V23990-P629-L43-PM Maximum Ratings

V23990-P629-L43-PM
datasheet
flow BOOST 0
1200 V / 50 A
Features
flow 0 12mm housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V SiC diode
● Antiparallel IGBT protection diode with high current
Target Applications
● solar inverter
Schematic
Types
● V23990-P629-L43-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
38
45
A
220
A
200
A 2s
Bypass D5, D6 / Inverse FWD D1, D2
Repetitive peak reverse voltage
V RRM
Forward average current
I FAV
Surge forward current
I FSM
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CES
1200
V
Tj=Tjmax
Th=80°C
Tc=80°C
47
71
W
Boost IGBT (T1,T2)
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
51
65
A
tp limited by Tjmax
150
A
Tj≤150°C
VCE<=VCES
100
A
144
210
W
Tj=Tjmax
Tj≤150°C
VGE=15V
T jmax
1
Th=80°C
Tc=80°C
±20
V
10
800
µs
V
175
°C
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
28
34
A
138
A
95
A s
78
A
81
123
W
Boost FWD (D3,D4)
Peak Repetitive Reverse Voltage
V RRM
Forward average current
I FAV
Surge forward current
I FSM
I2t-value
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
I 2t
2
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 9,55
mm
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
t=2s
DC voltage
2
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,14
1,10
0,92
0,80
0,009
0,012
1,9
Bypass D5, D6 / Inverse FWD D1, D2
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
V to
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
1500
V
V
Ω
0,05
mA
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
1,49
K/W
Thermal resistance chip to heatsink
R th(j-s)
Thermal grease
tickness≤ 50um
λ= 1 W/K
1,73
K/W
Gate emitter threshold voltage
V GE(th)
VGE=VCE
Collector-emitter saturation voltage
V CEsat
Boost IGBT (T1,T2)
0,0017
15
50
Collector-emitter cut-off
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
5,2
5,8
6,4
1,5
2,13
2,58
2,5
0,05
600
4
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=4 Ω
Rgon=4 Ω
700
15
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
27
27
14
17
256
320
47
57
1,051
1,224
1,540
2,430
ns
mWs
2770
f=1MHz
0
25
15
960
Tj=25°C
240
pF
Tj=25°C
230
nC
160
50
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
0,66
K/W
Thermal resistance chip to heatsink
R th(j-s)
Thermal grease
tickness≤ 50um
λ= 1 W/K
0,80
K/W
Boost FWD (D3, D4)
Forward voltage
VF
Reverse leakage current
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
E rec
15
1200
Rgon=4 Ω
15
700
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,43
1,69
2
150
17
15
9
9
0,24
0,21
0,093
0,074
6570
5559
V
µA
A
ns
µC
mWs
A/µs
Peak rate of fall of recovery current
( di rf/dt )max
Thermal resistance chip to heatsink
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
1,17
K/W
Thermal resistance chip to case
R th(j-s)
Thermal grease
tickness≤ 50um
λ= 1 W/K
1,36
K/W
copyright Vincotech
3
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Value
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
T=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486 Ω
T=25°C
Power dissipation constant
21511
-4,5
Ω
+4,5
%
T=25°C
210
mW
T=25°C
3,5
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3884
K
B-value
B(25/100) Tol. ±3%
T=25°C
3964
K
Vincotech NTC Reference
copyright Vincotech
F
4
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Boost IGBT T1, T2 / Boost FWD D3, D4
Figure 1
Typical output characteristics
I C = f(V CE)
T1, T2
Figure 2
Typical output characteristics
I C = f(V CE)
IC (A)
150
IC(A)
150
120
120
90
90
60
60
30
30
0
T1, T2
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
T1, T2
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
D3,D4
50
IF (A)
IC (A)
50
5
40
40
30
30
20
20
10
10
0
0
0
2
At
tp =
V CE =
100
10
copyright Vincotech
4
µs
V
6
Tj =
8
25/125
10
V GE (V)
12
0
At
tp =
°C
5
1
250
2
µs
3
Tj =
4
25/125
V F (V)
5
°C
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Boost IGBT T1, T2 / Boost FWD D3, D4
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
T1, T2
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
5
E (mWs)
5
T1, T2
Eoff High T
4
4
Eon High T
3
Eon High T
3
Eon Low T
Eon Low T
Eoff Low T
Eoff High T
2
2
Eoff Low T
1
1
0
0
0
20
40
60
80
0
I C (A)
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
15
V
IC =
40
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
D3,D4
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
0,12
