10-**06PPA006SB-M682B* datasheet flow PIM0 + PFC 2nd 600 V / 6 A Features flow 0 housing ● Clip in PCB mounting ●Trench Fieldstop IGBT's for low saturation losses ● Latest generation superjunction MOSFET for PFC 17mm housing solder pins Target Applications 12mm housing Press-fit pins Schematic ● Industrial Drives ● Embedded Drives Types ● 10-F006PPA006SB-M682B ● 10-PC06PPA006SB-M682B06Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C t p = 10 ms T j = 150 °C T j = T jmax 34 35 A 200 A 200 A2s 43 66 W 150 °C 600 V 10 12 A 59 A T j = 25 °C 418 mJ T j = 25 °C 0,63 mJ T j = 25 °C 3,4 A T s = 80 °C T c = 80 °C T jmax PFC Switch Drain to source breakdown voltage DC drain current Pulsed drain current V DS ID I Dpulse Avalanche energy, single pulse E AS Avalanche energy, repetitive E AR Avalanche current, repetitive I AR MOSFET dv/dt ruggedness T j = T jmax T s = 80 °C T c = 80 °C t p limited by T jmax I D = 3,4 A V DD = 50 V I D = 3,4 A V DD = 50 V dv /dt T s = 80 °C T c = 80 °C 50 V/ns 53 81 W Power dissipation P tot Gate-source peak voltage V GSS ±20 V dv /dt 15 V/ns T jmax 150 °C Reverse diode dv/dt Maximum Junction Temperature copyright Vincotech T j = T jmax 1 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V T c = 80 °C 8 8 A 18 A T s = 80 °C 45 T c = 80 °C 68 PFC Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T s = 80 °C T j = T jmax t p limited by T jmax T j = T jmax T jmax W 175 °C PFC Shunt DC forward current Power dissipation per Shunt IF T c = 25 °C 10 A P tot T c = 25 °C 5 W 600 V 8 8 A t p limited by T jmax 18 A V CE ≤ 400 V, T j ≤ T op max 18 A Inverter Switch Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T s = 80 °C T c = 80 °C T j = T jmax T s = 80 °C T c = 80 °C T j = T jmax T j ≤ 150 °C V GE = 15V T jmax 36 54 W 20 V 6 360 µs V 175 °C 600 V 8 8 A 12 A 27 41 W 175 °C 500 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T s = 80 °C T c = 80 °C T j = T jmax t p limited by T jmax T s = 80 °C T c = 80 °C T j = T jmax T jmax DC link Capacitor Max.DC voltage V MAX T c = 25 °C Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C 4000 V min 12,7 mm 9,16 min 12,7 mm Isolation Properties Isolation voltage V is t=2s DC voltage Creepage distance 12 mm housing Press-fit pins 17 mm housing solder pins Clearance Comparative tracking index copyright Vincotech CTI >200 2 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Typ Unit Max Rectifier Diode Forward voltage VF 25 Threshold voltage (for power loss calc. only) V to 25 Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink R th(j-s) 25 1600 25 125 25 125 25 125 V 1,17 0,92 0,81 10,9 14,4 25 V mΩ 0.05 phase - change material λ = 3,4 W/mK 1,61 mA K/W PFC Switch Static drain to source ON resistance r DS(on) Gate threshold voltage V (GS)th Gate to Source Leakage Current Zero Gate Voltage Drain Current Turn On Delay Time Rise Time Turn off delay time Fall time 10 V GS = V DS 25 0,00063 25 I GSS 20 0 I DSS 0 600 25 400 25 125 25 125 25 125 25 125 25 125 25 125 tr t d(off) tf E on Turn-off energy loss E off Total gate charge Q GE Gate to source charge Q GS Gate to drain charge Q GD Input capacitance C iss Output capacitance C oss Gate resistance RG R goff = 4 Ω R gon = 4 Ω 2,4 3,0 6 mΩ 3,6 V 100 nA 1000 nA 17 16 2 2 103 113 6 9 0,045 