V23990-P629-F63-PM datasheet flow BOOST 0 1200 V / 40 A Features flow 0 12mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V SiC diode ● Antiparallel IGBT protection diode with high current Target Applications ● solar inverter Schematic Types ● V23990-P629-F63-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 34 45 A 220 A 200 A2s 42 63 W 150 °C Bypass diode & Boost IGBT protection diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge (non-repetitive) forward current I FSM DC current T s = 80 °C T c = 80 °C t p = 10 ms 2 2 I t-value I t Power dissipation P tot Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C T jmax Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech T j = T jmax 1200 V T s = 80 °C T c = 80 °C 36 47 A 160 A T s = 80 °C T c = 80 °C 107 162 W t p limited by T jmax T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax 1 ±25 V 10 600 µs V 150 °C 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Bypass diode & Boost FWD Peak Repetitive Reverse Voltage DC forward current Surge forward current Power dissipation Maximum Junction Temperature V RRM IF I FSM P tot T j = T jmax 1200 V T s = 80 °C T c = 80 °C 27 33 A 96 A T s = 80 °C T c = 80 °C 80 121 W 175 °C t p limited by T jmax T j = T jmax T jmax Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C 4000 V min 12,7 mm 9,55 mm Isolation Properties Isolation voltage V is t=2s DC voltage Creepage distance Clearance copyright Vincotech 2 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 1,15 1,11 0,92 0,82 0,009 0,011 1,21 Bypass diode & Boost IGBT protection diode Forward voltage VF 25 Threshold voltage (for power loss calc. only) V to 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir 1600 Thermal resistance junction to sink R th(j-s) Thermal resistance junction to case R th(j-c) Thermal grease thickness ≤ 50 um λ = 1 W/mK Gate emitter threshold voltage V GE(th) V CE = V GE Collector-emitter saturation voltage V CEsat 25 125 25 125 25 125 25 125 V V Ω 0,05 mA 1,67 K/W 1,10 Boost IGBT 0,00025 15 40 Collector-emitter cut-off I CES 0 1200 Gate-emitter leakage current I GES ±25 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge R goff = 4 Ω R gon = 4 Ω R th(j-s) Thermal resistance junction to case R th(j-c) 5,5 7,5 2,89 3,09 3,2 1 ±250 15 600 40 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω 27 26 10 10 166 193 11 34 0,41 0,51 0,76 1,45 ns mWs 3200 f = 1 MHz 30 0 370 25 pF 125 QG Thermal resistance junction to sink 3,5 25 125 25 125 25 125 none tr t d(off) 25 ±15 600 40 220 25 Thermal grease thickness ≤ 50 um λ = 1 W/mK nC 0,65 K/W 0,43 Boost FWD Forward voltage Reverse leakage current VF I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy 22,5 1200 R gon = 4 Ω 15 600 E rec Peak rate of fall of recovery current ( di rf/dt )max Thermal resistance junction to sink R th(j-s) Thermal resistance junction to case R th(j-c) 40 25 1,67 125 25 125 25 125 25 125 25 125 25 125 25 125 2,28 1,8 600 24 23 10 10 0,23 0,12 0,075 0,015 8579 6425 Thermal grease thickness ≤ 50 um λ = 1 W/mK V µA A ns µC mWs A/µs 1,19 K/W 0,78 Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P 25 R 100 = 1486 Ω 100 Power dissipation constant 22000 +5 -5 200 mW 25 2 mW/K K B(25/50) Tol. ±3 % 25 3950 B-value B(25/100) Tol. ±3 % 25 3996 copyright Vincotech % 25 B-value Vincotech NTC Reference Ω K B 3 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Boost Protection Diode Charateristics Figure 1 Boost Protection Diode Figure 2 Boost Protection Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F = f(V F) as a function of pulse width Z th(j-s) = f(t p) 101 Zth(j-s) (K/W) IF (A) 100 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 40 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 10-2 0 At tp = 0,5 250 1 1,5 V F (V) 10-5 2 At D = R th(j-s) = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T s) Boost Protection Diode 10-4 10-3 10-2 100 t p (s) 101 1 tp/T 1,67 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T s) Boost Protection Diode 50 Ptot (W) IF (A) 100 10-1 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Ts ( o C) 200 0 At Tj = ºC 4 50 150 100 150 Ts ( o C) 200 ºC 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet BOOST Charateristics Figure 1 BOOST IGBT Figure 2 Typical output characteristics I C = f(V CE) BOOST IGBT Typical output characteristics I C = f(V CE) IC (A) 150 IC(A) 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = V CE from 1 2 3 4 5 V CE (V) 6 0 1 At tp = Tj = V