FZ06BIA045FH01 Maximum Ratings

FZ06BIA045FH01
preliminary datasheet
flowSOL 0 BI
600V/35A
Features
flow0 housing
● High efficiency
● Ultra fast switching frequency
● Low inductive design
● SiC in boost
Target Applications
Schematic
● Transformerless solar inverters
Types
● FZ06BIA045FH01
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
36
49
A
370
A
360
A2s
42
63
W
Tjmax
150
°C
VDS
600
V
30
37
A
230
A
92
139
W
Bypass FWD
Repetitive peak reverse voltage
VRRM
Forward current per FWD
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per FWD
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Input Boost MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation
Ptot
Gate-source peak voltage
VGS
±20
V
Tjmax
150
°C
Maximum Junction Temperature
1
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Input Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
20
Tc=80°C
24
Th=80°C
Tc=80°C
Tjmax
A
70
A
41
62
W
175
°C
600
V
Buck FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
22
29
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
15
A
Power dissipation per FWD
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
34
52
W
Tjmax
150
°C
VDS
600
V
Maximum Junction Temperature
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
30
37
A
tp limited by Tjmax
Tc=25°C
230
A
Tj=Tjmax
Th=80°C
Tc=80°C
142
94
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
VCE
600
V
40
40
A
150
A
86
131
W
±20
V
6
360
μs
V
175
°C
Maximum Junction Temperature
W
Boost IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj≤150°C
VGE=15V
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Vis
t=2s
DC voltage
3
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,7
1,01
0,93
0,86
0,75
0,1
0,1
1,3
Bypass FWD
Forward voltage
solar inverte
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
15
1200
V
Ω
0,05
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1,68
mA
K/W
Input Boost MOSFET
Static drain to source ON resistance
Gate threshold voltage
RDS(on)
V(GS)th
10
44
VGS=VDS
0,003
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=4 Ω
Rgon=4 Ω
Rgon=4 Ω
10
400
10
400
15
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,1
0,04
0,09
3
Ω
3,9
200
25000
28
27
5
6
154
167
10
9
0,063
0,072
0,025
0,025
150
V
nA
nA
ns
mWs
190
nC
34
51
6800
f=1MHz
100
0
320
Tj=25°C
pF
48
Thermal grease
thickness≤50um
λ = 1 W/mK
0,76
K/W
Input Boost FWD
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
10
400
15
IRRM
Reverse recovery time
Peak rate of fall of recovery current
8
Rgon=4 Ω
400
10
di(rec)max
/dt
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,54
1,71
400
16,63
14,68
9,3
10,4
0,058
0,064
0,005
0,006
4244
2752
2,34
4
1,8
V
μA
A
ns
μC
mWs
A/μs
K/W
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,04
1,50
42
58
12,2
19,4
0,26
0,65
14190
13169
0,036
0,108
2,7
Buck FWD
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
15
IRRM
trr
Qrr
Rgon=4 Ω
400
10
15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
μC
A/μs
mWs
2,04
K/W
Buck MOSFET
Static drain to source ON resistance
Rds(on)
Gate threshold voltage
V(GS)th
Gate to Source Leakage Current
Zero Gate Voltage Drain Current
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
44
10
VDS=VGS
Igss
0
20
Idss
0,003
600
0
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Rgoff=4 Ω
Rgon=4 Ω
10
400
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,1
45
90
3
200
25000
31
30
5,6
6,2
158
170
45,4
11,5
0,132
0,229
0,026
0,026
150
400
10
44
Tj=25°C
34
Gate to drain charge
Qgd
51
Input capacitance
Ciss
6800
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
f=1MHz
0
100
Tj=25°C
mΩ
3,9
320
V
nA
nA
ns
mWs
190
nC
pF
48
Thermal grease
thickness≤50um
λ = 1 W/mK
0,75
5
K/W
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0008
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,18
1,21
VCE(sat)
15
Collector-emitter cut-off incl FWD
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
none
Input capacitance
Cies
3140
Output capacitance
Coss
Collector-emitter saturation voltage
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
f=1MHz
50
0
25
15
480
V
V
0,02
650
mA
nA
Ω
Tj=25°C
200
pF
Tj=25°C
310
nC
1,10
K/W
93
50
Thermal grease
thickness≤50um
λ = 1 W/mK
Note: For the Boost IGBT only LF switching allowed
Thermistor
Rated resistance*
R25
R100
Power dissipation
P
B-value
B(25/100)
Tj=25°C
Tol. ±5%
Tol. ±3%
17,5
22
1486
29,0
kΩ
Ω
Tj=25°C
210
mW
Tj=25°C
4000
K
* see details on Thermistor charts on Figure 2.
