FZ06BIA045FH01 preliminary datasheet flowSOL 0 BI 600V/35A Features flow0 housing ● High efficiency ● Ultra fast switching frequency ● Low inductive design ● SiC in boost Target Applications Schematic ● Transformerless solar inverters Types ● FZ06BIA045FH01 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 36 49 A 370 A 360 A2s 42 63 W Tjmax 150 °C VDS 600 V 30 37 A 230 A 92 139 W Bypass FWD Repetitive peak reverse voltage VRRM Forward current per FWD IFAV Surge forward current IFSM I2t-value I2t Power dissipation per FWD Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Input Boost MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Power dissipation Ptot Gate-source peak voltage VGS ±20 V Tjmax 150 °C Maximum Junction Temperature 1 Revision: 4 FZ06BIA045FH01 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C 20 Tc=80°C 24 Th=80°C Tc=80°C Tjmax A 70 A 41 62 W 175 °C 600 V Buck FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 22 29 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 15 A Power dissipation per FWD Ptot Tj=Tjmax Th=80°C Tc=80°C 34 52 W Tjmax 150 °C VDS 600 V Maximum Junction Temperature Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 30 37 A tp limited by Tjmax Tc=25°C 230 A Tj=Tjmax Th=80°C Tc=80°C 142 94 Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C VCE 600 V 40 40 A 150 A 86 131 W ±20 V 6 360 μs V 175 °C Maximum Junction Temperature W Boost IGBT Collector-emitter break down voltage DC collector current IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj≤150°C VGE=15V Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 4 FZ06BIA045FH01 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Vis t=2s DC voltage 3 Revision: 4 FZ06BIA045FH01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,7 1,01 0,93 0,86 0,75 0,1 0,1 1,3 Bypass FWD Forward voltage solar inverte Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 15 1200 V Ω 0,05 Thermal grease thickness≤50um λ = 1 W/mK V 1,68 mA K/W Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage RDS(on) V(GS)th 10 44 VGS=VDS 0,003 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Rgoff=4 Ω Rgon=4 Ω Rgon=4 Ω 10 400 10 400 15 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,1 0,04 0,09 3 Ω 3,9 200 25000 28 27 5 6 154 167 10 9 0,063 0,072 0,025 0,025 150 V nA nA ns mWs 190 nC 34 51 6800 f=1MHz 100 0 320 Tj=25°C pF 48 Thermal grease thickness≤50um λ = 1 W/mK 0,76 K/W Input Boost FWD Forward voltage VF Reverse leakage current Irm Peak recovery current trr Reverse recovery charge Qrr Reverse recovered energy Erec Thermal resistance chip to heatsink per chip 10 400 15 IRRM Reverse recovery time Peak rate of fall of recovery current 8 Rgon=4 Ω 400 10 di(rec)max /dt RthJH Thermal grease thickness≤50um λ = 1 W/mK 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,54 1,71 400 16,63 14,68 9,3 10,4 0,058 0,064 0,005 0,006 4244 2752 2,34 4 1,8 V μA A ns μC mWs A/μs K/W Revision: 4 FZ06BIA045FH01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,04 1,50 42 58 12,2 19,4 0,26 0,65 14190 13169 0,036 0,108 2,7 Buck FWD FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 15 IRRM trr Qrr Rgon=4 Ω 400 10 15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK V A ns μC A/μs mWs 2,04 K/W Buck MOSFET Static drain to source ON resistance Rds(on) Gate threshold voltage V(GS)th Gate to Source Leakage Current Zero Gate Voltage Drain Current Turn On Delay Time Rise Time Turn off delay time Fall time 44 10 VDS=VGS Igss 0 20 Idss 0,003 600 0 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Rgoff=4 Ω Rgon=4 Ω 10 