CE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) BOOST IGBT 2 3 4 5 6 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 50 V CE (V) BOOST FWD IC (A) IF (A) 90 75 40 60 30 45 20 30 Tj = 25°C Tj = 25°C Tj = Tjmax-25°C 10 15 Tj = Tjmax-25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 0 10 At tp = µs V 5 2 250 4 6 V F (V) 8 µs 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet BOOST Charateristics Figure 5 BOOST IGBT Figure 6 BOOST IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 2,5 E (mWs) E (mWs) 2 Eoff High T 2 Eoff High T 1,5 1,5 Eon High T Eoff Low T 1 Eoff Low T 1 Eon Low T Eon High T 0,5 0,5 Eon Low T 0 0 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = 15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = 15 V IC = 40 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 0,12 Erec Low T BOOST FWD 0,08 Erec Low T 0,10 0,06 0,08 0,06 0,04 0,04 0,02 Erec High T 0,02 Erec High T 0,00 0,00 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = 15 V R gon = 4 Ω R goff = 4 copyright Vincotech 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 600 V V GE = 15 V IC = 40 A Ω 6 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet BOOST Charateristics Figure 9 BOOST IGBT Figure 10 BOOST IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I D) function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 tdoff tdoff 0,1 0,1 tdon tdon tr tf tf 0,01 0,01 tr 0,001 0,001 0 15 30 45 60 I D (A) 0 75 With an inductive load at Tj = 125 °C V CE = 600 V V GE = 15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C V CE = 600 V V GE = 15 V IC = 40 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) BOOST FWD 0,015 t rr( µs) t rr( µs) 0,015 0,012 trr High T 0,012 trr Low T trr High T 0,009 0,009 trr Low T 0,006 0,006 0,003 0,003 0 0 0 R (K/W) At Tj = V CE = V GE = R gon = 15 30 45 60 I C (A) 75 0 4 8 25/125 °C R (K/W) At Tj = 25/125 °C 600 15 V V VR= IF= 600 40 V A 4 Ω V GE = 15 V copyright Vincotech 7 12 16 R Gon ( Ω) 20 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet BOOST Charateristics Figure 13 BOOST FWD Figure 14 BOOST FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) Qrr ( mC) Qrr ( µC) 0,4 0,25 Qrr Low T 0,2 0,3 Qrr Low T 0,15 0,2 Qrr High T 0,1 Qrr High T 0,1 0,05 0 0 0 15 30 At At Tj = V CE = V GE = 25/125 600 15 °C V V R gon = 4 Ω 45 60 I C (A) 0 75 At Tj = VR = IF= V GE = Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) BOOST FWD 4 25/125 600 40 15 8 12 R Gon ( Ω) 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 30 16 BOOST FWD IrrM (A) IrrM (A) 30 IRRM Low T IRRM Low T 25 25 IRRM High T IRRM High T 20 20 15 15 10 10 5 5 0 0 0 At Tj = V CE = V GE = R gon = 15 30 45 60 I C (A) 0 75 4 8 25/125 600 °C V At Tj = VR= 25/125 600 °C V 15 4 V Ω IF= V GE = 40 15 A V copyright Vincotech 8 12 16 R Gon ( Ω) 20 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet BOOST Charateristics Figure 17 BOOST FWD Figure 18 BOOST FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 12000 direc / dt (A/ µs) 15000 direc / dt (A/ µs) dI0/dt dIrec/dt 10000 dI0/dt dIrec/dt 12000 8000 9000 6000 6000 4000 3000 2000 0 0 0 At Tj = V CE = V GE = R gon = 15 30 25/125 600 °C V 15 4 V Ω 45 60 Figure 19 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) I C (A) 75 0 BOOST IGBT 4 8 At Tj = 25/125 °C VR = IF= V GE = 600 40 15 V A V 12 Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 20 BOOST FWD 101 Zth(j-s) (K/W) Zth(j-s) (K/W) 101 R Gon ( Ω) 16 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-2 10-5 10-4 At D = R th(j-s) = tp/T 0,65 10-3 10-2 10-1 100 t p (s) 10110 K/W IGBT thermal model values R (K/W) Tau (s) 10-5 10-4 At D = R th(j-s) = tp/T 1,19 10-3 10-1 100 t p (s) 10110 K/W FWD thermal model values R (K/W) Tau (s) 1,85E-01 5,43E-01 4,57E-02 4,5E+00 3,49E-01 1,22E-01 9,58E-02 8,86E-01 7,94E-02 1,84E-02 3,40E-01 1,49E-01 1,82E-02 2,92E-03 4,21E-01 4,66E-02 2,26E-02 5,23E-04 1,58E-01 1,05E-02 1,06E-01 2,34E-03 copyright Vincotech 10-2 9 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet BOOST Charateristics Figure 21 BOOST IGBT Figure 22 BOOST IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T S) function of heatsink temperature I C = f(T s) 75 IC (A) Ptot (W) 250 200 60 150 45 100 30 50 15 0 0 0 At Tj = 50 150 100 150 Ts ( o C) 200 0 At Tj = V GS = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T S) BOOST FWD 50 150 15 100 150 Ts ( o C) 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T s) BOOST FWD 40 IF (A) Ptot (W) 150 120 30 90 20 60 10 30 