E (mWs)
E (mWs)
0,12
D3,D4
0,1
Erec Low T
0,1
Erec High T
0,08
0,08
0,06
0,06
0,04
0,04
0,02
0,02
0
Erec Low T
Erec High T
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
Ω
copyright Vincotech
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
700
V
V GE =
15
V
IC =
40
A
6
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Boost IGBT T1, T2 / Boost FWD D3, D4
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
T1, T2
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
T1, T2
tdoff
tdoff
0,1
0,1
tf
tf
tdon
tdon
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
I C (A)
0
80
With an inductive load at
Tj =
126
°C
V CE =
700
V
V GE =
15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
126
°C
V CE =
700
V
V GE =
15
V
IC =
40
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
D3,D4
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,014
t rr( µs)
t rr( µs)
0,014
D3,D4
0,012
0,012
0,01 t
rr High T
0,01
trr High T
trr Low T
trr Low T
0,008
0,008
0,006
0,006
0,004
0,004
0,002
0,002
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
0
80
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
4
25/125
700
40
15
8
12
16
R Gon (Ω)
20
°C
V
A
V
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Boost IGBT T1, T2 / Boost FWD D3, D4
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
D3,D4
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr ( µC)
0,3
Qrr ( µC)
0,3
D3,D4
Qrr Low T
0,25
Qrr Low T
0,25
Qrr High T
0,2
0,2
0,15
0,15
0,1
0,1
0,05
0,05
0
Qrr High T
0
0
At
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
40
60
I C (A)
80
0
4
At
Tj =
°C
V
V
Ω
25/125
700
40
15
VR=
IF=
V GS =
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
D3,D4
8
12
16
20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
D3,D4
25
IRRM Low T
IrrM (A)
IrrM (A)
25
R Gon ( Ω)
20
20
IRRM Low T
IRRM High T
IRRM High T
15
15
10
10
5
5
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
0
80
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
4
25/125
700
40
15
8
12
16
R Gon (Ω)
20
°C
V
A
V
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Boost IGBT T1, T2 / Boost FWD D3, D4
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
D3,D4
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
10000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
10000
dIrec/dt
8000
dI0/dt
dIrec/dt
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
D3,D4
20
25/125
700
15
4
40
60
I C (A)
80
0
At
Tj =
°C
V
V
Ω
VR=
IF=
V GE =
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
T1, T2
4
25/125
700
40
15
8
12
R Gon ( Ω)
16
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
D3,D4
101
ZthJH (K/W)
ZthJH (K/W)
100
20
100
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
101
At
D =
tp/T
Phase-Change Material
Thermal grease
R thJH =
R thJH =
0,66
K/W
K/W
0,80
IGBT thermal model values
Phase-Change Material
Thermal grease
R (K/W)
Tau (s)
R (K/W)
Tau (s)
0,085
1,272
0,103
1,272
0,179
0,186
0,216
0,186
0,314
0,060
0,378
0,060
0,053
0,005
0,064
0,005
0,029
0,000
0,035
0,000
copyright Vincotech
10-4
10-3
10-2
10-1
100
t p (s)
101
tp/T
Phase-Change Material
Thermal grease
R thJH =
R thJH =
1,17
K/W
1,36
K/W
FWD thermal model values
Phase-Change Material
Thermal grease
R (K/W)
Tau (s)
R (K/W)
Tau (s)
0,043
9,803
0,050
9,80
0,101
0,815
0,118
0,82
0,383
0,098
0,445
0,10
0,308
0,026
0,358
0,03
0,233
0,005
0,271
0,01
0,098
0,001
0,114
0,00
9
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Boost IGBT T1, T2 / Boost FWD D3, D4
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
T1, T2
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
80
IC (A)
Ptot (W)
300
T1, T2
270
70
240
60
210
50
180
150
40
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
D3,D4
50
175
15
100
150
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
D3,D4
50
IF (A)
Ptot (W)
175
Th ( o C)
150
40
125
30
100
75
20
50
10
25
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
10
50
175
100
150
T h ( o C)
200
ºC
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Boost IGBT T1, T2 / Boost FWD D3, D4
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
T1, T2
Figure 26
Gate voltage vs Gate charge
V GE = f(Q g)
16
IC (A)
VGS (V)
1103
10
T1, T2
14
100uS
2
100mS
10mS
10uS
240V
12
960V
10
1mS
8
101
6
DC
10
4
0
2
0
100
101
At
D =
Th =
V GE =
Tj =
10
103
2
0
V CE (V)
50
At
IC =
single pulse
80
ºC
V
15
T jmax
ºC
Figure 27
