V23990 P629 F63 D3 14

V23990-P629-F63-PM
datasheet
flow BOOST 0
1200 V / 40 A
Features
flow 0 12mm housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V SiC diode
● Antiparallel IGBT protection diode with high current
Target Applications
● solar inverter
Schematic
Types
● V23990-P629-F63-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
34
45
A
220
A
200
A2s
42
63
W
150
°C
Bypass diode &
Boost IGBT protection diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge (non-repetitive) forward current
I FSM
DC current
T s = 80 °C
T c = 80 °C
t p = 10 ms
2
2
I t-value
I t
Power dissipation
P tot
Maximum Junction Temperature
T j = T jmax
T s = 80 °C
T c = 80 °C
T jmax
Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
T j = T jmax
1200
V
T s = 80 °C
T c = 80 °C
36
47
A
160
A
T s = 80 °C
T c = 80 °C
107
162
W
t p limited by T jmax
T j = T jmax
T j ≤ 150 °C
V GE = 15 V
T jmax
1
±25
V
10
600
µs
V
150
°C
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Bypass diode &
Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FSM
P tot
T j = T jmax
1200
V
T s = 80 °C
T c = 80 °C
27
33
A
96
A
T s = 80 °C
T c = 80 °C
80
121
W
175
°C
t p limited by T jmax
T j = T jmax
T jmax
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
4000
V
min 12,7
mm
9,55
mm
Isolation Properties
Isolation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
copyright Vincotech
2
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
1,15
1,11
0,92
0,82
0,009
0,011
1,21
Bypass diode &
Boost IGBT protection diode
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
V to
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
1600
Thermal resistance junction to sink
R th(j-s)
Thermal resistance junction to case
R th(j-c)
Thermal grease
thickness ≤ 50 um
λ = 1 W/mK
Gate emitter threshold voltage
V GE(th)
V CE = V GE
Collector-emitter saturation voltage
V CEsat
25
125
25
125
25
125
25
125
V
V
Ω
0,05
mA
1,67
K/W
1,10
Boost IGBT
0,00025
15
40
Collector-emitter cut-off
I CES
0
1200
Gate-emitter leakage current
I GES
±25
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
R goff = 4 Ω
R gon = 4 Ω
R th(j-s)
Thermal resistance junction to case
R th(j-c)
5,5
7,5
2,89
3,09
3,2
1
±250
15
600
40
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
27
26
10
10
166
193
11
34
0,41
0,51
0,76
1,45
ns
mWs
3200
f = 1 MHz
30
0
370
25
pF
125
QG
Thermal resistance junction to sink
3,5
25
125
25
125
25
125
none
tr
t d(off)
25
±15
600
40
220
25
Thermal grease
thickness ≤ 50 um
λ = 1 W/mK
nC
0,65
K/W
0,43
Boost FWD
Forward voltage
Reverse leakage current
VF
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
22,5
1200
R gon = 4 Ω
15
600
E rec
Peak rate of fall of recovery current
( di rf/dt )max
Thermal resistance junction to sink
R th(j-s)
Thermal resistance junction to case
R th(j-c)
40
25
1,67
125
25
125
25
125
25
125
25
125
25
125
25
125
2,28
1,8
600
24
23
10
10
0,23
0,12
0,075
0,015
8579
6425
Thermal grease
thickness ≤ 50 um
λ = 1 W/mK
V
µA
A
ns
µC
mWs
A/µs
1,19
K/W
0,78
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
25
R 100 = 1486 Ω
100
Power dissipation constant
22000
+5
-5
200
mW
25
2
mW/K
K
B(25/50)
Tol. ±3 %
25
3950
B-value
B(25/100)
Tol. ±3 %
25
3996
copyright Vincotech
%
25
B-value
Vincotech NTC Reference
Ω
K
B
3
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Boost Protection Diode Charateristics
Figure 1
Boost Protection Diode
Figure 2
Boost Protection Diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F = f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
101
Zth(j-s) (K/W)
IF (A)
100
80
100
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
40
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
10-2
0
At
tp =
0,5
250
1
1,5
V F (V)
10-5
2
At
D =
R th(j-s) =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Boost Protection Diode
10-4
10-3
10-2
100
t p (s)
101 1
tp/T
1,67
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T s)
Boost Protection Diode
50
Ptot (W)
IF (A)
100
10-1
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Ts ( o C)
200
0
At
Tj =
ºC
4
50
150
100
150
Ts ( o C)
200
ºC
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
BOOST Charateristics
Figure 1
BOOST IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
BOOST IGBT
Typical output characteristics
I C = f(V CE)
IC (A)
150
IC(A)
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
V CE from
