FZ06BIA083FI preliminary datasheet flowSOL 0 BI 600V/30A Features flow0 housing ● High efficiency ● Ultra fast switching frequency ● Low inductive design ● SiC in boost Target Applications Schematic ● Transformerless solar inverters Types ● FZ06BIA083FI Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Th=80°C Tc=80°C 36 49 A Tj=25°C 370 A Tj=150°C 360 A2s Th=80°C 42 63 W Tjmax 150 °C VDS 600 V 30 37 A 230 A 92 139 W Bypass Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM DC current tp=10ms I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Tc=80°C Input Boost MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C Power dissipation Ptot Gate-source peak voltage VGS ±20 V Tjmax 150 °C Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax 1 Revision: 5 FZ06BIA083FI preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 20 25 A 70 A 41 62 W 175 °C 600 V Input Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost and Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 17 tp limited by Tjmax Tc=25°C 85 A Tj=Tjmax Th=80°C Tc=80°C 74 111 W 20 A Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 5 FZ06BIA083FI preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,7 1,01 0,93 0,86 0,75 1,3 Bypass Diode Forward voltage Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 15 solar inverte RthJH 1200 V Ω 0,012 0,05 Thermal grease thickness≤50um λ = 1 W/mK V 1,68 mA K/W Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage RDS(on) V(GS)th 10 44 VGS=VDS 0,003 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Rgoff=4 Ω Rgon=4 Ω Rgon=4 Ω 10 400 10 400 15 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,1 0,04 0,09 3 Ω 3,9 200 25 28 27 5 6 154 167 10 9 0,063 0,072 0,025 0,025 V nA μA ns mWs 150 nC 34 51 6800 f=1MHz 0 320 Tj=25°C 100 pF 48 Thermal grease thickness≤50um λ = 1 W/mK K/W 0,76 Input Boost Diode Forward voltage VF Reverse leakage current Irm Peak recovery current trr Reverse recovery charge Qrr Reverse recovered energy Erec Thermal resistance chip to heatsink per chip Copyright by Vincotech 10 400 15 IRRM Reverse recovery time Peak rate of fall of recovery current 16 Rgon=4 Ω 10 400 di(rec)max /dt RthJH Thermal grease thickness≤50um λ = 1 W/mK 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,54 1,71 400 17 15 9 10 0,058 0,064 0,005 0,006 4244 2752 2,34 3 1,8 V μA A ns μC mWs A/μs K/W Revision: 5 FZ06BIA083FI preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 3 118 233 4 5 Boost and Buck MOSFET Static drain to source ON resistance Gate threshold voltage Rds(on) 21,6 10 V(GS)th 0,0019 VDS=VGS Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Rgon=16 Ω Rgoff=4 Ω 10 400 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C mΩ 200 25 58 55 22 23 126 134 6 8 1,54 2,27 0,01 0,02 V nA μA ns mWs 163 10 480 46 36 Tj=25°C nC 87 5060 f=1MHz 25 0 Tj=25°C 1400 pF 16 Thermal grease thickness≤50um λ = 1 W/mK 0,95 K/W Thermistor Rated resistance* R25 R100 Power dissipation P B(25/100) B-value Tj=25°C Tol. ±5% Tol. ±3% 17,5 22 1486 29,0 kΩ Ω Tj=25°C 210 mW Tj=25°C 4000 K * see details on Thermistor charts on Figure 2. Copyright by Vincotech 4 Revision: 5 FZ06BIA083FI preliminary datasheet Boost and Buck MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 40 IC (A) IC (A) 40 32 32 24 24 16 16 8 8 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 6 V to 16 V in steps of 1 V 1 2 3 4 V CE (V) 5 250 μs 125 °C 6 V to 16 V in steps of 1 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) IC (A) 30 Tj = Tjmax-25°C 25 20 15 10 Tj = 25°C 5 0 0 At tp = VCE = 1 250 10 2 3 4 5 6 7 V GE (V) 8 μs V Copyright by Vincotech 5 Revision: 5 FZ06BIA083FI preliminary datasheet Boost and Buck MOSFET MOSFET Figure 5 Typical switching energy losses as a function of gate resistor E = f(RG) 3,00 0,10 E (mWs) E (mWs) Figure 4 Typical switching energy losses as a function of collector current E = f(IC) Eon High T 2,50 0,08 Eoff High T 2,00 Eon Low T 0,06 1,50 0,04 1,00 Eoff Low T 0,02 0,50 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 16 Ω Rgoff = 4 Ω 15 30 45 60 R G (W) 75 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V IC = 15 A FRED Figure 6 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FRED Figure 7 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,300 E (mWs) E (mWs) 0,300 0,250 0,250 0,200 0,200 Erec High T 0,150 Erec High