V23990-P629-L43-PM datasheet flow BOOST 0 1200 V / 50 A Features flow 0 12mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V SiC diode ● Antiparallel IGBT protection diode with high current Target Applications ● solar inverter Schematic Types ● V23990-P629-L43-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 38 45 A 220 A 200 A 2s Bypass D5, D6 / Inverse FWD D1, D2 Repetitive peak reverse voltage V RRM Forward average current I FAV Surge forward current I FSM Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CES 1200 V Tj=Tjmax Th=80°C Tc=80°C 47 71 W Boost IGBT (T1,T2) Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C 51 65 A tp limited by Tjmax 150 A Tj≤150°C VCE<=VCES 100 A 144 210 W Tj=Tjmax Tj≤150°C VGE=15V T jmax 1 Th=80°C Tc=80°C ±20 V 10 800 µs V 175 °C 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 28 34 A 138 A 95 A s 78 A 81 123 W Boost FWD (D3,D4) Peak Repetitive Reverse Voltage V RRM Forward average current I FAV Surge forward current I FSM I2t-value Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C I 2t 2 Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 9,55 mm Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech t=2s DC voltage 2 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,14 1,10 0,92 0,80 0,009 0,012 1,9 Bypass D5, D6 / Inverse FWD D1, D2 Forward voltage VF 25 Threshold voltage (for power loss calc. only) V to 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir 1500 V V Ω 0,05 mA Thermal resistance chip to heatsink R th(j-s) Phase-Change Material ʎ=3,4W/mK 1,49 K/W Thermal resistance chip to heatsink R th(j-s) Thermal grease tickness≤ 50um λ= 1 W/K 1,73 K/W Gate emitter threshold voltage V GE(th) VGE=VCE Collector-emitter saturation voltage V CEsat Boost IGBT (T1,T2) 0,0017 15 50 Collector-emitter cut-off I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG 5,2 5,8 6,4 1,5 2,13 2,58 2,5 0,05 600 4 tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=4 Ω Rgon=4 Ω 700 15 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 27 27 14 17 256 320 47 57 1,051 1,224 1,540 2,430 ns mWs 2770 f=1MHz 0 25 15 960 Tj=25°C 240 pF Tj=25°C 230 nC 160 50 Thermal resistance chip to heatsink R th(j-s) Phase-Change Material ʎ=3,4W/mK 0,66 K/W Thermal resistance chip to heatsink R th(j-s) Thermal grease tickness≤ 50um λ= 1 W/K 0,80 K/W Boost FWD (D3, D4) Forward voltage VF Reverse leakage current I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy E rec 15 1200 Rgon=4 Ω 15 700 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,43 1,69 2 150 17 15 9 9 0,24 0,21 0,093 0,074 6570 5559 V µA A ns µC mWs A/µs Peak rate of fall of recovery current ( di rf/dt )max Thermal resistance chip to heatsink R th(j-s) Phase-Change Material ʎ=3,4W/mK 1,17 K/W Thermal resistance chip to case R th(j-s) Thermal grease tickness≤ 50um λ= 1 W/K 1,36 K/W copyright Vincotech 3 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Characteristic Values Parameter Conditions Symbol V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Value Tj Min Typ Unit Max Thermistor Rated resistance T=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486 Ω T=25°C Power dissipation constant 21511 -4,5 Ω +4,5 % T=25°C 210 mW T=25°C 3,5 mW/K B-value B(25/50) Tol. ±3% T=25°C 3884 K B-value B(25/100) Tol. ±3% T=25°C 3964 K Vincotech NTC Reference copyright Vincotech F 4 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Boost IGBT T1, T2 / Boost FWD D3, D4 Figure 1 Typical output characteristics I C = f(V CE) T1, T2 Figure 2 Typical output characteristics I C = f(V CE) IC (A) 150 IC(A) 150 120 120 90 90 60 60 30 30 0 T1, T2 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) T1, T2 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) D3,D4 50 IF (A) IC (A) 50 5 40 40 30 30 20 20 10 10 0 0 0 2 At tp = V CE = 100 10 copyright Vincotech 4 µs V 6 Tj = 8 25/125 10 V GE (V) 12 0 At tp = °C 5 1 250 2 µs 3 Tj = 4 25/125 V F (V) 5 °C 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Boost IGBT T1, T2 / Boost FWD D3, D4 Figure 5 Typical switching energy losses as a function of collector current E = f(I C) T1, T2 Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) 5 E (mWs) 5 T1, T2 Eoff High T 4 4 Eon High T 3 Eon High T 3 Eon Low T Eon Low T Eoff Low T Eoff High T 2 2 Eoff Low T 1 1 0 0 0 20 40 60 80 0 I C (A) With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = 15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = 15 V IC = 40 