6
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Buck
MOSFET
MOSFET
100
100
IC (A)
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
4 V to 14 V in steps of 1 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
μs
125
°C
4 V to 14 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
5
IF (A)
30
IC (A)
Tj = Tjmax-25°C
25
40
20
30
Tj = Tjmax-25°C
15
20
10
Tj = 25°C
Tj = 25°C
10
5
0
0
0
At
tp =
VCE =
1
250
10
2
3
4
5
V GE (V)
6
0
At
tp =
μs
V
7
0,8
250
1,6
2,4
3,2
V F (V)
4
μs
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Buck
MOSFET
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,35
0,40
Eon High T
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Eon High T
0,35
0,30
0,30
0,25
0,25
0,20
Eon Low T
0,20
Eon Low T
0,15
0,15
0,10
0,10
Eoff High T
Eoff Low T
0,05
Eoff High T
0,05
Eoff Low T
0,00
0
5
10
15
20
25
0,00
I C (A)
0
30
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
IC =
15
A
FRED
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FRED
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
0,250
0,140
0,120
0,200
Erec High T
0,100
Erec High T
0,150
0,080
0,060
0,100
Erec Low T
0,040
Erec Low T
0,050
0,020
0,000
0,000
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
8
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Buck
MOSFET
MOSFET
1,00
1,00
t (ms)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t (ms)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdoff
0,10
0,10
tf
tdon
tdon
tr
0,01
0,01
tf
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,040
t rr(ms)
0,025
trr High T
0,035
trr High T
0,020
0,030
0,025
0,015
0,020
trr Low T
trr Low T
0,010
0,015
0,010
0,005
0,005
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
4
25/125
400
15
10
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Buck
FRED
1,20
1,00
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
Qrr (mC)
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
0,8
0,7
Qrr High T
0,6
Qrr High T
0,80
0,5
0,60
0,4
Qrr Low T
0,3
0,40
Qrr Low T
0,2
0,20
0,1
0,00
At
At
Tj =
VCE =
VGE =
Rgon =
0
0
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
25/125
400
15
10
8
12
16
90
70
IrrM (A)
80
R g on ( Ω)
20
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
80
IRRM High T
70
60
60
50
IRRM Low T
50
40
40
30
30
20
IRRM High T
20
IRRM Low T
10
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
10
4
25/125
400
15
10
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Buck
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
25000
25000
dI0/dt
dIrec/dt
dIrec/dtLow T
direc / dt (A/ms)
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtLow T
20000
dI0/dt
dIrec/dt
20000
dIrec/dtHigh T
15000
15000
dIrec/dtHigh T
10000
10000
dIo/dtLow T
5000
5000
di0/dtHigh T
dI0/dtLow T
dI0/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
400
15
10
8
12
16
R gon (W)
20
°C
V
A
V
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
FRED
ZthJH (K/W)
ZthJH (K/W)
101
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
t p (s)
1011
At
D=
RthJH =
tp / T
0,75
K/W
tp / T
2,04
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,03
0,12
0,41
0,11
0,03
0,04
R (C/W)
0,06
0,25
0,90
0,53
0,23
0,07
Tau (s)
9,3E+00
1,2E+00
1,6E-01
3,8E-02
5,2E-03
3,7E-04
11
Tau (s)
5,6E+00
5,0E-01
7,8E-02
1,5E-02
1,8E-03
3,3E-04
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Buck
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
240
200
40
160
30
120
20
80
10
40
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
150
T h ( o C)
200
°C
V
FRED
40
IF (A)
Ptot (W)
150
15
100
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
70
35
60
30
50
25
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
50
50
150
100
150
T h ( o C)
200
0
At
Tj =
°C
12
50
150
100
150
T h ( o C)
200
°C
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Buck
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
3
10
IC (A)
VGE (V)
10
MOSFET
Figure 26
Gate voltage vs Gate charge
10
10uS
2
8
100uS
10
100mS
DC
1
120V
10mS
1mS
480V
6
4
100
2
10-1
0
0
20
40
60
80
100
120
140
160
Q g (nC)
10
At
D=
Th =
VGE =
Tj =
0
1
10
10
2
V CE (V)
103
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
13
15
A
