.225
60
±15
350
40
Tj=25°C
mΩ
3.6
14
V
nA
uA
ns
mWs
80
nC
20
2800
f=1MHz
0
100
Tj=25°C
pF
130
Thermal grease
thickness≤50um
λ = 1 W/mK
1.29
K/W
** see schematic of the Gate-complex at characteristic figures
copyright Vincotech
4
Revision: 5
FZ06NPA070FP
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5.8
6.5
1
1.49
1.6
2.1
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0.0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
70
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0.03
650
Rgon=8 Ω
Rgoff=8 Ω
±15
350
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
37
35
13
16
459
500
83
106
0.81
1.11
1.35
1.71
ns
mWs
4620
f=1MHz
0
25
15
480
Tj=25°C
288
pF
Tj=25°C
470
nC
1.11
K/W
9.07
9.43
V
4.36
K/W
137
75
Thermal grease
thickness≤50um
λ = 1 W/mK
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
20
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
30
Rgon=8 Ω
350
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
R25
R100
Tol. ±13%
Tol. ±5%
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1.5
2.44
2.01
3.5
100
80
100
33
109
2.7
6
11226
8793
0.61
1.52
V
μA
A
ns
μC
A/μs
mWs
2.04
K/W
Thermistor
Rated resistance*
Power dissipation
B-value
Tj=25°C
Tj=100°C
P
B(25/100)
Tol. ±3%
19.1
1411
22
1486
24.9
1560
kΩ
Ω
Tj=25°C
210
mW
Tj=25°C
4000
K
* see details on Thermistor charts on Figure 2.
copyright Vincotech
5
Revision: 5
FZ06NPA070FP
preliminary datasheet
Buck
MOSFET
MOSFET
100
100
IC (A)
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
3 V to 19 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
5
250
μs
125
°C
3 V to 19 V in steps of 2 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
IC (A)
30
Tj = Tjmax-25°C
25
40
Tj = 25°C
Tj = Tjmax-25°C
20
30
15
Tj = 25°C
20
10
10
5
0
0
0
At
tp =
VCE =
1
250
10
copyright Vincotech
2
3
4
5
6 V GE (V)
0
7
At
tp =
μs
V
6
0.5
250
1
1.5
2
2.5
3
V F (V)
3.5
μs
Revision: 5
FZ06NPA070FP
preliminary datasheet
Buck
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
E (mWs)
E (mWs)
1.000
0.900
Eoff High T
0.800
0.500
0.400
0.350
0.600
0.300
0.500
0.250
Eoff High T
0.200
Eoff Low T
Eon High T
0.300
Eon High T
0.450
0.700
0.400
MOSFET
Figure 6
Typical switching energy losses
as a function of IGBT gate resistor
E = f(RG)
Eoff Low T
0.150
Eon Low T
0.100
0.200
0.100
0.050
Eon Low T
0.000
0.000
0
10
20
30
40
50
60
70 I C (A) 80
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff=
8
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
40
A
FRED
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FRED
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0.025
E (mWs)
E (mWs)
0.040
0.035
0.020
0.030
Erec High T
0.025
0.015
0.020
Erec Low T
0.010
0.015
Erec High T
0.010
0.005
Erec Low T
0.005
0.000
0.000
0
10
20
30
40
50
60
70I C (A)
0
80
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
5
10
15
20
25
30R G (W)
35
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
7
Revision: 5
FZ06NPA070FP
preliminary datasheet
Buck
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1.00
t (ms)
t (ms)
1.00
tdoff
tdon
tdoff
0.10
0.10
tdon
tr
tr
0.01
0.01
tf
tf
0.00
0.00
0
10
20
30
40
50
60
70 I C (A)
80
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
5
10
15
20
25
R G (W)
30
35
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0.012
t rr(ms)
t rr(ms)
0.016
0.014
trr High T
0.010
trr High T
0.012
trr Low T
0.008
trr Low T
0.010
0.006
0.008
0.006
0.004
0.004
0.002
0.002
0.000
0.000
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
8
copyright Vincotech
20
30
40
50
60
70I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
5
25/125
350
40
±15
10
15
20
25
30
R gon (W)
35
°C
V
A
V
Revision: 5
FZ06NPA070FP
preliminary datasheet
Buck