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) D3,D4 Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,12 E (mWs) E (mWs) 0,12 D3,D4 0,1 Erec Low T 0,1 Erec High T 0,08 0,08 0,06 0,06 0,04 0,04 0,02 0,02 0 Erec Low T Erec High T 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = 15 V R gon = 4 Ω R goff = 4 Ω copyright Vincotech 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 700 V V GE = 15 V IC = 40 A 6 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Boost IGBT T1, T2 / Boost FWD D3, D4 Figure 9 Typical switching times as a function of collector current t = f(I C) T1, T2 Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 T1, T2 tdoff tdoff 0,1 0,1 tf tf tdon tdon tr tr 0,01 0,01 0,001 0,001 0 20 40 60 I C (A) 0 80 With an inductive load at Tj = 126 °C V CE = 700 V V GE = 15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 126 °C V CE = 700 V V GE = 15 V IC = 40 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) D3,D4 Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,014 t rr( µs) t rr( µs) 0,014 D3,D4 0,012 0,012 0,01 t rr High T 0,01 trr High T trr Low T trr Low T 0,008 0,008 0,006 0,006 0,004 0,004 0,002 0,002 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 0 80 At Tj = VR= IF= V GE = °C V V Ω 7 4 25/125 700 40 15 8 12 16 R Gon (Ω) 20 °C V A V 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Boost IGBT T1, T2 / Boost FWD D3, D4 Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) D3,D4 Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr ( µC) 0,3 Qrr ( µC) 0,3 D3,D4 Qrr Low T 0,25 Qrr Low T 0,25 Qrr High T 0,2 0,2 0,15 0,15 0,1 0,1 0,05 0,05 0 Qrr High T 0 0 At At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 40 60 I C (A) 80 0 4 At Tj = °C V V Ω 25/125 700 40 15 VR= IF= V GS = Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) D3,D4 8 12 16 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) D3,D4 25 IRRM Low T IrrM (A) IrrM (A) 25 R Gon ( Ω) 20 20 IRRM Low T IRRM High T IRRM High T 15 15 10 10 5 5 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 0 80 At Tj = VR= IF= V GE = °C V V Ω 8 4 25/125 700 40 15 8 12 16 R Gon (Ω) 20 °C V A V 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Boost IGBT T1, T2 / Boost FWD D3, D4 Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) D3,D4 Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 10000 dI0/dt direc / dt (A/ µs) direc / dt (A/ µs) 10000 dIrec/dt 8000 dI0/dt dIrec/dt 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = V CE = V GE = R gon = D3,D4 20 25/125 700 15 4 40 60 I C (A) 80 0 At Tj = °C V V Ω VR= IF= V GE = Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) T1, T2 4 25/125 700 40 15 8 12 R Gon ( Ω) 16 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) D3,D4 101 ZthJH (K/W) ZthJH (K/W) 100 20 100 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 101 At D = tp/T Phase-Change Material Thermal grease R thJH = R thJH = 0,66 K/W K/W 0,80 IGBT thermal model values Phase-Change Material Thermal grease R (K/W) Tau (s) R (K/W) Tau (s) 0,085 1,272 0,103 1,272 0,179 0,186 0,216 0,186 0,314 0,060 0,378 0,060 0,053 0,005 0,064 0,005 0,029 0,000 0,035 0,000 copyright Vincotech 10-4 10-3 10-2 10-1 100 t p (s) 101 tp/T Phase-Change Material Thermal grease R thJH = R thJH = 1,17 K/W 1,36 K/W FWD thermal model values Phase-Change Material Thermal grease R (K/W) Tau (s) R (K/W) Tau (s) 0,043 9,803 0,050 9,80 0,101 0,815 0,118 0,82 0,383 0,098 0,445 0,10 0,308 0,026 0,358 0,03 0,233 0,005 0,271 0,01 0,098 0,001 0,114 0,00 9 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Boost IGBT T1, T2 / Boost FWD D3, D4 Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) T1, T2 Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 80 IC (A) Ptot (W) 300 T1, T2 270 70 240 60 210 50 180 150 40 120 30 90 20 60 10 30 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) D3,D4 50 175 15 100 150 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) D3,D4 50 IF (A) Ptot (W) 175 Th ( o C) 150 40 125 30 100 75 20 50 10 25 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 10 50 175 100 150 T h ( o C) 200 ºC 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Boost IGBT T1, T2 / Boost FWD D3, D4 Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) T1, T2 Figure 26 Gate voltage vs Gate charge V GE = f(Q g) 16 IC (A) VGS (V) 1103 10 T1, T2 14 100uS 2 100mS 10mS 10uS 240V 12 960V 10 1mS 8 101 6 DC 10 4 0 2 0 100 101 At D = Th = V GE = Tj = 10 103 2 0 V