0,091 0,006 0,007 ns mWs 63 480 0/10 9,5 25 nC 7,6 32 1400 f = 1 MHz R th(j-s) 10 203 398 25 t d(on) Turn-on energy loss Thermal resistance chip to heatsink 6 0 100 25 pF 85 phase - change material λ = 3,4 W/mK 6 Ω 1,32 K/W PFC Diode Forward voltage Reverse leakage current Peak recovery current VF I rm t rr Reverse recovery charge Q rr Peak rate of fall of recovery current Thermal resistance chip to heatsink 600 I RRM Reverse recovery time Reverse recovered energy 6 R gon = 4 Ω 10 400 E rec ( di rf/dt )max R th(j-s) phase - change material λ = 3,4 W/mK 6 25 125 25 125 25 125 25 125 25 125 25 125 25 125 2,83 1,66 V 50 500 29 31 9 15 0,12 0,29 0,013 0,042 12276 7905 µA A ns µC mWs A/µs 2,10 K/W 50 mΩ PFC Shunt R1 value R Temperature coeficient tc 30 ppm/K Internal heat resistance R thi 10 K/W L 3 nH Inductance copyright Vincotech 20 °C to 60 °C 3 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 5,8 6,5 Inverter Switch Gate emitter threshold voltage V GE(th) Collector-emitter saturation voltage V CEsat V CE = V GE 15 0,00009 25 6 25 125 Collector-emitter cut-off current incl. Diode I CES 0 600 25 Gate-emitter leakage current I GES 20 0 25 Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 1,52 1,71 R goff = 64 Ω R gon = 64 Ω ±15 400 6 25 125 25 125 25 125 25 125 25 125 25 125 V V 0,027 mA 300 nA none t d(on) t d(off) 5 Ω 103 101 23 26 154 177 96 105 0,19 0,25 0,21 0,27 ns mWs 368 f = 1 MHz 0 25 ±15 480 25 28 pF 11 6 25 phase - change material λ = 3,4 W/mK 42 nC 2,66 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink 6 R gon = 64 Ω ±15 400 ( di rf/dt )max E rec R th(j-s) 6 25 125 25 125 25 125 25 125 25 125 25 125 1,25 phase - change material λ = 3,4 W/mK 1,62 1,53 3 4 236 341 0,32 0,60 12 30 0,09 0,17 1,95 V A ns µC A/µs mWs 3,55 K/W 100 nF 22000 Ω DC link Capacitor C value C Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P 25 R 100 = 1486 Ω 100 Power dissipation constant % mW 25 3,5 mW/K B (25/50) Tol. ±3% 25 B-value B (25/100) Tol. ±3% 25 copyright Vincotech 5 210 B-value Vincotech NTC Reference -5 25 K 4000 K A 4 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Inverter Characteristics Figure 1 Typical output characteristics I C = f(V CE) Inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) 18 IC (A) IC (A) 18 Inverter IGBT 15 15 12 12 9 9 6 6 3 3 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Inverter IGBT 1 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Inverter Diode 18 IC (A) IF (A) 6 4 5 15 4 12 3 9 2 6 Tj = Tjmax-25°C Tj = 25°C 1 Tj = Tjmax-25°C 3 Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 5 0,6 250 1,2 1,8 2,4 V F (V) 3 µs 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Inverter Characteristics Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) 0,7 E (mWs) 0,5 Inverter IGBT Eon High T Eon High T Eoff High T 0,6 Eon Low T 0,5 Eoff Low T 0,4 Eon Low T 0,4 0,3 Eoff High T 0,3 0,2 0,2 Eoff Low T 0,1 0,1 0 0 0 2 4 6 8 10 0 12 32 64 96 128 160 192 224 I C (A) With an inductive load at Tj = °C 25/125 V CE = 400 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 256 288 RG( Ω ) With an inductive load at Tj = °C 25/125 V CE = 400 V V GE = ±15 V IC = 6 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Inverter Diode Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) Tj = Tjmax -25°C E (mWs) E (mWs) 0,25 Erec 0,20 Inverter Diode 0,25 0,20 Tj = Tjmax -25°C 0,15 0,15 Erec Erec 0,10 0,10 Tj = 25°C Tj = 25°C Erec 0,05 0,05 0,00 0,00 0 2 4 6 8 10 I C (A) 12 0 With an inductive load at Tj = 25/125 °C V CE = 400 V V GE = ±15 V R gon = 64 Ω copyright Vincotech 32 64 96 128 160 192 224 256 288 RG( Ω ) With an inductive load at Tj = 25/125 °C V CE = 400 V V GE = ±15 V IC = 6 A 6 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Inverter Characteristics Figure 9 Typical switching times as a function of collector current t = f(I C) Inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) t ( µs) 1,00 t ( µs) 1,00 Inverter IGBT tdoff tdoff tf tdon 0,10 tf 0,10 tr tdon tr 0,01 0,01 0,00 0,00 0 2 4 6 8 10 I C (A) 12 0 With an inductive load at Tj = 125 °C V CE = 400 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 32 64 96 128 160 192 224 256 288 RG( Ω ) With an inductive load at Tj = 125 °C V CE = 400 V V GE = ±15 V IC = 6 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Inverter Diode Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,5 trr Tj = Tjmax -25°C 0,4 trr t rr( µs) t rr( µs) 0,5 Inverter Diode Tj = Tjmax -25°C 0,4 trr 0,3 0,3 trr 0,2 Tj = 25°C 0,2 Tj = 25°C 0,2 0,1 0,1 0 0,0 0 At Tj = V CE = V GE = R gon = 2 25/125 400 ±15 64 copyright Vincotech 4 6 8 10 I C (A) 0 12 At Tj = VR= IF= V GE = °C V V Ω 7 32 64 96 25/125 400 6 ±15 °C V A V 128 160 192 224 256 288 R gon ( Ω ) 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Inverter Characteristics Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Inverter Diode Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 0,8 Qrr( µC) Qrr( µC) 1 Inverter Diode Tj = Tjmax -25°C 0,8 Qrr Tj = Tjmax -25°C 0,6 Qrr 0,6 0,4 0,4 Qrr Qrr Tj = 25°C 0,2 Tj = 25°C 0,2 0 0 0 At At Tj = V CE = V GE = R gon = 2 25/125 400 ±15 64 4 6 8 10 I C (A) 0 12 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Inverter Diode 32 64 25/125 400 6 ±15 96 128 160 192 256 288 R gon ( Ω) °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) Inverter Diode 8 IrrM (A) IrrM (A) 5 224 Tj = Tjmax -25°C 4 IRRM 6 IRRM 3 Tj = 25°C 4 Tj = Tjmax - 25°C 2 IRRM 2 Tj = 25°C 1 IRRM 0 0 0 At Tj = V CE = V GE = R gon = 2 25/125 400 ±15 64 copyright Vincotech 4 6 8 10 I C (A) 0 12 At Tj = VR= IF= V GE = °C V V Ω 8 32 64 25/125 400 6 ±15 96 128 160 192 224 256 288 R gon ( Ω ) °C V A V 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Inverter Characteristics Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) Inverter Diode Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 1200 direc / dt (A/ µs) 350 direc / dt (A/µ s) Inverter Diode dI0/dt dIo/dtLow T dIrec/dt 300 dI0/dt dIrec/dt 1000 250 dIo/dtLow T 800 di0/dtHigh T 200 di0/dtHigh T 600 dIrec/dtLow T 150 400 dIrec/dtHigh T 100 200 dIrec/dtHigh T 50 dIrec/dtLow T 0 0 0 At Tj = V CE = V GE = R gon = 2 25/125 400 ±15 64 4 6 8 10 I C (A) 0 12 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Inverter IGBT 32 64 25/125 400 6 ±15 96 128 160 192 256 288 R gon ( Ω ) °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Inverter Diode 101 Zth(j-s) (K/W) Zth(j-s) (K/W) 101 224 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 2,66 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 