T 0,150 0,100 0,100 Erec Low T 0,050 0,050 0,000 0,000 Erec Low T 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V Rgon = 16 Ω Copyright by Vincotech 15 30 45 60 R G (W) 75 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V IC = 15 A 6 Revision: 5 FZ06BIA083FI preliminary datasheet Boost and Buck MOSFET MOSFET 1,00 1,00 t (ms) Figure 9 Typical switching times as a function of gate resistor t = f(RG) t (ms) Figure 8 Typical switching times as a function of collector current t = f(IC) tdoff tdoff tdon 0,10 0,10 tr tdon tf tf 0,01 0,01 tr 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V Rgon = 16 Ω Rgoff = 4 Ω 15 30 45 60 R G (W) 75 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V IC = 15 A FRED Figure 10 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 11 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,250 t rr(ms) t rr(ms) 0,250 0,200 trr High T 0,200 0,150 0,150 trr High T 0,100 trr Low T 0,100 trr Low T 0,050 0,050 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 16 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 15 25/125 400 15 10 30 45 60 R gon (W) 75 °C V A V Revision: 5 FZ06BIA083FI preliminary datasheet Boost and Buck FRED FRED Figure 13 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 6,00 Qrr (mC) Qrr (mC) Figure 12 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr High T 6 5,00 5 4,00 4 Qrr High T Qrr Low T 3,00 3 2,00 2 1,00 1 0,00 At At Tj = VCE = VGE = Rgon = Qrr Low T 0 0 5 25/125 400 10 16 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 14 Typical reverse recovery current as a function of collector current IRRM = f(IC) 15 25/125 400 15 10 30 45 60 75 °C V A V FRED Figure 15 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) 90 R g on ( Ω) IrrM (A) IrrM (A) 120 75 100 IRRM High T 60 80 IRRM Low T 45 60 30 40 IRRM High T 15 20 IRRM Low T 0 0 0 5 At Tj = VCE = VGE = Rgon = 25/125 400 10 16 10 15 20 25 I C (A) 30 °C V V Ω Copyright by Vincotech 8 0 15 At Tj = VR = IF = VGE = 25/125 400 15 10 30 45 60 R gon (W) 75 °C V A V Revision: 5 FZ06BIA083FI preliminary datasheet Boost and Buck FRED Figure 16 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 40000 direc / dt (A/ms) 16000 direc / dt (A/ms) FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtHigh T 35000 14000 dIrec/dtHigh T 30000 12000 dIrec/dtLow T dIrec/dtLow T 10000 25000 8000 20000 6000 15000 4000 10000 2000 dI0/dtLow T 5000 di0/dtHigh T dIo/dtLow T dI0/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 16 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGE = °C V V Ω 15 25/125 400 15 10 30 45 60 R gon (W) 75 °C V A V MOSFET Figure 18 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 100 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 1011 tp / T 0,95 K/W IGBT thermal model values R (C/W) 0,03 0,15 0,55 0,14 0,04 0,03 Tau (s) 6,6E+00 9,3E-01 1,6E-01 2,5E-02 2,6E-03 3,4E-04 Copyright by Vincotech 9 Revision: 5 FZ06BIA083FI preliminary datasheet Boost and Buck MOSFET Figure 19 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 20 Collector current as a function of heatsink temperature IC = f(Th) 200 Ptot (W) IC (A) 30 25 160 20 120 15 80 10 40 5 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 50 At Tj = VGE = °C MOSFET Figure 21 Safe operating area as a function of collector-emitter voltage IC = f(VCE) 150 15 100 150 T h ( o C) 200 °C V MOSFET Figure 22 Gate voltage vs Gate charge VGE = f(Qg) 3 12 IC (A) VGE (V) 10 200 10 102 120V 100uS 8 100mS 10 10mS 480V 1mS 1 6 DC 100 4 2 10-1 0 0 100 At D= Th = VGE = Tj = 10 1 102 V CE (V) 100 150 200 250 Q g (nC) At ID = single pulse 80 ºC 15 V Tjmax ºC Copyright by Vincotech 50 103 10 47 A Revision: 5 FZ06BIA083FI preliminary datasheet Boost and Buck IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 40 IC (A) IC (A) 40 32 32 24 24 16 16 8 8 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 6 V to 16 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 5 250 μs 125 °C 5 V to 15 V in steps of 1 V IGBT Figure 4 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 Tj = Tjmax-25°C Tj = 25°C ZthJH (K/W) IC (A) 30 25 20 10-1 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 5 0 10 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 -5 10 μs V Copyright by Vincotech -2 At D= RthJH = 11 -4 -3 10 10 tp / T 0,95 K/W -2 10 -1 10 10 0 t p (s) 1 