400 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,1 45 90 3 200 25000 31 30 5,6 6,2 158 170 45,4 11,5 0,132 0,229 0,026 0,026 150 400 10 44 Tj=25°C 34 Gate to drain charge Qgd 51 Input capacitance Ciss 6800 Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH f=1MHz 0 100 Tj=25°C mΩ 3,9 320 V nA nA ns mWs 190 nC pF 48 Thermal grease thickness≤50um λ = 1 W/mK 0,75 5 K/W Revision: 4 FZ06BIA045FH01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0008 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,18 1,21 VCE(sat) 15 Collector-emitter cut-off incl FWD ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint none Input capacitance Cies 3140 Output capacitance Coss Collector-emitter saturation voltage Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH f=1MHz 50 0 25 15 480 V V 0,02 650 mA nA Ω Tj=25°C 200 pF Tj=25°C 310 nC 1,10 K/W 93 50 Thermal grease thickness≤50um λ = 1 W/mK Note: For the Boost IGBT only LF switching allowed Thermistor Rated resistance* R25 R100 Power dissipation P B-value B(25/100) Tj=25°C Tol. ±5% Tol. ±3% 17,5 22 1486 29,0 kΩ Ω Tj=25°C 210 mW Tj=25°C 4000 K * see details on Thermistor charts on Figure 2. 6 Revision: 4 FZ06BIA045FH01 preliminary datasheet Buck MOSFET MOSFET 100 100 IC (A) Figure 2 Typical output characteristics IC = f(VCE) IC (A) Figure 1 Typical output characteristics IC = f(VCE) 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 4 V to 14 V in steps of 1 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 μs 125 °C 4 V to 14 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 5 IF (A) 30 IC (A) Tj = Tjmax-25°C 25 40 20 30 Tj = Tjmax-25°C 15 20 10 Tj = 25°C Tj = 25°C 10 5 0 0 0 At tp = VCE = 1 250 10 2 3 4 5 V GE (V) 6 0 At tp = μs V 7 0,8 250 1,6 2,4 3,2 V F (V) 4 μs Revision: 4 FZ06BIA045FH01 preliminary datasheet Buck MOSFET MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,35 0,40 Eon High T E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Eon High T 0,35 0,30 0,30 0,25 0,25 0,20 Eon Low T 0,20 Eon Low T 0,15 0,15 0,10 0,10 Eoff High T Eoff Low T 0,05 Eoff High T 0,05 Eoff Low T 0,00 0 5 10 15 20 25 0,00 I C (A) 0 30 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V IC = 15 A FRED Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FRED Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 0,250 0,140 0,120 0,200 Erec High T 0,100 Erec High T 0,150 0,080 0,060 0,100 Erec Low T 0,040 Erec Low T 0,050 0,020 0,000 0,000 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V Rgon = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V IC = 15 A 8 Revision: 4 FZ06BIA045FH01 preliminary datasheet Buck MOSFET MOSFET 1,00 1,00 t (ms) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t (ms) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdoff 0,10 0,10 tf tdon tdon tr 0,01 0,01 tf tr 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V IC = 15 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,040 t rr(ms) 0,025 trr High T 0,035 trr High T 0,020 0,030 0,025 0,015 0,020 trr Low T trr Low T 0,010 0,015 0,010 0,005 0,005 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω 9 4 25/125 400 15 10 8 12 16 R gon (W) 20 °C V A V Revision: 4 FZ06BIA045FH01 preliminary datasheet Buck FRED 1,20 1,00 FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) Qrr (mC) Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) 0,8 0,7 Qrr High T 0,6 Qrr High T 0,80 0,5 0,60 0,4 Qrr Low T 0,3 0,40 Qrr Low T 0,2 0,20 0,1 0,00 At At Tj = VCE = VGE = Rgon = 0 0 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω FRED 25/125 400 15 10 8 12 16 