T1, T2
50
100
150
200
250 Qg (nC) 300
A
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
T1, T2
Typical short circuit collector current as a function of
gate-emitter voltage
V GE = f(Q GE)
tsc (µS)
IC (sc)
17,5
400
375
350
15
325
300
12,5
275
250
10
225
200
175
7,5
150
125
5
100
75
2,5
50
25
0
0
12
At
V CE =
Tj ≤
13
14
15
600
V
150
ºC
copyright Vincotech
16
17
18
19
V GE (V)
12
20
At
V CE ≤
Tj =
11
13
14
600
V
25
ºC
15
16
17
V GE (V)
18
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Boost IGBT T1, T2 / Boost FWD D3, D4
Figure 29
Reverse bias safe operating area
T1, T2
I C = f(V CE)
IC (A)
120
IC MAX
Ic CHIP
100
Ic
MODULE
80
VCE MAX
60
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
T vj ≤
I C MAX=
V CE
MAX=
150
100
1200
copyright Vincotech
ºC
A
V
12
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Bypass D5, D6 / Inverse FWD D1, D2
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
D1,D2,D5,D6
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
75
1
ZthJC (K/W)
IF (A)
10
D1,D2,D5,D6
60
10
0
45
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
30
10-1
15
0
0
0,4
At
Tj =
tp =
0,8
25/125
250
1,2
1,6
V F (V)
10
2
-2
10-5
10-4
At
D =
°C
µs
R thJH
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
D1,D2,D5,D6
10-3
10-2
10-1
100
10110
tp/T
Phase-Change Material
=
1,49
K/W
Thermal grease
R thJH =
1,73
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
120
t p (s)
K/W
D1,D2,D5,D6
Ptot (W)
IF (A)
50
45
100
40
35
80
30
60
25
20
40
15
10
20
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
13
50
150
100
150
T h ( o C)
200
ºC
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
14
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Switching Definitions Boost
General
Tj
R gon
R goff
conditions
= 125 °C
= 4Ω
= 4Ω
Figure 1
T1, T2
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
T1, T2
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
150
%
%
tdoff
VCE
VCE 90%
VGE 90%
IC
125
100
100
VCE
75
VGE
VGE
75
IC
50
tdon
tEoff
50
25
IC 1%
25
VGE 10%
0
VCE 3%
IC 10%
0
tEon
-25
-0,15
-0,05
0,05
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,15
0
15
700
40
0,320
0,468
0,25
0,35
-25
2,95
0,45
0,55
time (us)
V
V
V
A
µs
µs
3
3,05
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Turn-off Switching Waveforms & definition of t f
T1, T2
0
15
700
40
0,027
0,157
3,1
3,15
3,2
V
V
V
A
µs
µs
Figure 4
Turn-on Switching Waveforms & definition of t r
125
time(us)
T1, T2
150
fitted
%
VCE
IC
100
%
IC
125
IC 90%
VCE
100
75
IC 90%
75
IC 60%
tr
50
IC 40%
50
25
25
IC10%
-25
0,15
IC 10%
tf
0
0,2
0,25
0,3
0
0,35
0,4
-25
2,95
0,45
time (us)
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
700
40
0,057
V
A
µs
V C (100%) =
I C (100%) =
tr =
15
3
3,05
700
40
0,017
3,1
time(us)
3,15
V
A
µs
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Switching Definitions Boost
Figure 5
Turn-off Switching Waveforms & definition of t Eoff
T1, T2
Figure 6
Turn-on Switching Waveforms & definition of t Eon
125
125
%
%
Eoff
100
Eon
T1, T2
Pon
100
Poff
75
75
50
50
25
25
IC 1%
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-0,1
0
P off (100%) =
E off (100%) =
t E off =
0,1
0,2
0,3
28,02
2,43
0,468
0,4
0,5
-25
2,95
0,6
time (us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Turn-off Switching Waveforms & definition of t rr
3
3,05
28,02
1,22
0,1567
3,1
3,15
3,2
time(us)
3,25
kW
mJ
µs
T1, T2
125
%
Id
100
75
trr
50
25
0
fitted
Vd
IRRM 10%
-25
IRRM 90%
IRRM 100%
-50
-75
3,02
3,03
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,04
700
40
-15
0,009
3,05
3,06
3,07
time(us)
3,08
V
A
A
µs
16
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Switching Definitions Boost
Figure 8
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
D3, D4
Figure 9
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
D3, D4
200
200
%
%
Erec
Qrr
150
150
Id
100
100
tErec
tQrr
50
50
Prec
0
0
-50
3
3,02
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,04
40
0,21
0,02
3,06
3,08
time(us)
-50
3,03
3,1
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
17
3,04
3,05
28,02
0,07
0,02
3,06
time(us)
3,07
kW
mJ
µs
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
V23990-P629-L43-PM
in DataMatrix as in packaging barcode as
P629L43
P629L43
Outline
Pinout
copyright Vincotech
18
13 Apr. 2015 / Revision 2
V23990-P629-L43-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
19
13 Apr. 2015 / Revision 2