K/W -2 10-5 10-4 At D = R th(j-s) = tp/T IGBT thermal model values 3,55 10-2 10-1 100 t p (s) 101 10 K/W FWD thermal model values R (K/W) Tau (s) R (K/W) Tau (s) 1,12E-01 1,79E+00 1,62E-01 1,97E+00 4,34E-01 1,79E-01 7,21E-01 1,62E-01 8,19E-01 4,95E-02 1,17E+00 3,94E-02 6,08E-01 9,45E-03 5,18E-01 6,69E-03 3,80E-01 2,26E-03 4,51E-01 1,33E-03 3,08E-01 3,96E-04 5,35E-01 2,17E-04 copyright Vincotech 10-3 9 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Inverter Characteristics Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T s) Inverter IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T s) 10 IC (A) Ptot (W) 80 Inverter IGBT 8 60 6 40 4 20 2 0 0 0 At Tj = 50 175 100 150 T s ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T s) Inverter Diode 50 175 15 100 150 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T s) Inverter Diode 10 IF (A) Ptot (W) 50 T s ( o C) 40 8 30 6 20 4 10 2 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = °C 10 50 175 100 150 T s ( o C) 200 °C 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Inverter Characteristics Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Inverter IGBT Figure 26 Gate voltage vs Gate charge Inverter IGBT V GE = f(Q g) IC (A) VGE (V) 18 10 16 2 14 120 V 1mS 10mS 100uS 12 100mS 480 V DC 101 10 8 100 6 4 10-1 2 0 10-1 10 0 At D = Ts = V GE = Tj = 101 V CE (V) 102 10 0 3 At IC = single pulse 80 ºC ±15 V T jmax Figure 27 Inverter IGBT 10 6 20 30 40 50 60 A Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) Q g (nC) Inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage I sc = f(V GE) tsc (µS) IC (sc) 14 100 12 80 10 60 8 6 40 4 20 2 0 0 10 At V CE = Tj ≤ 11 12 600 V 175 ºC copyright Vincotech 13 14 V GE (V) 15 12 At V CE ≤ Tj = 11 13 14 600 V 175 ºC 15 16 17 18 19 V (V) 20 GE 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Inverter Characteristics Figure 29 Reverse bias safe operating area IGBT I C = f(V CE) IC (A) 25 20 IC MAX Ic CHIP Ic MODULE 15 10 VCE MAX 5 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = T jmax-25 copyright Vincotech ºC 12 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet PFC Characteristics Figure 1 Typical output characteristics I D = f(V DS) PFC MOSFET Figure 2 Typical output characteristics I D = f(V DS) PFC MOSFET 35 ID (A) ID (A) 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 At tp = Tj = V GS from 2 4 6 V DS (V) 8 0 10 At tp = Tj = V GS from 250 µs 25 °C 0 V to 20 V in steps of 2 V Figure 3 Typical transfer characteristics PFC MOSFET 2 4 6 8 PFC Diode 35 IF (A) ID (A) 10 10 250 µs 125 °C 0 V to 20 V in steps of 2 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) I D = f(V GS) V DS (V) 30 8 25 6 20 15 4 Tj = Tjmax-25°C 10 Tj = Tjmax-25°C 2 Tj = 25°C 5 Tj = 25°C 0 0 0 1 At tp = V DS = 250 10 copyright Vincotech 2 3 4 5 V GS (V) 6 0 At tp = µs V 13 1 250 2 3 4 V F (V) 5 µs 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet PFC Characteristics Figure 5 Typical switching energy losses as a function of drain current E = f(I D) PFC MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 0,15 PFC MOSFET 0,12 Eon E (mWs) E (mWs) Eon Tj = Tjmax -25°C 0,12 0,09 0,09 Eon 0,06 Eon Tj =25°C 0,06 0,03 0,03 Eoff Eoff Eoff Eoff 0 0 0 2 4 6 8 10 I D (A) 12 0 