90 70 IrrM (A) 80 R g on ( Ω) 20 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 80 IRRM High T 70 60 60 50 IRRM Low T 50 40 40 30 30 20 IRRM High T 20 IRRM Low T 10 10 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω 10 4 25/125 400 15 10 8 12 16 R gon (W) 20 °C V A V Revision: 4 FZ06BIA045FH01 preliminary datasheet Buck FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 25000 25000 dI0/dt dIrec/dt dIrec/dtLow T direc / dt (A/ms) direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T 20000 dI0/dt dIrec/dt 20000 dIrec/dtHigh T 15000 15000 dIrec/dtHigh T 10000 10000 dIo/dtLow T 5000 5000 di0/dtHigh T dI0/dtLow T dI0/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 400 15 10 8 12 16 R gon (W) 20 °C V A V Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) FRED ZthJH (K/W) ZthJH (K/W) 101 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) 1011 At D= RthJH = tp / T 0,75 K/W tp / T 2,04 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,03 0,12 0,41 0,11 0,03 0,04 R (C/W) 0,06 0,25 0,90 0,53 0,23 0,07 Tau (s) 9,3E+00 1,2E+00 1,6E-01 3,8E-02 5,2E-03 3,7E-04 11 Tau (s) 5,6E+00 5,0E-01 7,8E-02 1,5E-02 1,8E-03 3,3E-04 Revision: 4 FZ06BIA045FH01 preliminary datasheet Buck MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 240 200 40 160 30 120 20 80 10 40 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = VGE = °C FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 150 T h ( o C) 200 °C V FRED 40 IF (A) Ptot (W) 150 15 100 Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 70 35 60 30 50 25 40 20 30 15 20 10 10 5 0 0 0 At Tj = 50 50 150 100 150 T h ( o C) 200 0 At Tj = °C 12 50 150 100 150 T h ( o C) 200 °C Revision: 4 FZ06BIA045FH01 preliminary datasheet Buck MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 3 10 IC (A) VGE (V) 10 MOSFET Figure 26 Gate voltage vs Gate charge 10 10uS 2 8 100uS 10 100mS DC 1 120V 10mS 1mS 480V 6 4 100 2 10-1 0 0 20 40 60 80 100 120 140 160 Q g (nC) 10 At D= Th = VGE = Tj = 0 1 10 10 2 V CE (V) 103 At IC = single pulse 80 ºC 15 V Tjmax ºC 13 15 A Revision: 4 FZ06BIA045FH01 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 70 IC (A) IC (A) 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0,0 At tp = Tj = VGE from 1,0 2,0 3,0 V CE (V) 4,0 5,0 0,0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1,0 2,0 3,0 V CE (V) 4,0 5,0 250 μs 125 °C 7 V to 17 V in steps of 1 V IGBT Figure 4 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) IC (A) 50 40 100 Tj = Tjmax-25°C 30 Tj = 25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 10-1 10 0 10 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 -2 -5 10 μs V At D= RthJH = 14 10 -4 tp / T 1,10 -3 10 -2 10 -1 10 0 10 t p (s) 1 10 1 K/W Revision: 4 FZ06BIA045FH01 preliminary datasheet Boost IGBT Figure 5 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 6 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 160 140 40 120 100 30 80 20 60 40 10 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 15 50 175 15 100 150 T h ( o C) 200 ºC V Revision: 4 FZ06BIA045FH01 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) BOOST FRED Figure 2 Typical output characteristics ID = f(VDS) IC (A) 100 IC(A) 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGS from 2 3 V CE (V) 4 5 0 1 At tp = Tj = VGS from 250 μs 25 °C 4 V to 14 V in steps of 1 V BOOST MOSFET Figure 3 Typical transfer characteristics ID = f(VDS) 2 3 4 V CE (V) 5 250 μs 126 °C 4 V to 14 V in steps of 1 V BOOST FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IF (A) ID (A) 50 Tj = 25°C 40 40 30 30 Tj = Tjmax-25°C