FZ06BIA083FI Maximum Ratings

FZ06BIA083FI
preliminary datasheet
flowSOL 0 BI
600V/30A
Features
flow0 housing
● High efficiency
● Ultra fast switching frequency
● Low inductive design
● SiC in boost
Target Applications
Schematic
● Transformerless solar inverters
Types
● FZ06BIA083FI
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Th=80°C
Tc=80°C
36
49
A
Tj=25°C
370
A
Tj=150°C
360
A2s
Th=80°C
42
63
W
Tjmax
150
°C
VDS
600
V
30
37
A
230
A
92
139
W
Bypass Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
DC current
tp=10ms
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Tc=80°C
Input Boost MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
Power dissipation
Ptot
Gate-source peak voltage
VGS
±20
V
Tjmax
150
°C
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
1
Revision: 5
FZ06BIA083FI
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
20
25
A
70
A
41
62
W
175
°C
600
V
Input Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost and Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
17
tp limited by Tjmax
Tc=25°C
85
A
Tj=Tjmax
Th=80°C
Tc=80°C
74
111
W
20
A
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 5
FZ06BIA083FI
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,7
1,01
0,93
0,86
0,75
1,3
Bypass Diode
Forward voltage
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
15
solar inverte
RthJH
1200
V
Ω
0,012
0,05
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1,68
mA
K/W
Input Boost MOSFET
Static drain to source ON resistance
Gate threshold voltage
RDS(on)
V(GS)th
10
44
VGS=VDS
0,003
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=4 Ω
Rgon=4 Ω
Rgon=4 Ω
10
400
10
400
15
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,1
0,04
0,09
3
Ω
3,9
200
25
28
27
5
6
154
167
10
9
0,063
0,072
0,025
0,025
V
nA
μA
ns
mWs
150
nC
34
51
6800
f=1MHz
0
320
Tj=25°C
100
pF
48
Thermal grease
thickness≤50um
λ = 1 W/mK
K/W
0,76
Input Boost Diode
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
10
400
15
IRRM
Reverse recovery time
Peak rate of fall of recovery current
16
Rgon=4 Ω
10
400
di(rec)max
/dt
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,54
1,71
400
17
15
9
10
0,058
0,064
0,005
0,006
4244
2752
2,34
3
1,8
V
μA
A
ns
μC
mWs
A/μs
K/W
Revision: 5
FZ06BIA083FI
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
3
118
233
4
5
Boost and Buck MOSFET
Static drain to source ON resistance
Gate threshold voltage
Rds(on)
21,6
10
V(GS)th
0,0019
VDS=VGS
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Rgon=16 Ω
Rgoff=4 Ω
10
400
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
mΩ
200
25
58
55
22
23
126
134
6
8
1,54
2,27
0,01
0,02
V
nA
μA
ns
mWs
163
10
480
46
36
Tj=25°C
nC
87
5060
f=1MHz
25
0
Tj=25°C
1400
pF
16
Thermal grease
thickness≤50um
λ = 1 W/mK
0,95
K/W
Thermistor
Rated resistance*
R25
R100
Power dissipation
P
B(25/100)
B-value
Tj=25°C
Tol. ±5%
Tol. ±3%
17,5
22
1486
29,0
kΩ
Ω
Tj=25°C
210
mW
Tj=25°C
4000
K
* see details on Thermistor charts on Figure 2.
Copyright by Vincotech
4
Revision: 5
FZ06BIA083FI
preliminary datasheet
Boost and Buck
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
40
IC (A)
IC (A)
40
32
32
24
24
16
16
8
8
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
6 V to 16 V in steps of 1 V
1
2
3
4
V CE (V)
5
250
μs
125
°C
6 V to 16 V in steps of 1 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
IC (A)
30
Tj = Tjmax-25°C
25
20
15
10
Tj = 25°C
5
0
0
At
tp =
VCE =
1
250
10
2
3
4
5
6
7 V GE (V) 8
μs
V
Copyright by Vincotech
5
Revision: 5
FZ06BIA083FI
preliminary datasheet
Boost and Buck
MOSFET
MOSFET
Figure 5
Typical switching energy losses
as a function of gate resistor
E = f(RG)
3,00
0,10
E (mWs)
E (mWs)
Figure 4
Typical switching energy losses
as a function of collector current
E = f(IC)
Eon High T
2,50
0,08
Eoff High T
2,00
Eon Low T
0,06
1,50
0,04
1,00
Eoff Low T
0,02
0,50
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
16
Ω
Rgoff =
4
Ω
15
30
45
60
R G (W)
75
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
IC =
15
A
FRED
Figure 6
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FRED
Figure 7
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,300
E (mWs)
E (mWs)
0,300
0,250
0,250
0,200
0,200
Erec High T
0,150
Erec High T
0,150
0,100
0,100
Erec Low T
0,050
0,050
0,000
0,000