1
2
3
4
5
V CE (V)
6
0
1
At
tp =
Tj =
V CE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
BOOST IGBT
2
3
4
5
6
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
50
V CE (V)
BOOST FWD
IC (A)
IF (A)
90
75
40
60
30
45
20
30
Tj = 25°C
Tj = 25°C
Tj = Tjmax-25°C
10
15
Tj = Tjmax-25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
0
10
At
tp =
µs
V
5
2
250
4
6
V F (V)
8
µs
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
BOOST Charateristics
Figure 5
BOOST IGBT
Figure 6
BOOST IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
2,5
E (mWs)
E (mWs)
2
Eoff High T
2
Eoff High T
1,5
1,5
Eon High T
Eoff Low T
1
Eoff Low T
1
Eon Low T
Eon High T
0,5
0,5
Eon Low T
0
0
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
15
V
IC =
40
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
E (mWs)
0,12
Erec Low T
BOOST FWD
0,08
Erec Low T
0,10
0,06
0,08
0,06
0,04
0,04
0,02
Erec High T
0,02
Erec High T
0,00
0,00
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
copyright Vincotech
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
600
V
V GE =
15
V
IC =
40
A
Ω
6
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
BOOST Charateristics
Figure 9
BOOST IGBT
Figure 10
BOOST IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I D)
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
0,1
0,1
tdon
tdon
tr
tf
tf
0,01
0,01
tr
0,001
0,001
0
15
30
45
60
I D (A)
0
75
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
15
V
IC =
40
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
BOOST FWD
0,015
t rr( µs)
t rr( µs)
0,015
0,012
trr High T
0,012
trr Low T
trr High T
0,009
0,009
trr Low T
0,006
0,006
0,003
0,003
0
0
0
R (K/W)
At
Tj =
V CE =
V GE =
R gon =
15
30
45
60
I C (A)
75
0
4
8
25/125
°C
R (K/W)
At
Tj =
25/125
°C
600
15
V
V
VR=
IF=
600
40
V
A
4
Ω
V GE =
15
V
copyright Vincotech
7
12
16
R Gon ( Ω)
20
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
BOOST Charateristics
Figure 13
BOOST FWD
Figure 14
BOOST FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr ( mC)
Qrr ( µC)
0,4
0,25
Qrr Low T
0,2
0,3
Qrr Low T
0,15
0,2
Qrr High T
0,1
Qrr High T
0,1
0,05
0
0
0
15
30
At
At
Tj =
V CE =
V GE =
25/125
600
15
°C
V
V
R gon =
4
Ω
45
60
I C (A)
0
75
At
Tj =
VR =
IF=
V GE =
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
BOOST FWD
4
25/125
600
40
15
8
12
R Gon ( Ω)
20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
30
16
BOOST FWD
IrrM (A)
IrrM (A)
30
IRRM Low T
IRRM Low T
25
25
IRRM High T
IRRM High T
20
20
15
15
10
10
5
5
0
0
0
At
Tj =
V CE =
V GE =
R gon =
15
30
45
60
I C (A)
0
75
4
8
25/125
600
°C
V
At
Tj =
VR=
25/125
600
°C
V
15
4
V
Ω
IF=
V GE =
40
15
A
V
copyright Vincotech
8
12
16
R Gon ( Ω)
20
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
BOOST Charateristics
Figure 17
BOOST FWD
Figure 18
BOOST FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
12000
direc / dt (A/ µs)
15000
direc / dt (A/ µs)
dI0/dt
dIrec/dt
10000
dI0/dt
dIrec/dt
12000
8000
9000
6000
6000
4000
3000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
15
30
25/125
600
°C
V
15
4
V
Ω
45
60
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
I C (A)
75
0
BOOST IGBT
4
8
At
Tj =
25/125
°C
VR =
IF=
V GE =
600
40
15
V
A
V
12
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
20
BOOST FWD
101
Zth(j-s) (K/W)
Zth(j-s) (K/W)
101
R Gon ( Ω)
16
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
10-2
10-5
10-4
At
D =
R th(j-s) =
tp/T
0,65
10-3
10-2
10-1
100
t p (s)
10110
K/W
IGBT thermal model values
R (K/W)
Tau (s)
10-5
10-4
At
D =
R th(j-s) =
tp/T
1,19
10-3
10-1
100
t p (s)
10110
K/W
FWD thermal model values
R (K/W)
Tau (s)
1,85E-01
5,43E-01
4,57E-02
4,5E+00
3,49E-01
1,22E-01
9,58E-02
8,86E-01
7,94E-02
1,84E-02
3,40E-01
1,49E-01
1,82E-02
2,92E-03
4,21E-01
4,66E-02
2,26E-02
5,23E-04
1,58E-01
1,05E-02
1,06E-01
2,34E-03
copyright Vincotech
10-2
9
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
BOOST Charateristics
Figure 21
BOOST IGBT
Figure 22
BOOST IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T S)
function of heatsink temperature
I C = f(T s)
75
IC (A)
Ptot (W)
250
200
60
150
45
100
30
50
15
0
0
0
At
Tj =
50
150
100
150
Ts ( o C)
200
0
At
Tj =
V GS =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T S)
BOOST FWD
50
150
15
100
150
Ts ( o C)
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T s)
BOOST FWD
40
IF (A)
Ptot (W)
150