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
70
IC (A)
IC (A)
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0,0
At
tp =
Tj =
VGE from
1,0
2,0
3,0
V CE (V)
4,0
5,0
0,0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1,0
2,0
3,0
V CE (V)
4,0
5,0
250
μs
125
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 4
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
IC (A)
50
40
100
Tj = Tjmax-25°C
30
Tj = 25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
10-1
10
0
10
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V) 12
-2
-5
10
μs
V
At
D=
RthJH =
14
10
-4
tp / T
1,10
-3
10
-2
10
-1
10
0
10
t p (s)
1
10 1
K/W
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Boost
IGBT
Figure 5
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 6
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
160
140
40
120
100
30
80
20
60
40
10
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
15
50
175
15
100
150
T h ( o C)
200
ºC
V
Revision: 4
FZ06BIA045FH01
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST FRED
Figure 2
Typical output characteristics
ID = f(VDS)
IC (A)
100
IC(A)
100
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGS from
2
3
V CE (V)
4
5
0
1
At
tp =
Tj =
VGS from
250
μs
25
°C
4 V to 14 V in steps of 1 V
BOOST MOSFET
Figure 3
Typical transfer characteristics
ID = f(VDS)
2
3
4
V CE (V)
5
250
μs
126
°C
4 V to 14 V in steps of 1 V
BOOST FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
ID (A)
50
Tj = 25°C
40
40
30
30
Tj = Tjmax-25°C
Tj = Tjmax-25°C
20
20
Tj = 25°C
10
10
0
0
0
At
tp =
VDS =
1
250
10
2
3
4
5
0
V GS (V) 6
At
tp =
μs
V
16
0,8
250
1,6
2,4
3,2
V F (V)
4
μs
Revision: 4
FZ06BIA045FH01
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
BOOST MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,2
E (mWs)
E (mWs)
0,2
0,16
Eon High T
0,16
Eon Low T
Eon High T
0,12
0,12
Eon Low T
Eoff High T
0,08
0,08
Eoff Low T
Eoff High T
0,04
0,04
Eoff Low T
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
RG (Ω )
16
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
15
A
BOOST MOSFET
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST MOSFET
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,025
E (mWs)
E (mWs)
0,018
0,015
0,02
Erec High T
0,012
Erec Low T
0,015
0,009
0,01
0,006
Erec High T
0,005
0,003
Erec Low T
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
15
A
17
Revision: 4
FZ06BIA045FH01
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdoff
tf
0,1
0,1
tdon
tdon
tf
tr
0,01
0,01
tr
0,001
0,001
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
15
A
BOOST FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,02
t rr( μs)
t rr( μs)
0,03
0,025
trr High T
0,016
trr Low T
0,02
0,012
trr High T
0,015
0,008
trr Low T
0,01
0,004
0,005
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
18
4
25/125
400
15
10
8
12
16
R Gon ( Ω )
20
°C
V
A
V
Revision: 4
FZ06BIA045FH01
preliminary datasheet
INPUT BOOST
BOOST FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,1
Qrr ( μC)
Qrr ( μC)
0,1
Qrr High T
0,08
0,08
Qrr High T
Qrr Low T
0,06
Qrr Low T
0,06
0,04
0,04
0,02
0
0,02
At 0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
400
15
10
8
12
R Gon ( Ω)
20
°C
V
A
V
BOOST FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
25
16
IrrM (A)
IrrM (A)
30
IRRM Low T
25
IRRM Low T
20
20
IRRM High T
15
15
IRRM High T
10
10
5
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
°C
V
V
Ω
19
0
4
At
Tj =
VR =
IF =
VGS =
25/125
400
15
10
8
12
16
R Gon ( Ω )
20
°C
V
A
V
Revision: 4
FZ06BIA045FH01
preliminary datasheet
INPUT BOOST
BOOST FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
BOOST FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
6000
direc / dt (A/ μs)
12000
direc / dt (A/ μs)
dI0/dt
dIrec/dt
5000
dI0/dt
dIrec/dt
dIrec/dtLow T
10000
di0/dtHigh T
dIrec/dtLow T
4000
8000
dI0/dtLow T
di0/dtLow T
dIrec/dtHigh T
3000
6000
2000
4000
1000
2000
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST MOSFET
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
400
15
10
8
12
R Gon ( Ω)
16
20
°C
V
A
V
BOOST FRED
101
ZthJH (K/W)
ZthJH (K/W)
0
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
4
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