10 1 Revision: 5 FZ06BIA083FI preliminary datasheet Input Boost BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) BOOST FRED Figure 2 Typical output characteristics ID = f(VDS) IC (A) 100 IC(A) 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGS from 2 3 V CE (V) 4 5 0 At tp = Tj = VGS from 250 μs 25 °C 4 V to 14 V in steps of 1 V BOOST MOSFET Figure 2 Typical transfer characteristics ID = f(VDS) 1 2 3 4 V CE (V) 5 250 μs 126 °C 4 V to 14 V in steps of 1 V BOOST FRED Figure 3 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IF (A) ID (A) 50 Tj = 25°C 40 40 30 30 Tj = Tjmax-25°C Tj = Tjmax-25°C 20 20 Tj = 25°C 10 10 0 0 0 At tp = VDS = 1 250 10 2 3 4 5 V GS (V) 0 6 At tp = μs V Copyright by Vincotech 12 0,8 250 1,6 2,4 3,2 V F (V) 4 μs Revision: 5 FZ06BIA083FI preliminary datasheet Input Boost BOOST MOSFET Figure 4 Typical switching energy losses as a function of collector current E = f(ID) BOOST MOSFET Figure 5 Typical switching energy losses as a function of gate resistor E = f(RG) 0,2 E (mWs) E (mWs) 0,2 0,16 Eon High T 0,16 Eon Low T Eon High T 0,12 0,12 Eon Low T Eoff High T 0,08 0,08 Eoff Low T Eoff High T 0,04 0,04 Eoff Low T 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 15 A BOOST MOSFET Figure 6 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST MOSFET Figure 7 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,025 E (mWs) E (mWs) 0,018 0,015 0,02 Erec High T 0,012 Erec Low T 0,015 0,009 0,01 0,006 Erec High T 0,005 0,003 Erec Low T 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω Copyright by Vincotech 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 15 A 13 Revision: 5 FZ06BIA083FI preliminary datasheet Input Boost BOOST MOSFET Figure 8 Typical switching times as a function of collector current t = f(ID) BOOST MOSFET Figure 9 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 1 t ( μs) 1 tdoff tdoff tf 0,1 0,1 tdon tdon tf tr 0,01 0,01 tr 0,001 0,001 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = 15 A BOOST FRED Figure 10 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FRED Figure 11 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,02 t rr( μs) t rr( μs) 0,03 0,025 trr High T 0,016 trr Low T 0,02 0,012 trr High T 0,015 0,008 trr Low T 0,01 0,004 0,005 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 14 4 25/125 400 15 10 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 5 FZ06BIA083FI preliminary datasheet Input Boost BOOST FRED Figure 12 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FRED Figure 13 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,1 Qrr ( μC) Qrr ( μC) 0,1 Qrr High T 0,08 0,08 Qrr High T Qrr Low T 0,06 Qrr Low T 0,06 0,04 0,04 0,02 0 0,02 At 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 °C V V Ω BOOST FRED Figure 14 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 4 At Tj = VR = IF = VGS = 25/125 400 15 10 8 12 R Gon ( Ω) 20 °C V A V BOOST FRED Figure 15 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 25 16 IrrM (A) IrrM (A) 30 IRRM Low T 25 IRRM Low T 20 20 IRRM High T 15 15 IRRM High T 10 10 5 5 0 0 0 5 At Tj = VCE = VGE = Rgon = 25/125 400 10 4 10 15 20 25 I C (A) 30 °C V V Ω Copyright by Vincotech 15 0 4 At Tj = VR = IF = VGS = 25/125 400 15 10 8 12 16 R Gon ( Ω ) 20 °C V A V Revision: 5 FZ06BIA083FI preliminary datasheet Input Boost BOOST FRED Figure 16 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) BOOST FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 6000 direc / dt (A/ μs) 12000 direc / dt (A/ μs) dI0/dt dIrec/dt 5000 dI0/dt dIrec/dt dIrec/dtLow T 10000 di0/dtHigh T dIrec/dtLow T 4000 8000 dI0/dtLow T di0/dtLow T dIrec/dtHigh T 3000 6000 2000 4000 1000 2000 dI0/dtHigh T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω BOOST MOSFET Figure 18 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 -1 10 -2 12 R Gon ( Ω) 16 20 °C V A V BOOST FRED 101 ZthJH (K/W) ZthJH (K/W) 0 25/125 400 15 10 8 Figure 19 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 4 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 -5 -4 10 10 At D= RthJH = 10 -3 -2 10 -1 10 10 0 t p (s) 1 10 1 tp / T 0,76 K/W 10-5 10-4 At D= RthJH = 2,34 10-3 R (C/W) 0,03247 0,1223 0,4264 0,1173 0,03103 0,03298 R (C/W) 0,1024 0,495 0,9886 0,4865 0,2673 16 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 9,971 1,22 0,1797 0,04698 0,005891 