Tj = Tjmax-25°C 20 20 Tj = 25°C 10 10 0 0 0 At tp = VDS = 1 250 10 2 3 4 5 0 V GS (V) 6 At tp = μs V 16 0,8 250 1,6 2,4 3,2 V F (V) 4 μs Revision: 4 FZ06BIA045FH01 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) BOOST MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,2 E (mWs) E (mWs) 0,2 0,16 Eon High T 0,16 Eon Low T Eon High T 0,12 0,12 Eon Low T Eoff High T 0,08 0,08 Eoff Low T Eoff High T 0,04 0,04 Eoff Low T 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 RG (Ω ) 16 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 15 A BOOST MOSFET Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST MOSFET Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,025 E (mWs) E (mWs) 0,018 0,015 0,02 Erec High T 0,012 Erec Low T 0,015 0,009 0,01 0,006 Erec High T 0,005 0,003 Erec Low T 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 15 A 17 Revision: 4 FZ06BIA045FH01 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 1 t ( μs) 1 tdoff tdoff tf 0,1 0,1 tdon tdon tf tr 0,01 0,01 tr 0,001 0,001 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = 15 A BOOST FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,02 t rr( μs) t rr( μs) 0,03 0,025 trr High T 0,016 trr Low T 0,02 0,012 trr High T 0,015 0,008 trr Low T 0,01 0,004 0,005 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω 18 4 25/125 400 15 10 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 4 FZ06BIA045FH01 preliminary datasheet INPUT BOOST BOOST FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,1 Qrr ( μC) Qrr ( μC) 0,1 Qrr High T 0,08 0,08 Qrr High T Qrr Low T 0,06 Qrr Low T 0,06 0,04 0,04 0,02 0 0,02 At 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω BOOST FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 400 15 10 8 12 R Gon ( Ω) 20 °C V A V BOOST FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 25 16 IrrM (A) IrrM (A) 30 IRRM Low T 25 IRRM Low T 20 20 IRRM High T 15 15 IRRM High T 10 10 5 5 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 °C V V Ω 19 0 4 At Tj = VR = IF = VGS = 25/125 400 15 10 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 4 FZ06BIA045FH01 preliminary datasheet INPUT BOOST BOOST FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) BOOST FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 6000 direc / dt (A/ μs) 12000 direc / dt (A/ μs) dI0/dt dIrec/dt 5000 dI0/dt dIrec/dt dIrec/dtLow T 10000 di0/dtHigh T dIrec/dtLow T 4000 8000 dI0/dtLow T di0/dtLow T dIrec/dtHigh T 3000 6000 2000 4000 1000 2000 dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω BOOST MOSFET Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 400 15 10 8 12 R Gon ( Ω) 16 20 °C V A V BOOST FRED 101 ZthJH (K/W) ZthJH (K/W) 0 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 4 Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 dI0/dtHigh T D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 -2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 1011 tp / T 0,76 K/W 10-5 10-4 At D= RthJH = 2,34 10-3 100 t p (s) 1011 K/W FRED thermal model values R (C/W) 0,03247 0,1223 0,4264 0,1173 0,03103 0,03298 R (C/W) 0,1024 0,495 0,9886 0,4865 0,2673 20 10-1 tp / T IGBT thermal model values Tau (s) 9,971 1,22 0,1797 0,04698 0,005891 0,0004038 10-2 Tau (s) 2,885 0,3437 0,07039 0,01004 0,001614 Revision: 4 FZ06BIA045FH01 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 200 IC (A) Ptot (W) 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = VGS = ºC BOOST FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 200 ºC V BOOST FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 