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0.14
Qrr (mC)
Qrr (mC)
0.18
Qrr Low T
0.16
0.12
Qrr High T
0.14
Qrr High T
0.10
0.12
Qrr Low T
0.08
0.1
0.08
0.06
0.06
0.04
0.04
0.02
0.02
0.00
At 0
At
Tj =
VCE =
VGE =
Rgon =
0
10
20
25/125
350
±15
8
30
40
50
60
70 I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
5
25/125
350
40
±15
10
15
20
25
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
45
30 R g on ( Ω) 35
IrrM (A)
IrrM (A)
60
40
35
IRRM Low T
50
IRRM Low T
30
40
IRRM High T
25
IRRM High T
30
20
15
20
10
10
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
8
copyright Vincotech
20
30
40
50
60
I C (A)
70
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
5
25/125
350
40
±15
10
15
20
25
30 R gon (W) 35
°C
V
A
V
Revision: 5
FZ06NPA070FP
preliminary datasheet
Buck
FRED
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Ic)
dI0/dt,dIrec/dt = f(Rgon)
20000
direc / dt (A/ms)
16000
direc / dt (A/ms)
FRED
18000
14000
dIrec/dtLow T
16000
12000
dIo/dtLow T
14000
dIrec/dtHigh T
12000
dIrec/dtLow T
10000
8000
10000
di0/dtHigh T
8000
6000
6000
4000
dIrec/dtHigh T
4000
dI0/dtLow T
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
8
20
30
40
50
70 I C (A)
60
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
5
25/125
350
40
±15
10
15
20
25
30 R gon (W) 35
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
10
dI0/dtHigh T
100
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
-5
10
At
D=
RthJH =
-4
10
10
-3
-2
10
-1
10
0
10
t p (s)
10-5
1
10 1
At
D=
RthJH =
tp / T
0.99
K/W
10-4
10-3
1.91
R (C/W)
0.06
0.18
0.56
0.14
0.05
R (C/W)
0.10
0.32
0.91
0.38
0.21
10
100
t p (s)
1011
K/W
FRED thermal model values
copyright Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
9.7E+00
9.9E-01
1.6E-01
2.4E-02
1.6E-03
10-2
Tau (s)
3.8E+00
5.7E-01
1.0E-01
1.4E-02
2.0E-03
Revision: 5
FZ06NPA070FP
preliminary datasheet
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
90
IC (A)
Ptot (W)
200
80
70
150
60
50
100
40
30
50
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
At
Tj =
VGE =
°C
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
200
°C
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
45
100
IF (A)
Ptot (W)
0
200
90
40
80
35
70
30
60
25
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
11
50
175
100
150
T h ( o C)
200
°C
Revision: 5
FZ06NPA070FP
preliminary datasheet
Buck
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
16
15
VGE (V)
IC (A)
VGE (V)
3
10
14
2
10
100uS
12
120V 200V
10
DC
480V
10
1mS
10mS
100m
400V
101
8
6
100
5
4
2
10-1
0
0
10
20
30
40
50
60
70
80
0
10
101
At
D=
102
V CE (V)
103
Tj =
100
0
50
100
150
200
250
300
At
IG(REF)=1mA, RL=15Ω
single pulse
80
ºC
±15
V
Tjmax
ºC
Th =
VGE =
90
Q g (nC)
Q g (nC)
0
MOSFET
Figure 27
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
MOSFET
Figure 28
Gate voltage vs Gate charge
VGE = f(Qg)
101
ZthJH (K/W)
VGE (V)
10
9
8
120V
0
10
7
480V
6
5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
4
3
2
1
10-2
-5
10
At
D=
RthJH =
-4
10
-3
10
-2
10
10
-1
10
0
t p (s)
1
10 1
0
0
tp / T
1.29
K/W
At
IC =
10
18
20
30
40
50 Q g (nC)
60
A
MOSFET thermal model values
R (C/W)
0.09
0.27
0.53
0.27
0.08
0.05
Tau (s)
9.2E+00
1.3E+00
2.1E-01
4.0E-02
4.8E-03
4.7E-04
copyright Vincotech
12
Revision: 5
FZ06NPA070FP
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
100
IC (A)
IC (A)
100
90
90
80
80
70
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0.0
At
tp =
Tj =
VGE from
1.0
V CE (V)
2.0
3.0
0.0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1.0
V CE (V)
2.0
250
μs
125
°C
6 V to 16 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
45
3.0
IF (A)
IC (A)
100
40
90
80
35
70
30
60
25
50
20
Tj = Tjmax-25°C
Tj = Tjmax-25°C
40
Tj = 25°C
15
30