0,0004038 10-2 Tau (s) 2,885 0,3437 0,07039 0,01004 0,001614 Revision: 5 FZ06BIA083FI preliminary datasheet Input Boost BOOST MOSFET Figure 20 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST MOSFET Figure 21 Collector/Drain current as a function of heatsink temperature IC = f(Th) 200 Ptot (W) IC (A) 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = VGS = ºC BOOST FRED Figure 22 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 200 ºC V BOOST FRED Figure 23 Forward current as a function of heatsink temperature IF = f(Th) 80 Th ( o C) Ptot (W) IF (A) 30 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 17 50 175 100 150 T h ( o C) 200 ºC Revision: 5 FZ06BIA083FI preliminary datasheet Input Boost BOOST MOSFET Figure 24 Safe operating area as a function of drain-source voltage ID = f(VDS) BOOST MOSFET Figure 25 Gate voltage vs Gate charge VGS = f(Qg) 103 ID (A) UGS (V) 10 8 10uS 2 120V 10 480V 1mS 6 100uS 100mS 10mS 101 DC 4 10 0 2 10-1 100 At D= Th = VGS = Tj = 101 10 2 0 V DS (V) 0 At ID = single pulse 80 ºC V 10 Tjmax ºC Copyright by Vincotech 18 30 44 60 90 120 150 Qg (nC) A Revision: 5 FZ06BIA083FI preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 1 ZthJC (K/W) IF (A) 10 40 0 10 30 20 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = 25°C 10 0 -2 0 At tp = 0,3 0,6 0,9 1,2 VF (V) 10 1,5 10-5 At D= RthJH = μs 250 10-4 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 1011 tp / T 1,677 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 t p (s) Ptot (W) IF (A) 70 60 80 50 60 40 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 19 50 150 100 150 T h ( o C) 200 ºC Revision: 5 FZ06BIA083FI preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 25000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e [Ω] 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 20 Revision: 5 FZ06BIA083FI preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 124 °C Tj = 16 Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 510 120 430 IC tdoff VCE 100 VGE 90% 350 VCE 90% 80 IC 270 % % 60 190 40 tEoff VCE IC 1% 110 20 tdon VGE 30 0 VGE10% IC10% tEon -20 -0,1 VCE5% -50 -0,05 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,05 0,1 time (us) 0 10 400 15 0,13 0,15 0,15 0,2 0,25 2,9 2,95 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 3,05 0 10 400 15 0,06 0,19 3,1 3,15 time(us) 3,25 3,3 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,2 Turn-on Switching Waveforms & definition of tr 120 510 fitted Ic 430 100 IC IC 90% 350 80 IC 60% 60 270 % % IC 40% 40 190 VCE 110 20 IC90% IC10% VCE 30 0 tf -20 0,07 0,075 VC (100%) = IC (100%) = tf = 0,08 0,085 400 15 0,01 Copyright by Vincotech tr IC10% -50 0,09 time (us) 0,095 0,1 0,105 2,9 0,11 2,95 3 3,05 3,1 3,15 3,2 3,25 3,3 time(us) VC (100%) = IC (100%) = tr = V A μs 21 400 15 0,02 V A μs Revision: 5 FZ06BIA083FI preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 150 550 Eoff % % 120 450 90 350 60 250 Pon 150 30 Eon Poff 0 50 tEoff -30 -0,1 -0,05 0 Poff (100%) = Eoff (100%) = tEoff = 0,05 time (us) 6,13 0,02 0,15 VGE10% IC 1% VGE90% 0,1 0,15 -50 2,95 0,2 VCE3% tEon 3 3,05 3,1 3,15 3,2 3,25 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 6,13 2,27 0,19 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 15 350 fitted 10 150 VGE (V) 250 50 5 % -50 Id trr Vd IRRM10% -150 0 -250 IRRM90% -350 IRRM100% -5 -450 -20 0 20 40 60 80 100 120 140 160 180 3 3,05 3,1 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 10 400 15 159,93 Copyright by Vincotech 3,15 3,2 3,25 3,3 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 22 400 15 -63 0,11 V A A μs Revision: 5 FZ06BIA083FI preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 200 Qrr 150 150 Id 100 Erec 100 tQrr % 50 % 50 0 tErec -50 0 Prec -100 3 3,06 Id (100%) = Qrr (100%) = tQrr = 3,12 3,18 3,24 time(us) 3,3 3,36 3,42 -50 3,48 3 3,2 Prec (100%) = Erec (100%) = tErec = 15 A 4,31 μC 300000,00 μs 3,4 3,6 3,8 time(us) 4 4,2 6,13 kW 0,17 mJ ######### μs Measurement circuits Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech 23 Revision: 5 FZ06BIA083FI preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06BIA083FI-P896E in DataMatrix as P896E in packaging barcode as P896E Outline Pinout Copyright by Vincotech 24 Revision: 5 FZ06BIA083FI preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 25 Revision: 5