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = 10 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = 10 V ID = 6 A Figure 7 Typical reverse recovery energy loss as a function of drain current E rec = f(I D) PFC MOSFET Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 0,05 E (mWs) 0,06 PFC MOSFET Erec Tj = Tjmax - 25°C Erec 0,05 0,04 0,04 0,03 Tj = Tjmax -25°C 0,03 0,02 Erec 0,02 Tj = 25°C 0,01 0,01 Erec Tj = 25°C 0,00 0,00 0 2 4 6 8 10 I D (A) 0 12 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = 10 V R gon = 4 Ω R goff = 4 Ω copyright Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V DS = 400 V V GS = 10 V ID = 6 A 14 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet PFC Characteristics Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 1,00 t ( µs) PFC MOSFET t ( µs) Figure 9 Typical switching times as a as a function of drain current t = f(I D) PFC MOSFET tdoff tdoff 0,10 0,10 tdon tdon 0,01 0,01 tf tr tr 0,00 0,00 0 2 4 6 8 10 I D (A) 12 0 With an inductive load at Tj = 125 °C V DS = 400 V V GS = 10 V R gon = 4 Ω R goff = 4 Ω 4 8 12 RG (Ω ) 16 20 With an inductive load at Tj = 125 °C V DS = 400 V V GS = 10 V ID = 6 A Figure 11 Typical reverse recovery time as a as a function of drain current t rr = f(I c) PFC Diode Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor t rr = f(R gon) 0,04 t rr( µs) t rr( µs) 0,02 PFC Diode trr 0,015 trr 0,03 Tj = Tjmax-25°C 0,01 0,02 trr trr 0,005 0,01 Tj = 25°C 0 0,00 0 At Tj = V CE = V GE = R gon = 2 25/125 400 10 4 copyright Vincotech 4 6 8 10 I D (A) 12 0 At Tj = VR= IF= V GS = °C V V Ω 15 4 25/125 400 6 10 8 12 16 R gon ( Ω ) 20 °C V A V 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet PFC Characteristics Figure 13 Typical reverse recovery charge as a as a function of drain current Q rr = f(I D) PFC Diode Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Q rr = f(R gon) 0,4 PFC Diode 0,4 Qrr ( µC) Qrr ( µC) Qrr Tj = Tjmax - 25°C 0,3 Tj = Tjmax - 25°C 0,3 Qrr 0,2 0,2 Qrr Tj = 25°C Tj = 25°C 0,1 0,1 0 Qrr 0,0 0 At At Tj = V DS = V GS = R gon = 2 25/125 400 10 4 4 6 8 10 I D (A) 12 0 4 At Tj = °C V V Ω 25/125 400 6 10 VR= IF= V GS = Figure 15 Typical reverse recovery current as a as a function of drain current I RRM = f(I D) PFC Diode 8 12 20 °C V A V Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor I RRM = f(R gon) 40 R gon ( Ω) 16 PFC Diode IrrM (A) 40 IrrM (A) IRRM Tj = Tjmax - 25°C IRRM 30 30 Tj = 25°C Tj = Tjmax -25°C 20 IRRM 20 Tj = 25°C 10 IRRM 10 0 0 0 At Tj = V DS = V GS = R gon = 2 25/125 400 10 4 copyright Vincotech 4 6 8 10 I D (A) 12 0 At Tj = VR= IF= V GS = °C V V Ω 16 4 25/125 400 6 10 8 12 16 R gon ( Ω ) 20 °C V A V 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet PFC Characteristics Figure 17 Typical rate of fall of forward and reverse recovery current as a function of drain current dI 0/dt ,dI rec/dt = f(I D) PFC Diode Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) PFC Diode 15000 direc / dt (A/ µs) 14000 direc / dt (A/ µs) dI0/dt dIrec/dt 12000 Tj = 25°C dI0/dt dIrec/dt 12000 10000 Tj = Tjmax - 25°C 9000 8000 Tj = 25°C 6000 6000 Tj = 25°C 4000 Tj = Tjmax - 25°C Tj = Tjmax -25°C 3000 2000 0 0 0 At Tj = V DS = V GS = R gon = 2 25/125 400 10 4 4 6 8 10 I D (A) 0 12 At Tj = VR= IF = V GS = °C V V Ω Figure 19 MOSFET transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) PFC MOSFET 25/125 400 6 10 8 12 16 R gon ( Ω) 20 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) PFC Diode 101 Zth(j-s) (K/W) Zth(j-s) (K/W) 101 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10 4 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 -2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 1,32 K/W IGBT thermal model values 10-5 10-4 At D = R th(j-s) = tp/T 2,10 10-3 10-1 100 t p (s) 10110 K/W FWD thermal model values R (K/W) Tau (s) R (K/W) Tau (s) 6,07E-02 2,94E+00 7,54E-02 2,95E+00 1,82E-01 4,56E-01 3,60E-01 3,15E-01 5,66E-01 1,17E-01 7,40E-01 7,85E-02 2,74E-01 2,61E-02 4,10E-01 1,41E-02 1,33E-01 6,31E-03 3,24E-01 3,24E-03 9,91E-02 8,98E-04 1,92E-01 8,47E-04 copyright Vincotech 10-2 17 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet PFC Characteristics Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T s) PFC MOSFET Figure 22 Drain current as a function of heatsink temperature I D = f(T s) 15 Ptot (W) ID (A) 120 PFC MOSFET 12 90 9 60 6 30 3 0 0 0 At Tj = 50 150 100 150 T s ( o C) 200 0 At Tj = V GS = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T s) PFC Diode 50 150 10 100 150 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T s) PFC Diode 10 IF (A) Ptot (W) 100 T s ( o C) 80 8 60 6 40 4 20 2 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = ºC 18 50 175 100 150 T s ( o C) 200 ºC 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet PFC Characteristics Figure 25 Safe operating area as a function of drain-source voltage I D = f(V DS) Figure 26 PFC MOSFET Gate voltage vs Gate charge V GS = f(Q g) 10 VGS (V) 3 ID (A) 10 PFC MOSFET 9 120V 8 102 100uS 10uS 480V 7 1mS 10mS 6 100mS DC 10 5 1 4 3 10 0 2 1 0 10-1 102 100 At D = Ts = V GS = Tj = 0 103 V DS (V) At ID = single pulse 80 ºC V 10 T jmax ºC Figure 29 Reverse bias safe operating area 10 6 20 30 40 50 60 Qg (nC) 70 A IGBT I D = f(V DS) ID (A) 25 ID MAX ID MODULE 15 ID CHIP 20 10 VDS MAX 5 0 0 100 200 300 400 500 600 700 V DS (V) At Tj = T jmax-25 copyright Vincotech ºC 19 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Rectifier Characteristics Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier Diode Figure 2 Diode transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 80 1 Zth(j-s) (K/W) IF (A) 10 Rectifier Diode 60 100 40 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 -1 20 Tj = Tjmax-25°C Tj = 25°C 0 10-2 0 0,5 At tp = 250 1 1,5 V F (V) 2 10 -5 At D = R th(j-s) = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T s) Rectifier Diode 10 -4 10 -3 10 -2 10 -1 10 1 t p (s) 10 10 tp/T 1,61 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T s) Rectifier Diode 40 IF (A) Ptot (W) 100 0 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 o T h ( C) 0 200 At Tj = ºC 20 50 150 100 150 T h ( o C) 200 ºC 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Thermistor Characteristics Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 21 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Switching Definitions Inverter General conditions Tj = 125 °C R gon R goff = = 64 Ω 64 Ω Figure 1 Inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 200 125 % % tdoff VCE IC 100 VGE 90% 150 VCE 90% 75 VGE VCE IC 100 VGE 50 tdon tEoff 