dI0/dtHigh T
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
1011
tp / T
0,76
K/W
10-5
10-4
At
D=
RthJH =
2,34
10-3
100
t p (s)
1011
K/W
FRED thermal model values
R (C/W)
0,03247
0,1223
0,4264
0,1173
0,03103
0,03298
R (C/W)
0,1024
0,495
0,9886
0,4865
0,2673
20
10-1
tp / T
IGBT thermal model values
Tau (s)
9,971
1,22
0,1797
0,04698
0,005891
0,0004038
10-2
Tau (s)
2,885
0,3437
0,07039
0,01004
0,001614
Revision: 4
FZ06BIA045FH01
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
200
IC (A)
Ptot (W)
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
BOOST FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
200
ºC
V
BOOST FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
Th ( o C)
Ptot (W)
IF (A)
30
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
21
50
175
100
150
T h ( o C)
200
ºC
Revision: 4
FZ06BIA045FH01
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
BOOST MOSFET
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
3
10
ID (A)
UGS (V)
10
8
10uS
102
10mS
120V
480V
6
1mS
100uS
101
100mS
4
DC
100
2
0
10-1
At
D=
Th =
VGS =
Tj =
100
101
102
0
V DS (V)
30
60
90
120
150
Qg (nC)
At
ID =
single pulse
80
ºC
V
10
Tjmax
ºC
22
15
A
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
1
ZthJC (K/W)
IF (A)
10
40
100
30
20
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Tj = 25°C
10
0
0
0,3
0,6
0,9
1,2
VF (V)
10-2
1,5
10-5
At
tp =
At
D=
RthJH =
μs
250
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
1011
tp / T
1,677
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
t p (s)
70
IF (A)
Ptot (W)
10-4
60
80
50
60
40
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
23
50
150
100
150
T h ( o C)
200
ºC
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
R/Ω
25000
[Ω]
20000
15000
10000
5000
0
25
50
75
100
T (°C)
125
24
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
140
120
tdoff
IC
VCE
150
100
VCE 90%
VGE 90%
VCE
80
100
%
IC
%60
VGE
tdon
50
40
IC10%
tEoff
20
VCE3%
VGE10%
VGE
IC 1%
0
0
tEon
-20
-0,1
-50
-0,05
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,05
0
10
400
15
0,16
0,17
0,1
time (us)
0,15
0,2
0,25
0,3
2,4
2,45
2,5
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
2,55
time(us)
0
10
400
15
0,03
0,06
2,6
2,7
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
2,65
Turn-on Switching Waveforms & definition of tr
140
220
120
100
180
IC
VCE
IC 90%
80
140
fitted
IC 60%
%60
%100
VCE
IC90%
IC 40%
40
tr
60
20
IC10%
20
0
-20
0,14
VC (100%) =
IC (100%) =
tf =
0,145
0,15
400
15
0,01
0,155
time (us)
IC10%
Ic
tf
0,16
0,165
-20
2,45
0,17
VC (100%) =
IC (100%) =
tr =
V
A
μs
25
2,5
time(us) 2,55
400
15
0,01
2,6
2,65
V
A
μs
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
160
180
%
%
130
Pon
Poff
100
140
Eoff
Eon
100
70
40
60
10
tEoff
VGE90%
-20
20
VGE10%
VCE3%
IC 1%
tEon
-50
-0,1
-0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0
0,05
0,1
time (us)
6,01
0,02
0,17
0,15
0,2
0,25
-20
2,475
0,3
2,5
2,55
2,575
2,6
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Figure 7
Gate voltage vs Gate charge (measured)
2,525
Output inverter FRED
6,01
0,07
0,06
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
120
15
80
Id
fitted
trr
VGE (V)
10
40
Vd
%
5
0
IRRM10%
-40
0
IRRM90%
-80
-120
2,52
-5
-20
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
20
0
10
400
15
112,54
40
Qg (nC)
60
80
100
120
IRRM100%
2,53
2,54
2,55
2,56
2,57
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
26
400
15
-6
0,01
V
A
A
μs
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
200
Qrr
150
150
Erec
Id
100
100
tQrr
% 50
%
50
tErec
0
0
-50
-100
2,48
Id (100%) =
Qrr (100%) =
tQrr =
Prec
-50
2,51
2,54
15
0,03
0,02
2,57
2,6
time(us)
2,63
2,5
2,51
2,52
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
2,53
6,01
0,01
0,02
2,54
2,55
2,56
2,57
2,58
time(us)
2,59
2,6
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
27
Revision: 4
FZ06BIA045FH01
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
without thermal paste 12mm housing
Ordering Code
10-FZ06BIA045FH01-P897E10
in DataMatrix as
P897E10
in packaging barcode as
P897E10
Outline
Pinout
28
Revision: 4
FZ06BIA045FH01
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
29
Revision: 4