10
20
5
Tj = 25°C
10
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
12
V GE (V) 14
0
At
tp =
μs
V
13
0.5
250
1
1.5
2
2.5
3
3.5
4
V F (V)
4.5
5
μs
Revision: 5
FZ06NPA070FP
preliminary datasheet
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
3.5
E (mWs)
E (mWs)
3
Eoff High T
2.5
3
Eoff Low T
Eoff Low T
2.5
2
Eon High T
Eon Low T
2
Eoff High T
Eon Low T
1.5
1.5
1
1
0.5
Eon High T
0.5
0
0
0
10
20
30
40
50
60
70 I (A)
C
80
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
5
10
15
20
25
30 R G ( Ω ) 35
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
40
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2.5
E (mWs)
E (mWs)
2
Erec High T
1.8
2
1.6
Erec High T
1.4
1.5
1.2
1
1
0.8
Erec Low T
Erec Low T
0.6
0.5
0.4
0.2
0
0
0
10
20
30
40
50
60
70 I C (A)
80
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
copyright Vincotech
5
10
15
20
25
30 R G ( Ω ) 35
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
40
A
14
Revision: 5
FZ06NPA070FP
preliminary datasheet
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
10
t ( μs)
10
tdoff
1
1
tdoff
tf
0.1
tf
0.1
tdon
tdon
tr
0.01
0.01
tr
0.001
0.001
0
10
20
30
40
50
60
70 I C (A)
80
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
5
10
15
20
25
30 R G ( Ω )
35
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
15
V
IC =
40
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0.180
t rr(ms)
t rr(ms)
0.120
trr High T
0.160
trr High T
0.100
0.140
0.080
0.120
0.100
0.060
0.080
trr Low T
0.060
0.040
trr Low T
0.040
0.020
0.020
0.000
0.000
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
copyright Vincotech
20
30
40
50
60
70I C (A)
0
80
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
5
25/125
350
40
15
10
15
20
25
30 R gon (W)
35
°C
V
A
V
Revision: 5
FZ06NPA070FP
preliminary datasheet
Boost
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
10.00
Qrr (mC)
Qrr (mC)
7
Qrr High T
9.00
Qrr High T
6
8.00
5
7.00
6.00
4
5.00
Qrr Low T
3
4.00
Qrr Low T
3.00
2
2.00
1
1.00
0.00
0
At
At
Tj =
VCE =
VGE =
Rgon =
0
10
20
25/125
350
15
8
30
40
50
60
70 I C (A)
80
0
5
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
10
25/125
350
40
15
15
20
25
30 R g on ( Ω) 35
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
160
IrrM (A)
IrrM (A)
140
IRRM High T
IRRM High T
140
120
IRRM Low T
120
IRRM Low T
100
100
80
80
60
60
40
40
20
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
copyright Vincotech
20
30
40
50
60
I C (A)
70
0
80
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
5
25/125
350
40
15
10
15
20
25
30 R gon (W) 35
°C
V
A
V
Revision: 5
FZ06NPA070FP
preliminary datasheet
Boost
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
FRED
dI0/dt,dIrec/dt = f(Ic)
dI0/dt,dIrec/dt = f(Rgon)
16000
direc / dt (A/ms)
14000
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dIrec/dtLow T
14000
12000
dIrec/dtHigh T
12000
10000
dIrec/dtLow T
10000
8000
dIrec/dtHigh T
8000
6000
6000
dIo/dtLow T
4000
4000
di0/dtHigh T
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
20
30
40
50
70 I C (A)
60
0
80
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
5
25/125
350
40
15
10
15
20
25
30 R gon (W) 35
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
dI0/dtLow T
dI0/dtHigh T
2000
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1.11
10-3
10-2
10-1
100
t p (s)
101 1
10-5
At
D=
RthJH =
K/W
10-4
tp / T
2.04
10-3
FRED thermal model values
R (C/W)
0.06
0.22
0.59
0.17
0.03
0.04
R (C/W)
0.04
0.21
1.12
0.42
0.17
0.08
copyright Vincotech
17
10-1
100
t p (s)
101 1
K/W
IGBT thermal model values
Tau (s)
9.9E+00
1.2E+00
1.4E-01
2.2E-02
2.7E-03
2.7E-04
10-2
Tau (s)
9.8E+00
1.0E+00
1.5E-01
3.7E-02
4.4E-03
6.1E-04
Revision: 5
FZ06NPA070FP
preliminary datasheet