50 25 IC 1% VCE 3% IC10% VGE10% 0 tEon 0 -50 -25 -0,2 0 0,2 0,4 time (us) 2,9 0,6 3 3,1 3,2 3,3 3,4 time(us) V GE (0%) = -15 V V GE (0%) = -15 V V GE (100%) = V C (100%) = I C (100%) = t doff = 15 400 6 0,18 V V A µs V GE (100%) = V C (100%) = I C (100%) = t don = 15 400 6 0,10 V V A µs t E off = 0,53 µs t E on = 0,27 µs Figure 3 Inverter IGBT Turn-off Switching Waveforms & definition of t f Figure 4 Inverter IGBT Turn-on Switching Waveforms & definition of t r 125 200 fitted % % VCE IC Ic 100 150 IC 90% 75 VCE 100 IC 60% IC90% 50 tr IC 40% 50 25 IC10% IC10% 0 0 tf -25 -50 0 0,1 V C (100%) = I C (100%) = tf = copyright Vincotech 0,2 400 6 0,11 0,3 0,4 time (us) 0,5 3 V A µs V C (100%) = I C (100%) = tr = 22 3,05 3,1 400 6 0,03 3,15 3,2 3,25 time(us) 3,3 V A µs 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Switching Definitions Inverter Figure 5 Inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Inverter IGBT Turn-on Switching Waveforms & definition of t Eon 125 150 % Pon % Eoff 100 125 Poff Eon 100 75 75 50 50 IC 1% 25 25 VGE 90% VCE 3% VGE 10% 0 0 tEoff -25 -0,2 tEon -25 0 0,2 0,4 0,6 2,9 time (us) 3 3,1 3,2 P off (100%) = 2,41 kW P on (100%) = 2,41 kW E off (100%) = t E off = 0,27 0,53 mJ µs E on (100%) = t E on = 0,25 0,27 mJ µs 3,3 time(us) 3,4 Figure 7 Inverter Diode Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd 0 IRRM 10% fitted IRRM 90% IRRM 100% -50 -100 -150 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 23 400 6 -4 0,34 V A A µs 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Switching Definitions Inverter Figure 8 Inverter Diode Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Inverter Diode Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % Erec % Qrr Id 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -100 -25 2,8 3 3,2 3,4 3,6 3,8 4 3 time(us) 3,2 3,4 3,6 I d (100%) = 6 A P rec (100%) = 2,41 kW Q rr (100%) = t Q rr = 0,60 0,73 µC µs E rec (100%) = t E rec = 0,17 0,73 mJ µs copyright Vincotech 24 3,8 time(us) 4 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Switching Definitions PFC General conditions Tj = 125 °C R gon R goff = = 4Ω 4Ω Figure 1 PFC MOSFET Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 PFC MOSFET Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 600 tdoff % ID % 500 100 VGS 90% VDS 90% 400 75 VGS ID 300 50 tEoff ID 1% 200 25 VGS 0 VDS VDS 100 tdon VGS10% ID 10% 0 -25 VDS 3% tEon -50 -0,1 -0,05 0 0,05 0,1 time (us) -100 2,98 0,15 3 3,02 3,06 time(us) V GS (0%) = 0 V V GS (0%) = 0 V V GS (100%) = V D (100%) = I D (100%) = t doff = 10 400 6 0,11 V V A µs V GS (100%) = V D (100%) = I D (100%) = t don = 10 400 6 0,02 V V A µs t E off = 0,14 µs t E on = 0,03 µs Figure 3 PFC MOSFET Turn-off Switching Waveforms & definition of t f Figure 4 PFC MOSFET Turn-on Switching Waveforms & definition of t r 125 600 fitted % 100 3,04 % VDS ID ID 500 ID 90% 75 400 ID 60% 50 300 ID 40% 200 25 ID 10% 0 VDS 100 tf ID 10% 0 -25 -50 0,02 ID 90% tr 0,04 0,06 0,08 0,1 0,12 -100 3,01 0,14 3,015 3,02 3,025 V D (100%) = I D (100%) = tf = copyright Vincotech 400 6 0,01 3,03 3,035 3,04 time(us) time (us) V A µs V D (100%) = I C (100%) = tr = 25 400 6 0,002 V A µs 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Switching Definitions PFC Figure 5 PFC