CE (V) 50 At IC = single pulse 80 ºC V 15 T jmax ºC Figure 27 T1, T2 50 100 150 200 250 Qg (nC) 300 A Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) T1, T2 Typical short circuit collector current as a function of gate-emitter voltage V GE = f(Q GE) tsc (µS) IC (sc) 17,5 400 375 350 15 325 300 12,5 275 250 10 225 200 175 7,5 150 125 5 100 75 2,5 50 25 0 0 12 At V CE = Tj ≤ 13 14 15 600 V 150 ºC copyright Vincotech 16 17 18 19 V GE (V) 12 20 At V CE ≤ Tj = 11 13 14 600 V 25 ºC 15 16 17 V GE (V) 18 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Boost IGBT T1, T2 / Boost FWD D3, D4 Figure 29 Reverse bias safe operating area T1, T2 I C = f(V CE) IC (A) 120 IC MAX Ic CHIP 100 Ic MODULE 80 VCE MAX 60 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At T vj ≤ I C MAX= V CE MAX= 150 100 1200 copyright Vincotech ºC A V 12 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Bypass D5, D6 / Inverse FWD D1, D2 Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) D1,D2,D5,D6 Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 75 1 ZthJC (K/W) IF (A) 10 D1,D2,D5,D6 60 10 0 45 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 10-1 15 0 0 0,4 At Tj = tp = 0,8 25/125 250 1,2 1,6 V F (V) 10 2 -2 10-5 10-4 At D = °C µs R thJH Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) D1,D2,D5,D6 10-3 10-2 10-1 100 10110 tp/T Phase-Change Material = 1,49 K/W Thermal grease R thJH = 1,73 Figure 4 Forward current as a function of heatsink temperature I F = f(T h) 120 t p (s) K/W D1,D2,D5,D6 Ptot (W) IF (A) 50 45 100 40 35 80 30 60 25 20 40 15 10 20 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 13 50 150 100 150 T h ( o C) 200 ºC 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 14 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Switching Definitions Boost General Tj R gon R goff conditions = 125 °C = 4Ω = 4Ω Figure 1 T1, T2 Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 T1, T2 Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 150 % % tdoff VCE VCE 90% VGE 90% IC 125 100 100 VCE 75 VGE VGE 75 IC 50 tdon tEoff 50 25 IC 1% 25 VGE 10% 0 VCE 3% IC 10% 0 tEon -25 -0,15 -0,05 0,05 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,15 0 15 700 40 0,320 0,468 0,25 0,35 -25 2,95 0,45 0,55 time (us) V V V A µs µs 3 3,05 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Turn-off Switching Waveforms & definition of t f T1, T2 0 15 700 40 0,027 0,157 3,1 3,15 3,2 V V V A µs µs Figure 4 Turn-on Switching Waveforms & definition of t r 125 time(us) T1, T2 150 fitted % VCE IC 100 % IC 125 IC 90% VCE 100 75 IC 90% 75 IC 60% tr 50 IC 40% 50 25 25 IC10% -25 0,15 IC 10% tf 0 0,2 0,25 0,3 0 0,35 0,4 -25 2,95 0,45 time (us) V C (100%) = I C (100%) = tf = copyright Vincotech 700 40 0,057 V A µs V C (100%) = I C (100%) = tr = 15 3 3,05 700 40 0,017 3,1 time(us) 3,15 V A µs 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Switching Definitions Boost Figure 5 Turn-off Switching Waveforms & definition of t Eoff T1, T2 Figure 6 Turn-on Switching Waveforms & definition of t Eon 125 125 % % Eoff 100 Eon T1, T2 Pon 100 Poff 75 75 50 50 25 25 IC 1% VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -0,1 0 P off (100%) = E off (100%) = t E off = 0,1 0,2 0,3 28,02 2,43 0,468 0,4 0,5 -25 2,95 0,6 time (us) kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Turn-off Switching Waveforms & definition of t rr 3 3,05 28,02 1,22 0,1567 3,1 3,15 3,2 time(us) 3,25 kW mJ µs T1, T2 125 % Id 100 75 trr 50 25 0 fitted Vd IRRM 10% -25 IRRM 90% IRRM 100% -50 -75 3,02 3,03 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,04 700 40 -15 0,009 3,05 3,06 3,07 time(us) 3,08 V A A µs 16 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Switching Definitions Boost Figure 8 Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) D3, D4 Figure 9 Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) D3, D4 200 200 % % Erec Qrr 150 150 Id 100 100 tErec tQrr 50 50 Prec 0 0 -50 3 3,02 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,04 40 0,21 0,02 3,06 3,08 time(us) -50 3,03 3,1 A µC µs P rec (100%) = E rec (100%) = t E rec = 17 3,04 3,05 28,02 0,07 0,02 3,06 time(us) 3,07 kW mJ µs 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code V23990-P629-L43-PM in DataMatrix as in packaging barcode as P629L43 P629L43 Outline Pinout copyright Vincotech 18 13 Apr. 2015 / Revision 2 V23990-P629-L43-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 19 13 Apr. 2015 / Revision 2