Erec Low T
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
Rgon =
16
Ω
Copyright by Vincotech
15
30
45
60
R G (W)
75
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
6
Revision: 5
FZ06BIA083FI
preliminary datasheet
Boost and Buck
MOSFET
MOSFET
1,00
1,00
t (ms)
Figure 9
Typical switching times as a
function of gate resistor
t = f(RG)
t (ms)
Figure 8
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdoff
tdon
0,10
0,10
tr
tdon
tf
tf
0,01
0,01
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
Rgon =
16
Ω
Rgoff =
4
Ω
15
30
45
60
R G (W)
75
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
FRED
Figure 10
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 11
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,250
t rr(ms)
t rr(ms)
0,250
0,200
trr High T
0,200
0,150
0,150
trr High T
0,100
trr Low T
0,100
trr Low T
0,050
0,050
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
16
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
15
25/125
400
15
10
30
45
60
R gon (W)
75
°C
V
A
V
Revision: 5
FZ06BIA083FI
preliminary datasheet
Boost and Buck
FRED
FRED
Figure 13
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
6,00
Qrr (mC)
Qrr (mC)
Figure 12
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr High T
6
5,00
5
4,00
4
Qrr High T
Qrr Low T
3,00
3
2,00
2
1,00
1
0,00
At
At
Tj =
VCE =
VGE =
Rgon =
Qrr Low T
0
0
5
25/125
400
10
16
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 14
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
15
25/125
400
15
10
30
45
60
75
°C
V
A
V
FRED
Figure 15
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
90
R g on ( Ω)
IrrM (A)
IrrM (A)
120
75
100
IRRM High T
60
80
IRRM Low T
45
60
30
40
IRRM High T
15
20
IRRM Low T
0
0
0
5
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
16
10
15
20
25
I C (A)
30
°C
V
V
Ω
Copyright by Vincotech
8
0
15
At
Tj =
VR =
IF =
VGE =
25/125
400
15
10
30
45
60
R gon (W)
75
°C
V
A
V
Revision: 5
FZ06BIA083FI
preliminary datasheet
Boost and Buck
FRED
Figure 16
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
40000
direc / dt (A/ms)
16000
direc / dt (A/ms)
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtHigh T
35000
14000
dIrec/dtHigh T
30000
12000
dIrec/dtLow T
dIrec/dtLow T
10000
25000
8000
20000
6000
15000
4000
10000
2000
dI0/dtLow T
5000
di0/dtHigh T
dIo/dtLow T
dI0/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
16
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
25/125
400
15
10
30
45
60
R gon (W)
75
°C
V
A
V
MOSFET
Figure 18
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
100
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
1011
tp / T
0,95
K/W
IGBT thermal model values
R (C/W)
0,03
0,15
0,55
0,14
0,04
0,03
Tau (s)
6,6E+00
9,3E-01
1,6E-01
2,5E-02
2,6E-03
3,4E-04
Copyright by Vincotech
9
Revision: 5
FZ06BIA083FI
preliminary datasheet
Boost and Buck
MOSFET
Figure 19
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 20
Collector current as a
function of heatsink temperature
IC = f(Th)
200
Ptot (W)
IC (A)
30
25
160
20
120
15
80
10
40
5
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
50
At
Tj =
VGE =
°C
MOSFET
Figure 21
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
150
15
100
150
T h ( o C)
200
°C
V
MOSFET
Figure 22
Gate voltage vs Gate charge
VGE = f(Qg)
3
12
IC (A)
VGE (V)
10
200
10
102
120V
100uS
8
100mS
10
10mS
480V
1mS
1
6
DC
100
4
2
10-1
0
0
100
At
D=
Th =
VGE =
Tj =
10
1
102
V CE (V)
100
150
200
250
Q g (nC)
At
ID =
single pulse
80
ºC
15
V
Tjmax
ºC
Copyright by Vincotech
50
103
10
47
A
Revision: 5
FZ06BIA083FI
preliminary datasheet
Boost and Buck
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
40
IC (A)
IC (A)
40
32
32
24
24
16
16
8
8
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
6 V to 16 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
5
250
μs
125
°C
5 V to 15 V in steps of 1 V
IGBT
Figure 4
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
Tj = Tjmax-25°C
Tj = 25°C
ZthJH (K/W)
IC (A)
30
25
20
10-1
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
5
0
10
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V)
12
-5
10
μs
V
Copyright by Vincotech
-2
At
D=
RthJH =
11
-4
-3
10
10
tp / T
0,95
K/W
-2
10
-1
10
10
0
t p (s)
1
10 1
Revision: 5
FZ06BIA083FI
preliminary datasheet
Input Boost