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
10
50
175
100
150
T h ( o C)
200
ºC
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
BOOST Charateristics
Figure 25
Safe operating area as a function
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
of drain-source voltage
I C = f(V CE)
V GE = f(Q g)
BOOST IGBT
15
IC (A)
VGE (V)
10
400V
12
102
10uS
600V
9
100uS
10mS
1mS
100mS
101
6
DC
100
3
0
10-1
100
At
D =
TS =
V CE=
Tj =
101
102
103
0
V CE (V)
At
IC =
single pulse
80
ºC
V
15
T jmax
ºC
copyright Vincotech
11
50
40
100
150
200
Qg (nC)
250
A
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Bypass Diode Charateristics
Figure 1
Bypass Diode
Figure 2
Bypass Diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
101
Zth(j-s) (K/W)
IF (A)
100
80
100
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
0,5
At
tp =
250
1
1,5
V F (V)
10-2
2
10-5
10-4
At
D =
R th(j-s) =
µs
Figure 3
Bypass Diode
10-3
10-2
10-1
100
10110
tp/T
1,67
K/W
Figure 4
Power dissipation as a
function of heatsink temperature
P tot = f(T S)
t p (s)
Bypass Diode
Forward current as a
function of heatsink temperature
I F = f(T s)
50
Ptot (W)
IF (A)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T s ( o C)
0
200
At
Tj =
ºC
12
50
150
100
150
T s ( o C)
200
ºC
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
13
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Boost Switching Definitions
General conditions
Tj
= 125 °C
= 4Ω
R gon
R goff
= 4Ω
Figure 1
Inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
150
%
125
tdoff
%
VCE
125
100
IC
VGE 90%
VCE 90%
VCE
100
75
75
IC
50
VGE
tdon
tEoff
50
25
IC 1%
25
VGE 10%
0
VCE 3%
IC 10%
0
tEon
VGE
-25
-0,2
-0,05
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,1
0,25
0
15
600
40
0,19
0,56
0,4
-25
2,95
0,55
0,7
time (us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Inverter IGBT
Turn-off Switching Waveforms & definition of t f
120
%
3
3,05
0
15
600
40
0,03
0,12
3,1
time(us)
3,15
V
V
V
A
µs
µs
Figure 4
Inverter IGBT
Turn-on Switching Waveforms & definition of t r
175
fitted
IC
%
VCE
150
100
IC
IC 90%
125
80
VCE
100
60
IC 90%
IC 60%
75
tr
IC 40%
40
50
20
25
IC10%
-20
0,05
IC 10%
tf
0
0
-25
0,1
0,15
0,2
0,25
time (us)
3
0,3
3,02
3,04
V C (100%) =
I C (100%) =
600
40
V
A
V C (100%) =
I C (100%) =
600
40
V
A
tf =
0,03
µs
tr =
0,01
µs
copyright Vincotech
14
3,06
time(us)
3,08
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Boost Switching Definitions
Figure 5
Inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
Pon
Eon
100
100
Eoff
Poff
75
75
50
50
IC 1%
25
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
23,86
1,45
0,56
0,4
time (us)
-25
2,98
0,6
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
3,03
23,86
0,51
0,12
3,08
time(us)
3,13
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
Id
%
80
trr
40
Vd
fitted
0
IRRM 10%
-40
IRRM 90%
IRRM 100%
-80
-120
2,97
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,02
3,07
600
40
-23
0,01
3,12
time(us)
3,17
V
A
A
µs
15
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Boost Switching Definitions
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Erec
Qrr
Id
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-100
-25
3
3,05
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,1
40
0,12
0,17
3,15
3,2
time(us)
3,25
3
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
16
3,05
3,1
23,86
0,02
0,17
3,15
3,2
time(us)
3,25
kW
mJ
µs
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 12mm housing
V23990-P629-F63-PM
VIN
Date code
Name&Ver
UL
Lot
Serial
VIN
WWYY
NNNNNNVV
UL
LLLLL
SSSS
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Text
Datamatrix
Outline
Pin table
Pin
X
Y
1
0
22,5
2
2,9
22,5
3
8,3
22,5
4
10,8
22,5
5
19,6
22,5
6
22,1
22,5
7
29,1
22,5
8
32
22,5
9
33,5
17,8
10
33,5
15,3
11
33,5
7,2
12
33,5
4,7
13
32
0
14
29,1
0
15
22,1
0
16
19,6
0
17
10,8
0
18
8,3
0
19
2,9
0
20
0
0
21
0
8
22
0
14,5
Pinout
copyright Vincotech
17
22 Mar. 2016 / Revision 3
V23990-P629-F63-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
135
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.
Package data
Package data for flow 0 packages see vincotech.com website.
UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.
Document No.:
Date:
Modification:
Pages
V23990-P629-F63-PM-D3-14
22 Mar. 2016
New Style
All
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
18
22 Mar. 2016 / Revision 3