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 10 50 175 100 150 T h ( o C) 200 ºC 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet BOOST Charateristics Figure 25 Safe operating area as a function BOOST IGBT Figure 26 Gate voltage vs Gate charge of drain-source voltage I C = f(V CE) V GE = f(Q g) BOOST IGBT 15 IC (A) VGE (V) 10 400V 12 102 10uS 600V 9 100uS 10mS 1mS 100mS 101 6 DC 100 3 0 10-1 100 At D = TS = V CE= Tj = 101 102 103 0 V CE (V) At IC = single pulse 80 ºC V 15 T jmax ºC copyright Vincotech 11 50 40 100 150 200 Qg (nC) 250 A 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Bypass Diode Charateristics Figure 1 Bypass Diode Figure 2 Bypass Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 101 Zth(j-s) (K/W) IF (A) 100 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 0 0,5 At tp = 250 1 1,5 V F (V) 10-2 2 10-5 10-4 At D = R th(j-s) = µs Figure 3 Bypass Diode 10-3 10-2 10-1 100 10110 tp/T 1,67 K/W Figure 4 Power dissipation as a function of heatsink temperature P tot = f(T S) t p (s) Bypass Diode Forward current as a function of heatsink temperature I F = f(T s) 50 Ptot (W) IF (A) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T s ( o C) 0 200 At Tj = ºC 12 50 150 100 150 T s ( o C) 200 ºC 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 13 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Boost Switching Definitions General conditions Tj = 125 °C = 4Ω R gon R goff = 4Ω Figure 1 Inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 150 % 125 tdoff % VCE 125 100 IC VGE 90% VCE 90% VCE 100 75 75 IC 50 VGE tdon tEoff 50 25 IC 1% 25 VGE 10% 0 VCE 3% IC 10% 0 tEon VGE -25 -0,2 -0,05 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,1 0,25 0 15 600 40 0,19 0,56 0,4 -25 2,95 0,55 0,7 time (us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Inverter IGBT Turn-off Switching Waveforms & definition of t f 120 % 3 3,05 0 15 600 40 0,03 0,12 3,1 time(us) 3,15 V V V A µs µs Figure 4 Inverter IGBT Turn-on Switching Waveforms & definition of t r 175 fitted IC % VCE 150 100 IC IC 90% 125 80 VCE 100 60 IC 90% IC 60% 75 tr IC 40% 40 50 20 25 IC10% -20 0,05 IC 10% tf 0 0 -25 0,1 0,15 0,2 0,25 time (us) 3 0,3 3,02 3,04 V C (100%) = I C (100%) = 600 40 V A V C (100%) = I C (100%) = 600 40 V A tf = 0,03 µs tr = 0,01 µs copyright Vincotech 14 3,06 time(us) 3,08 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Boost Switching Definitions Figure 5 Inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Inverter IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % % Pon Eon 100 100 Eoff Poff 75 75 50 50 IC 1% 25 25 VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 23,86 1,45 0,56 0,4 time (us) -25 2,98 0,6 kW mJ µs P on (100%) = E on (100%) = t E on = 3,03 23,86 0,51 0,12 3,08 time(us) 3,13 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 120 Id % 80 trr 40 Vd fitted 0 IRRM 10% -40 IRRM 90% IRRM 100% -80 -120 2,97 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,02 3,07 600 40 -23 0,01 3,12 time(us) 3,17 V A A µs 15 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Boost Switching Definitions Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Erec Qrr Id 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -100 -25 3 3,05 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,1 40 0,12 0,17 3,15 3,2 time(us) 3,25 3 A µC µs P rec (100%) = E rec (100%) = t E rec = 16 3,05 3,1 23,86 0,02 0,17 3,15 3,2 time(us) 3,25 kW mJ µs 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 12mm housing V23990-P629-F63-PM VIN Date code Name&Ver UL Lot Serial VIN WWYY NNNNNNVV UL LLLLL SSSS Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Text Datamatrix Outline Pin table Pin X Y 1 0 22,5 2 2,9 22,5 3 8,3 22,5 4 10,8 22,5 5 19,6 22,5 6 22,1 22,5 7 29,1 22,5 8 32 22,5 9 33,5 17,8 10 33,5 15,3 11 33,5 7,2 12 33,5 4,7 13 32 0 14 29,1 0 15 22,1 0 16 19,6 0 17 10,8 0 18 8,3 0 19 2,9 0 20 0 0 21 0 8 22 0 14,5 Pinout copyright Vincotech 17 22 Mar. 2016 / Revision 3 V23990-P629-F63-PM datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 135 Standard <SPQ Sample Handling instruction Handling instructions for flow 0 packages see vincotech.com website. Package data Package data for flow 0 packages see vincotech.com website. UL recognition and file number This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website. Document No.: Date: Modification: Pages V23990-P629-F63-PM-D3-14 22 Mar. 2016 New Style All DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 18 22 Mar. 2016 / Revision 3