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST FRED
Figure 2
Typical output characteristics
ID = f(VDS)
IC (A)
100
IC(A)
100
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGS from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGS from
250
μs
25
°C
4 V to 14 V in steps of 1 V
BOOST MOSFET
Figure 2
Typical transfer characteristics
ID = f(VDS)
1
2
3
4
V CE (V)
5
250
μs
126
°C
4 V to 14 V in steps of 1 V
BOOST FRED
Figure 3
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
ID (A)
50
Tj = 25°C
40
40
30
30
Tj = Tjmax-25°C
Tj = Tjmax-25°C
20
20
Tj = 25°C
10
10
0
0
0
At
tp =
VDS =
1
250
10
2
3
4
5
V GS (V)
0
6
At
tp =
μs
V
Copyright by Vincotech
12
0,8
250
1,6
2,4
3,2
V F (V)
4
μs
Revision: 5
FZ06BIA083FI
preliminary datasheet
Input Boost
BOOST MOSFET
Figure 4
Typical switching energy losses
as a function of collector current
E = f(ID)
BOOST MOSFET
Figure 5
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,2
E (mWs)
E (mWs)
0,2
0,16
Eon High T
0,16
Eon Low T
Eon High T
0,12
0,12
Eon Low T
Eoff High T
0,08
0,08
Eoff Low T
Eoff High T
0,04
0,04
Eoff Low T
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
15
A
BOOST MOSFET
Figure 6
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST MOSFET
Figure 7
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,025
E (mWs)
E (mWs)
0,018
0,015
0,02
Erec High T
0,012
Erec Low T
0,015
0,009
0,01
0,006
Erec High T
0,005
0,003
Erec Low T
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
Copyright by Vincotech
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
15
A
13
Revision: 5
FZ06BIA083FI
preliminary datasheet
Input Boost
BOOST MOSFET
Figure 8
Typical switching times as a
function of collector current
t = f(ID)
BOOST MOSFET
Figure 9
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdoff
tf
0,1
0,1
tdon
tdon
tf
tr
0,01
0,01
tr
0,001
0,001
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
15
A
BOOST FRED
Figure 10
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FRED
Figure 11
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,02
t rr( μs)
t rr( μs)
0,03
0,025
trr High T
0,016
trr Low T
0,02
0,012
trr High T
0,015
0,008
trr Low T
0,01
0,004
0,005
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
14
4
25/125
400
15
10
8
12
16
R Gon ( Ω )
20
°C
V
A
V
Revision: 5
FZ06BIA083FI
preliminary datasheet
Input Boost
BOOST FRED
Figure 12
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FRED
Figure 13
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,1
Qrr ( μC)
Qrr ( μC)
0,1
Qrr High T
0,08
0,08
Qrr High T
Qrr Low T
0,06
Qrr Low T
0,06
0,04
0,04
0,02
0
0,02
At 0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
°C
V
V
Ω
BOOST FRED
Figure 14
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
4
At
Tj =
VR =
IF =
VGS =
25/125
400
15
10
8
12
R Gon ( Ω)
20
°C
V
A
V
BOOST FRED
Figure 15
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
25
16
IrrM (A)
IrrM (A)
30
IRRM Low T
25
IRRM Low T
20
20
IRRM High T
15
15
IRRM High T
10
10
5
5
0
0
0
5
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
4
10
15
20
25
I C (A)
30
°C
V
V
Ω
Copyright by Vincotech
15
0
4
At
Tj =
VR =
IF =
VGS =
25/125
400
15
10
8
12
16
R Gon ( Ω )
20
°C
V
A
V
Revision: 5
FZ06BIA083FI
preliminary datasheet
Input Boost
BOOST FRED
Figure 16
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
BOOST FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
6000
direc / dt (A/ μs)
12000
direc / dt (A/ μs)
dI0/dt
dIrec/dt
5000
dI0/dt
dIrec/dt
dIrec/dtLow T
10000
di0/dtHigh T
dIrec/dtLow T
4000
8000
dI0/dtLow T
di0/dtLow T
dIrec/dtHigh T
3000
6000
2000
4000
1000
2000
dI0/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
400
10
4
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST MOSFET
Figure 18
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
-1
10
-2
12
R Gon ( Ω)
16
20
°C
V
A
V
BOOST FRED
101
ZthJH (K/W)
ZthJH (K/W)
0
25/125
400
15
10
8
Figure 19
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
4
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
-5
-4
10
10
At
D=
RthJH =
10
-3
-2
10
-1
10
10
0
t p (s)
1
10 1
tp / T
0,76
K/W
10-5
10-4
At
D=
RthJH =
2,34
10-3
R (C/W)
0,03247
0,1223
0,4264
0,1173
0,03103
0,03298
R (C/W)
0,1024
0,495
0,9886
0,4865
0,2673
16
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