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
90
IC (A)
Ptot (W)
160
140
80
70
120
60
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
ºC
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
80
Ptot (W)
50
70
35
60
30
50
25
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
150
100
150
Th ( o C)
200
ºC
Revision: 5
FZ06NPA070FP
preliminary datasheet
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Boost Inverse Diode
ZthJC (K/W)
IF (A)
30
25
20
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = 25°C
10
Tj = Tjmax-25°C
5
0
0
At
tp =
2
4
6
8
10
12
14 VF (V)
t p (s)
16
At
D=
RthJH =
μs
250
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
tp / T
4.36
K/W
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
12
10
80
8
60
6
40
4
20
2
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
150
100
150
Th ( o C)
200
ºC
Revision: 5
FZ06NPA070FP
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
R/Ω
Thermistor
Figure 2
Typical NTC resistance values
R(T ) = R25 ⋅ e
20000
[Ω]
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
20
Revision: 5
FZ06NPA070FP
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
Rgon IGBT
Rgoff IGBT
8Ω
8Ω
=
=
Rgon MOSFET
Rgoff MOSFET
Output inverter IGBT
Figure 1
=
=
0Ω
47 Ω
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
160
200
140
180
160
120
tdoff
VCE
140
VCE 90%
120
%
100
100
VGE 90%
80
%60
VGE
80
tEoff
40
20
VGE
tdon
60
IC10%
40
IC
0
20
IC 1%
VCE3%
VGE10%
-20
-40
-0.1
IC
VCE
0
tEon
-20
0
0.1
0.2
0.3
0.4
3.9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
700
40
0.21
0.22
4
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
4.1
time(us)
-15
15
700
40
0.10
0.12
4.2
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4.3
Turn-on Switching Waveforms & definition of tr
160
180
140
160
120
100
IC
140
VCE
120
IC 90%
80
VCE
100
fitted
IC90%
IC 60%
%60
% 80
40
IC 40%
60
tr
20
40
IC10%
I
0
20
-20
-40
0.15
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0.2
0.25
time (us)
700
40
0.01
IC10%
0
tf
0.3
-20
0.35
4
VC (100%) =
IC (100%) =
tr =
V
A
μs
21
4.05
time(us)
700
40
0.01
4.1
4.15
4.2
V
A
μs
Revision: 5
FZ06NPA070FP
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
Eoff
%
100
%
80
140
Poff
Eon
60
40
100
20
0
tEoff
VGE90%
Pon
60
-20
-40
VGE10%
20
-60
VCE3%
tEon
IC 1%
-80
-20
-100
-0.1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0.1
0.2
time (us)
28.08
0.23
0.22
0.3
3.9
0.4
3.95
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter IGBT
Figure 7
4
4.05
time(us)
28.08
0.10
0.12
4.1
4.2
kW
mJ
μs
Output inverter FRED
Figure 8
Turn-off Switching Waveforms & definition of trr
4.15
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
120
Id
150
80
Qrr
trr
Id
100
40
Vd
0
50
tQrr
%
%
-40
fitted
IRRM100%
-80
0
IRRM90%
-50
-120
-160
-100
4
4.05
4.1
4.15
4.2
4.25
4
4.05
4.1
4.15
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
700
40
-34
0.01
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
μs
22
40
0.12
0.47
4.2
time(us)
4.25
A
μC
μs
Revision: 5
FZ06NPA070FP
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FRED
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
260
210
160
Erec
%
110
tErec
60
Prec
10
-40
4
4.05
Prec (100%) =
Erec (100%) =
tErec =
4.1
28.08
0.01
0.47
4.15
time(us)
4.2
4.25
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Figure 12
BOOST stage switching measurement circuit
Cg is included in the module
copyright Vincotech
23
Revision: 5
FZ06NPA070FP
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06NPA070FP-P969F
in DataMatrix as
P969F
in packaging barcode as
P969F
Outline
Pinout
copyright Vincotech
24
Revision: 5
FZ06NPA070FP
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
25
Revision: 5