MOSFET Turn-off Switching Waveforms & definition of t Eoff Figure 6 PFC MOSFET Turn-on Switching Waveforms & definition of t Eon 200 500 % % Pon 400 150 300 Eoff 100 200 50 Eon 100 Poff VGS 90% 0 -50 -0,1 VGS 10% tEoff -0,05 0 0,05 0,1 time (us) VDS 3% 0 ID 1% tEon -100 2,98 0,15 3 3,02 P off (100%) = 2,45 kW P on (100%) = 2,45 kW E off (100%) = t E off = 0,01 0,14 mJ µs E on (100%) = t E on = 0,09 0,0325 mJ µs 3,04 time(us) 3,06 Figure 7 PFC Diode Turn-off Switching Waveforms & definition of t rr 200 % Id 100 trr 0 Ud IRRM10% -100 -200 fitted -300 -400 IRRM90% IRRM100% -500 -600 2,975 2,995 3,015 3,035 3,055 3,075 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 26 400 6 -31 0,02 V A A µs 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Switching Definitions PFC Figure 8 PFC Diode Turn-on Switching Waveforms & definition of t Qrr Figure 9 PFC Diode Turn-on Switching Waveforms & definition of t Erec (t Qrr= integrating time for Q rr) (t Erec= integrating time for E rec) 350 200 % % Prec 300 150 Id 250 Qrr 100 200 tQint 150 50 Erec 100 tErec 0 50 -50 0 -50 -100 3 3,01 I d (100%) = Q rr (100%) = t Qint = copyright Vincotech 3,02 3,03 3,04 3,05 3 3,06 time(us) 3,01 3,02 3,03 3,04 6 A P rec (100%) = 2,45 kW 0,29 0,03 µC µs E rec (100%) = t E rec = 0,04 0,03 mJ µs 27 3,05 3,06 3,07 time(us) 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code 10-F006PPA006SB-M682B without thermal paste 17mm housing with solder pins with thermal paste 17mm housing with solder pins 10-F006PPA006SB-M682B-/3/ without thermal paste 12mm housing with Press-fit pins 10-PC06PPA006SB-M682B06Y VIN Date code Name&Ver UL Lot Serial VIN WWYY NNNNNNVV UL LLLLL SSSS Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Text Datamatrix Outline Pin Pin table X Y Function 1 33,5 0 DC- 2 30,7 0 PFC- 3 28 0 S1 4 25,3 0 S2 5 22,6 0 INV- 6 19,9 0 G7 7 17,2 0 S7 8 13,5 0 G6 9 10,8 0 E6 10 8,1 0 G5 11 5,4 0 E5 12 2,7 0 G4 13 0 0 E4 14 0 8,6 NTC1 15 0 11,45 NTC2 16 0 19,8 G1 17 0 22,5 U 18 6 19,8 G2 19 6 22,5 V 20 12 19,8 G3 21 12 22,5 W 22 17,7 22,5 INV+ 23 20,5 22,5 PFC+ 24 26,5 22,5 PFC IN 25 33,5 22,5 DC+ 26 33,5 15 L1 27 33,5 7,5 L2 copyright Vincotech 17mm housing 12mm housing 28 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Pinout Identification ID Component Voltage Current Function T1,T2,T3,T4,T5,T6 IGBT 600 V 6A Inverter Switch D1,D2,D3,D4,D5,D6 FWD 600 V 6A Inverter Diode T7 MOSFET 600 V 190 mΩ PFC Switch D7 FWD 600 V 6A PFC Diode D8,D9,D10,D11 Rectifier 1600 V 25 A Rectifier Diode R1 Resistor C1 Capacitor NTC Thermistor copyright Vincotech Comment PFC Shunt 500 V Capacitor (DC) Thermistor 29 30 May. 2016 / Revision 2 10-**06PPA006SB-M682B* datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 135 Standard <SPQ Sample Handling instruction Handling instructions for flow 0 packages see vincotech.com website. Package data Package data for flow 0 packages see vincotech.com website. UL recognition and file number This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website. Document No.: Date: Modification: Pages 10-xx06PPA006SB-M682Bx-D2-14 30 May. 2016 New brand, PCM Rth values all DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in la 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 30 30 May. 2016 / Revision 2