9,971
1,22
0,1797
0,04698
0,005891
0,0004038
10-2
Tau (s)
2,885
0,3437
0,07039
0,01004
0,001614
Revision: 5
FZ06BIA083FI
preliminary datasheet
Input Boost
BOOST MOSFET
Figure 20
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST MOSFET
Figure 21
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
200
Ptot (W)
IC (A)
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
BOOST FRED
Figure 22
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
200
ºC
V
BOOST FRED
Figure 23
Forward current as a
function of heatsink temperature
IF = f(Th)
80
Th ( o C)
Ptot (W)
IF (A)
30
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
17
50
175
100
150
T h ( o C)
200
ºC
Revision: 5
FZ06BIA083FI
preliminary datasheet
Input Boost
BOOST MOSFET
Figure 24
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
BOOST MOSFET
Figure 25
Gate voltage vs Gate charge
VGS = f(Qg)
103
ID (A)
UGS (V)
10
8
10uS
2
120V
10
480V
1mS
6
100uS
100mS
10mS
101
DC
4
10
0
2
10-1
100
At
D=
Th =
VGS =
Tj =
101
10
2
0
V DS (V)
0
At
ID =
single pulse
80
ºC
V
10
Tjmax
ºC
Copyright by Vincotech
18
30
44
60
90
120
150
Qg (nC)
A
Revision: 5
FZ06BIA083FI
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
1
ZthJC (K/W)
IF (A)
10
40
0
10
30
20
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Tj = 25°C
10
0
-2
0
At
tp =
0,3
0,6
0,9
1,2
VF (V)
10
1,5
10-5
At
D=
RthJH =
μs
250
10-4
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
1011
tp / T
1,677
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
t p (s)
Ptot (W)
IF (A)
70
60
80
50
60
40
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
19
50
150
100
150
T h ( o C)
200
ºC
Revision: 5
FZ06BIA083FI
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
25000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
20
Revision: 5
FZ06BIA083FI
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 124 °C
Tj
= 16 Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
510
120
430
IC
tdoff
VCE
100
VGE 90%
350
VCE 90%
80
IC
270
%
% 60
190
40
tEoff
VCE
IC 1%
110
20
tdon
VGE
30
0
VGE10%
IC10%
tEon
-20
-0,1
VCE5%
-50
-0,05
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,05
0,1
time (us)
0
10
400
15
0,13
0,15
0,15
0,2
0,25
2,9
2,95
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3,05
0
10
400
15
0,06
0,19
3,1
3,15
time(us)
3,25
3,3
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,2
Turn-on Switching Waveforms & definition of tr
120
510
fitted
Ic
430
100
IC
IC 90%
350
80
IC 60%
60
270
%
%
IC 40%
40
190
VCE
110
20
IC90%
IC10%
VCE
30
0
tf
-20
0,07
0,075
VC (100%) =
IC (100%) =
tf =
0,08
0,085
400
15
0,01
Copyright by Vincotech
tr
IC10%
-50
0,09
time (us)
0,095
0,1
0,105
2,9
0,11
2,95
3
3,05
3,1
3,15
3,2
3,25
3,3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
21
400
15
0,02
V
A
μs
Revision: 5
FZ06BIA083FI
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
150
550
Eoff
%
%
120
450
90
350
60
250
Pon
150
30
Eon
Poff
0
50
tEoff
-30
-0,1
-0,05
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,05
time (us)
6,13
0,02
0,15
VGE10%
IC 1%
VGE90%
0,1
0,15
-50
2,95
0,2
VCE3%
tEon
3
3,05
3,1
3,15
3,2
3,25
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
6,13
2,27
0,19
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
15
350
fitted
10
150
VGE (V)
250
50
5
% -50
Id
trr
Vd
IRRM10%
-150
0
-250
IRRM90%
-350
IRRM100%
-5
-450
-20
0
20
40
60
80
100
120
140
160
180
3
3,05
3,1
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
10
400
15
159,93
Copyright by Vincotech
3,15
3,2
3,25
3,3
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
22
400
15
-63
0,11
V
A
A
μs
Revision: 5
FZ06BIA083FI
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
200
Qrr
150
150
Id
100
Erec
100
tQrr
% 50
%
50
0
tErec
-50
0
Prec
-100
3
3,06
Id (100%) =
Qrr (100%) =
tQrr =
3,12
3,18
3,24
time(us)
3,3
3,36
3,42
-50
3,48
3
3,2
Prec (100%) =
Erec (100%) =
tErec =
15
A
4,31
μC
300000,00 μs
3,4
3,6
3,8
time(us)
4
4,2
6,13
kW
0,17
mJ
######### μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
23
Revision: 5
FZ06BIA083FI
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06BIA083FI-P896E
in DataMatrix as
P896E
in packaging barcode as
P896E
Outline
Pinout
Copyright by Vincotech
24
Revision: 5
FZ06BIA083FI
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
25
Revision: 5