Th ( o C) Ptot (W) IF (A) 30 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC 21 50 175 100 150 T h ( o C) 200 ºC Revision: 4 FZ06BIA045FH01 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) BOOST MOSFET Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 3 10 ID (A) UGS (V) 10 8 10uS 102 10mS 120V 480V 6 1mS 100uS 101 100mS 4 DC 100 2 0 10-1 At D= Th = VGS = Tj = 100 101 102 0 V DS (V) 30 60 90 120 150 Qg (nC) At ID = single pulse 80 ºC V 10 Tjmax ºC 22 15 A Revision: 4 FZ06BIA045FH01 preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 1 ZthJC (K/W) IF (A) 10 40 100 30 20 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = 25°C 10 0 0 0,3 0,6 0,9 1,2 VF (V) 10-2 1,5 10-5 At tp = At D= RthJH = μs 250 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 1011 tp / T 1,677 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 t p (s) 70 IF (A) Ptot (W) 10-4 60 80 50 60 40 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = ºC 23 50 150 100 150 T h ( o C) 200 ºC Revision: 4 FZ06BIA045FH01 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R(T ) = R25 ⋅ e R/Ω 25000 [Ω] 20000 15000 10000 5000 0 25 50 75 100 T (°C) 125 24 Revision: 4 FZ06BIA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 140 120 tdoff IC VCE 150 100 VCE 90% VGE 90% VCE 80 100 % IC %60 VGE tdon 50 40 IC10% tEoff 20 VCE3% VGE10% VGE IC 1% 0 0 tEon -20 -0,1 -50 -0,05 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,05 0 10 400 15 0,16 0,17 0,1 time (us) 0,15 0,2 0,25 0,3 2,4 2,45 2,5 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 2,55 time(us) 0 10 400 15 0,03 0,06 2,6 2,7 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 2,65 Turn-on Switching Waveforms & definition of tr 140 220 120 100 180 IC VCE IC 90% 80 140 fitted IC 60% %60 %100 VCE IC90% IC 40% 40 tr 60 20 IC10% 20 0 -20 0,14 VC (100%) = IC (100%) = tf = 0,145 0,15 400 15 0,01 0,155 time (us) IC10% Ic tf 0,16 0,165 -20 2,45 0,17 VC (100%) = IC (100%) = tr = V A μs 25 2,5 time(us) 2,55 400 15 0,01 2,6 2,65 V A μs Revision: 4 FZ06BIA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 160 180 % % 130 Pon Poff 100 140 Eoff Eon 100 70 40 60 10 tEoff VGE90% -20 20 VGE10% VCE3% IC 1% tEon -50 -0,1 -0,05 Poff (100%) = Eoff (100%) = tEoff = 0 0,05 0,1 time (us) 6,01 0,02 0,17 0,15 0,2 0,25 -20 2,475 0,3 2,5 2,55 2,575 2,6 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs Figure 7 Gate voltage vs Gate charge (measured) 2,525 Output inverter FRED 6,01 0,07 0,06 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 120 15 80 Id fitted trr VGE (V) 10 40 Vd % 5 0 IRRM10% -40 0 IRRM90% -80 -120 2,52 -5 -20 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 20 0 10 400 15 112,54 40 Qg (nC) 60 80 100 120 IRRM100% 2,53 2,54 2,55 2,56 2,57 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 26 400 15 -6 0,01 V A A μs Revision: 4 FZ06BIA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 200 Qrr 150 150 Erec Id 100 100 tQrr % 50 % 50 tErec 0 0 -50 -100 2,48 Id (100%) = Qrr (100%) = tQrr = Prec -50 2,51 2,54 15 0,03 0,02 2,57 2,6 time(us) 2,63 2,5 2,51 2,52 Prec (100%) = Erec (100%) = tErec = A μC μs 2,53 6,01 0,01 0,02 2,54 2,55 2,56 2,57 2,58 time(us) 2,59 2,6 kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit 27 Revision: 4 FZ06BIA045FH01 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking without thermal paste 12mm housing Ordering Code 10-FZ06BIA045FH01-P897E10 in DataMatrix as P897E10 in packaging barcode as P897E10 Outline Pinout 28 Revision: 4 FZ06BIA045FH01 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 29 Revision: 4